Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Int J Biol Macromol ; 255: 128010, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979752

RESUMO

In practical applications, the gelatinisation temperature of starch is high. Most current glycogen branching enzymes (GBEs, EC 2.4.1.18) exhibit optimum activity at moderate or low temperatures and quickly lose their activity at higher temperatures, limiting the application of GBEs in starch modification. Therefore, we used the PROSS strategy combined with PDBePISA analysis of the dimer interface to further improve the heat resistance of hyperthermophilic bacteria Pyrococcus horikoshii OT3 GBE. The results showed that the melting temperature of mutant T508K increased by 3.1 °C compared to wild-type (WT), and the optimum reaction temperature increased by 10 °C for all mutants except V140I. WT almost completely lost its activity after incubation at 95 °C for 60 h, while all of the combined mutants maintained >40 % of their residual activity. Further, the content of the α-1,6 glycosidic bond of corn starch modified by H415W and V140I/H415W was approximately 2.68-fold and 1.92-fold higher than that of unmodified corn starch and corn starch modified by WT, respectively. Additionally, the glucan chains of DP < 13 were significantly increased in mutant modified corn starch. This method has potential for improving the thermal stability of GBE, which can be applied in starch branching in the food industry.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Pyrococcus horikoshii , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Pyrococcus , Amido/química , Glucanos , Estabilidade Enzimática
2.
Biosci Biotechnol Biochem ; 87(7): 717-723, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37096382

RESUMO

S-Adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) are important biochemical intermediates. SAM is the major methyl donor for diverse methylation reactions in vivo. The SAM to SAH ratio serves as a marker of methylation capacity. Stable isotope-labeled SAM and SAH are used to measure this ratio with high sensitivity. SAH hydrolase (EC 3.13.2.1; SAHH), which reversibly catalyzes the conversion of adenosine and L-homocysteine to SAH, is used to produce labeled SAH. To produce labeled SAH with high efficiency, we focused on the SAHH of Pyrococcus horikoshii OT3, a thermophilic archaeon. We prepared recombinant P. horikoshii SAHH using Escherichia coli and investigated its enzymatic properties. Unexpectedly, the optimum temperature and thermostability of P. horikoshii SAHH were much lower than its optimum growth temperature. However, addition of NAD+ to the reaction mixture shifted the optimum temperature of P. horikoshii SAHH to a higher temperature, suggesting that NAD+ stabilizes the structure of the enzyme.


Assuntos
NAD , Pyrococcus horikoshii , Pyrococcus horikoshii/metabolismo , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Homocisteína , Hidrolases/metabolismo
3.
Biotechnol Lett ; 44(8): 961-974, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763164

RESUMO

OBJECTIVES: Ionic liquids (ILs) that dissolve biomass are harmful to the enzymes that degrade lignocellulose. Enzyme hyperthermostability promotes a tolerance to ILs. Therefore, the limits of hyperthemophilic Pyrococcus horikoschii endoglucanase (PhEG) to tolerate 11 superbase ILs were explored. RESULTS: PhEG was found to be most tolerant to 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) in soluble 1% carboxymethylcellulose (CMC) and insoluble 1% Avicel substrates. At 35% concentration, this IL caused an increase in enzyme activity (up to 1.5-fold) with CMC. Several ILs were more enzyme inhibiting with insoluble Avicel than with soluble CMC. Km increased greatly in the presence ILs, indicating significant competitive inhibition. Increased hydrophobicity of the IL cation or anion was associated with the strongest enzyme inhibition and activation. Surprisingly, PhEG activity was increased 2.0-2.5-fold by several ILs in 4% substrate. Cations exerted the main role in competitive inhibition of the enzyme as revealed by their greater binding energy to the active site. CONCLUSIONS: These results reveal new ways to design a beneficial combination of ILs and enzymes for the hydrolysis of lignocellulose, and the strong potential of PhEG in industrial, high substrate concentrations in aqueous IL solutions.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus horikoshii , Biomassa , Cátions , Celulase/metabolismo , Celulose/metabolismo , Líquidos Iônicos/química , Pyrococcus horikoshii/metabolismo
4.
J Struct Biol ; 214(2): 107859, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439644

RESUMO

The nitrilase superfamily enzymes from Pyrococcus abyssi and Pyrococcus horikoshii hydrolyze several different amides. No nitriles that we tested were hydrolyzed by either enzyme. Propionamide and acetamide were the most rapidly hydrolyzed of all the substrates tested. Amide substrate docking studies on the wild-type and C146A variant P. horikoshii enzymes suggest a sequence in which the incoming amide substrate initially hydrogen bonds to the amino group of Lys-113 and the backbone carbonyl of Asn-171. When steric hindrance is relieved by replacing the cysteine with alanine, the amide then docks such that the amino group of Lys-113 and the backbone amide of Phe-147 are hydrogen-bonded to the substrate carbonyl oxygen, while the backbone carbonyl oxygen of Asn-171 and the carboxyl oxygen of Glu-42 are hydrogen-bonded to the amino group of the substrate. Here, we confirm the location of the acetamide and glutaramide ligands experimentally in well-resolved crystal structures of the C146A mutant of the enzyme from P. horikoshii. This ligand location suggests that there is no direct interaction between the substrate amide and the other active site glutamate, Glu-120, and supports an active-site geometry leading to the formation of the thioester intermediate via an attack on the si-face of the amide by the sulfhydryl of the active site cysteine.


Assuntos
Pyrococcus horikoshii , Acetamidas , Amidas , Amidoidrolases/química , Amidoidrolases/genética , Cisteína/química , Hidrogênio , Ligantes , Oxigênio , Especificidade por Substrato
5.
Int J Biol Macromol ; 208: 731-740, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35337912

RESUMO

Ornithine δ-aminotransferase (Orn-AT) activity was detected for the enzyme annotated as a γ-aminobutyrate aminotransferase encoded by PH1423 gene from Pyrococcus horikoshii OT-3. Crystal structures of this novel archaeal ω-aminotransferase were determined for the enzyme in complex with pyridoxal 5'-phosphate (PLP), in complex with PLP and l-ornithine (l-Orn), and in complex with N-(5'-phosphopyridoxyl)-l-glutamate (PLP-l-Glu). Although the sequence identity was relatively low (28%), the main-chain coordinates of P. horikoshii Orn-AT monomer showed notable similarity to those of human Orn-AT. However, the residues recognizing the α-amino group of l-Orn differ between the two enzymes. In human Orn-AT, Tyr55 and Tyr85 recognize the α-amino group, whereas the side chains of Thr92* and Asp93*, which arise from a loop in the neighboring subunit, form hydrogen bonds with the α-amino group of the substrate in P. horikoshii enzyme. Site-directed mutagenesis suggested that Asp93* plays critical roles in maintaining high affinity for the substrate. This study provides new insight into the substrate binding of a novel type of Orn-AT. Moreover, the structure of the enzyme with the reaction-intermediate analogue PLP-l-Glu bound provides the first structural evidence for the "Glu switch" mechanism in the dual substrate specificity of Orn-AT.


Assuntos
Pyrococcus horikoshii , Archaea/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ornitina/química , Fosfato de Piridoxal/química , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato , Transaminases/química
6.
Sci Rep ; 11(1): 11680, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083592

RESUMO

Protein splicing is a post-translational process by which an intein catalyzes its own excision from flanking polypeptides, or exteins, concomitant with extein ligation. Many inteins have nested homing endonuclease domains that facilitate their propagation into intein-less alleles, whereas other inteins lack the homing endonuclease (HEN) and are called mini-inteins. The mini-intein that interrupts the DNA PolII of Pyrococcus horikoshii has a linker region in place of the HEN domain that is shorter than the linker in a closely related intein from Pyrococcus abyssi. The P. horikoshii PolII intein requires a higher temperature for catalytic activity and is more stable to digestion by the thermostable protease thermolysin, suggesting that it is more rigid than the P. abyssi intein. We solved a crystal structure of the intein precursor that revealed a domain-swapped dimer. Inteins found as domain swapped dimers have been shown to promote intein-mediated protein alternative splicing, but the solved P. horikoshii PolII intein structure has an active site unlikely to be catalytically competent.


Assuntos
Proteínas Arqueais/química , Inteínas , Domínios Proteicos , Pyrococcus horikoshii , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Expressão Gênica , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
7.
J Ind Microbiol Biotechnol ; 48(7-8)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34180519

RESUMO

We investigated the effect of cell-surface display of glutamate decarboxylase (GadB) on gamma-aminobutyric acid (GABA) production in recombinant Escherichia coli. We integrated GadB from the hyperthermophilic, anaerobic archaeon Pyrococcus horikoshii to the C-terminus of the E. coli outer membrane protein C (OmpC). After 12 hr of culturing GadB-displaying cells, the GABA concentration in the extracellular medium increased to 3.2 g/l, which is eight times that obtained with cells expressing GadB in the cytosol. To further enhance GABA production, we increased the temperatures of the culture. At 60°C, the obtained GABA concentration was 4.62 g/l after 12 hr of culture, and 5.35 g/l after 24 hr, which corresponds to a yield of 87.7%.


Assuntos
Proteínas de Escherichia coli , Pyrococcus horikoshii , Escherichia coli/genética , Glutamato Descarboxilase/genética , Ácido gama-Aminobutírico
8.
Commun Biol ; 4(1): 751, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140623

RESUMO

It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s-1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


Assuntos
Ácido Aspártico/metabolismo , Transporte Biológico/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Sódio/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Proteolipídeos/metabolismo , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
9.
Angew Chem Int Ed Engl ; 60(32): 17680-17685, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34056805

RESUMO

ß-Branched noncanonical amino acids are valuable molecules in modern drug development efforts. However, they are still challenging to prepare due to the need to set multiple stereocenters in a stereoselective fashion, and contemporary methods for the synthesis of such compounds often rely on the use of rare-transition-metal catalysts with designer ligands. Herein, we report a highly diastereo- and enantioselective biocatalytic transamination method to prepare a broad range of aromatic ß-branched α-amino acids. Mechanistic studies show that the transformation proceeds through dynamic kinetic resolution that is unique to the optimal enzyme. To highlight its utility and practicality, the biocatalytic reaction was applied to the synthesis of several sp3 -rich cyclic fragments and the first total synthesis of jomthonic acid A.


Assuntos
Aminoácidos Aromáticos/síntese química , Aminoácidos de Cadeia Ramificada/síntese química , Aminação , Aminoácidos/síntese química , Proteínas Arqueais/química , Proteínas de Bactérias/química , Biocatálise , Pyrococcus horikoshii/enzimologia , Estereoisomerismo , Thermococcus/enzimologia , Thermus thermophilus/enzimologia , Transaminases/química
10.
Biomol NMR Assign ; 15(2): 351-360, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33988824

RESUMO

Prefoldin is a heterohexameric protein assembly which acts as a co-chaperonin for the well conserved Hsp60 chaperonin, present in archaebacteria and the eukaryotic cell cytosol. Prefoldin is a holdase, capturing client proteins and subsequently transferring them to the Hsp60 chamber for refolding. The chaperonin family is implicated in the early stages of protein folding and plays an important role in proteostasis in the cytosol. Here, we report the assignment of 1HN, 15N, 13C', 13Cα, 13Cß, 1Hmethyl, and 13Cmethyl chemical shifts of the 87 kDa prefoldin from the hyperthermophilic archaeon Pyrococcus horikoshii, consisting of two α and four ß subunits. 100% of the [13C, 1H]-resonances of Aß, Iδ1, Iδ2, Tγ2, Vγ2 methyl groups were successfully assigned for both subunits. For the ß subunit, showing partial peak doubling, 80% of the backbone resonances were assigned. In the α subunit, large stretches of backbone resonances were not detectable due to slow (µs-ms) time scale dynamics. This conformational exchange limited the backbone sequential assignment of the α subunit to 57% of residues, which corresponds to 84% of visible NMR signals.


Assuntos
Pyrococcus horikoshii
11.
EMBO J ; 40(1): e105415, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185289

RESUMO

Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/metabolismo , Transporte Biológico/fisiologia , Sistema X-AG de Transporte de Aminoácidos/genética , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Transporte Biológico/genética , Biologia Computacional/métodos , Mutação com Ganho de Função/genética , Modelos Moleculares , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato/genética
12.
Proc Natl Acad Sci U S A ; 117(51): 32386-32394, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288716

RESUMO

In translation elongation, two translational guanosine triphosphatase (trGTPase) factors EF1A and EF2 alternately bind to the ribosome and promote polypeptide elongation. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in the recruitment of EF1A and EF2 to the ribosome and their GTP hydrolysis for efficient and accurate translation elongation. However, due to the flexible nature of the ribosomal stalk, its structural dynamics and mechanism of action remain unclear. Here, we applied high-speed atomic force microscopy (HS-AFM) to directly visualize the action of the archaeal ribosomal heptameric stalk complex, aP0•(aP1•aP1)3 (P-stalk). HS-AFM movies clearly demonstrated the wobbling motion of the P-stalk on the large ribosomal subunit where the stalk base adopted two conformational states, a predicted canonical state, and a newly identified flipped state. Moreover, we showed that up to seven molecules of archaeal EF1A (aEF1A) and archaeal EF2 (aEF2) assembled around the ribosomal P-stalk, corresponding to the copy number of the common C-terminal factor-binding site of the P-stalk. These results provide visual evidence for the factor-pooling mechanism by the P-stalk within the ribosome and reveal that the ribosomal P-stalk promotes translation elongation by increasing the local concentration of translational GTPase factors.


Assuntos
Proteínas Arqueais/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Microscopia de Força Atômica/métodos , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores/química , Proteínas Arqueais/metabolismo , Escherichia coli/genética , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Elongação Traducional da Cadeia Peptídica , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo
13.
Elife ; 92020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33155546

RESUMO

Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homolog, sodium, and aspartate symporter GltPh. However, the mechanism of gating on the cytoplasmic side of the membrane remains ambiguous. We report Cryo-EM structures of GltPh reconstituted into nanodiscs, including those structurally constrained in the cytoplasm-facing state and either apo, bound to sodium ions only, substrate, or blockers. The structures show that both substrate translocation and release involve movements of the bulky transport domain through the lipid bilayer. They further reveal a novel mode of inhibitor binding and show how solutes release is coupled to protein conformational changes. Finally, we describe how domain movements are associated with the displacement of bound lipids and significant membrane deformations, highlighting the potential regulatory role of the bilayer.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Proteínas Arqueais/genética , Transporte Biológico , Microscopia Crioeletrônica , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Domínios Proteicos , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Sódio/química , Sódio/metabolismo
14.
Sci Rep ; 10(1): 16483, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020522

RESUMO

Saturation-transfer difference (STD) NMR spectroscopy is a fast and versatile method which can be applied for drug-screening purposes, allowing the determination of essential ligand binding affinities (KD). Although widely employed to study soluble proteins, its use remains negligible for membrane proteins. Here the use of STD NMR for KD determination is demonstrated for two competing substrates with very different binding affinities (low nanomolar to millimolar) for an integral membrane transport protein in both detergent-solubilised micelles and reconstituted proteoliposomes. GltPh, a homotrimeric aspartate transporter from Pyrococcus horikoshii, is an archaeal homolog of mammalian membrane transport proteins-known as excitatory amino acid transporters (EAATs). They are found within the central nervous system and are responsible for fast uptake of the neurotransmitter glutamate, essential for neuronal function. Differences in both KD's and cooperativity are observed between detergent micelles and proteoliposomes, the physiological implications of which are discussed.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética/métodos , Mamíferos/metabolismo , Proteolipídeos/metabolismo , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato/fisiologia
15.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752130

RESUMO

The eukaryotic and archaeal translation factor IF5A requires a post-translational hypusine modification, which is catalyzed by deoxyhypusine synthase (DHS) at a single lysine residue of IF5A with NAD+ and spermidine as cofactors, followed by hydroxylation to form hypusine. While human DHS catalyzed reactions have been well characterized, the mechanism of the hypusination of archaeal IF5A by DHS is not clear. Here we report a DHS structure from Pyrococcus horikoshii OT3 (PhoDHS) at 2.2 Å resolution. The structure reveals two states in a single functional unit (tetramer): two NAD+-bound monomers with the NAD+ and spermidine binding sites observed in multi-conformations (closed and open), and two NAD+-free monomers. The dynamic loop region V288-P299, in the vicinity of the active site, adopts different positions in the closed and open conformations and is disordered when NAD+ is absent. Combined with NAD+ binding analysis, it is clear that PhoDHS can exist in three states: apo, PhoDHS-2 equiv NAD+, and PhoDHS-4 equiv NAD+, which are affected by the NAD+ concentration. Our results demonstrate the dynamic structure of PhoDHS at the NAD+ and spermidine binding site, with conformational changes that may be the response to the local NAD+ concentration, and thus fine-tune the regulation of the translation process via the hypusine modification of IF5A.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH/ultraestrutura , Fatores de Iniciação de Peptídeos/ultraestrutura , Processamento de Proteína Pós-Traducional/genética , Pyrococcus horikoshii/ultraestrutura , Sítios de Ligação/genética , Cristalografia por Raios X , Eucariotos/genética , Eucariotos/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/genética , Lisina/metabolismo , NAD/química , NAD/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Conformação Proteica , Pyrococcus horikoshii/enzimologia , Espermidina/química , Espermidina/metabolismo
16.
Nat Chem Biol ; 16(9): 1006-1012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514183

RESUMO

In proteins where conformational changes are functionally important, the number of accessible states and their dynamics are often difficult to establish. Here we describe a novel 19F-NMR spectroscopy approach to probe dynamics of large membrane proteins. We labeled a glutamate transporter homolog with a 19F probe via cysteine chemistry and with a Ni2+ ion via chelation by a di-histidine motif. We used distance-dependent enhancement of the longitudinal relaxation of 19F nuclei by the paramagnetic metal to assign the observed resonances. We identified one inward- and two outward-facing states of the transporter, in which the substrate-binding site is near the extracellular and intracellular solutions, respectively. We then resolved the structure of the unanticipated second outward-facing state by cryo-EM. Finally, we showed that the rates of the conformational exchange are accessible from measurements of the metal-enhanced longitudinal relaxation of 19F nuclei.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Espectroscopia de Ressonância Magnética , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Microscopia Crioeletrônica , Cisteína/química , Flúor , Histidina/química , Modelos Moleculares , Mutação , Níquel/química , Conformação Proteica , Domínios Proteicos , Pyrococcus horikoshii/química
17.
Acta Crystallogr D Struct Biol ; 76(Pt 6): 515-520, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496213

RESUMO

The N-terminal region of the stomatin operon partner protein (STOPP) PH1510 (1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii is a serine protease with a catalytic Ser-Lys dyad (Ser97 and Lys138) and specifically cleaves the C-terminal hydrophobic region of the p-stomatin PH1511. In a form of human hemolytic anemia known as hereditary stomatocytosis, stomatin is deficient in the erythrocyte membrane owing to mis-trafficking. Stomatin is thought to act as an oligomeric scaffolding protein to support cell membranes. The cleavage of stomatin by STOPP might be involved in a regulatory system. Several crystal structures of 1510-N have previously been determined: the wild type, the K138A mutant and its complex with a substrate peptide. Here, the crystal structure of the S97A mutant of 1510-N (1510-N S97A) was determined at 2.25 Šresolution. The structure contained two 1510-N S97A molecules in the asymmetric unit. On the superposition of one monomer of the 1510-N S97A and wild-type dimers, the S97A Cα atom of the other monomer of 1510-N S97A deviated by 23 Šfrom that of the wild type. This result indicates that 1510-N can greatly change the form of its dimer. Because of crystallographic symmetry in space group P65, a sixfold helical structure is constructed using the 1510-N dimer as a basic unit. This helical structure may be common to STOPP structures.


Assuntos
Proteínas Arqueais/química , Proteínas de Membrana/química , Pyrococcus horikoshii/enzimologia , Serina Proteases/química , Proteínas Arqueais/genética , Proteínas de Membrana/genética , Mutação , Domínios Proteicos , Multimerização Proteica , Pyrococcus horikoshii/genética , Serina Proteases/genética
18.
Nat Commun ; 11(1): 998, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081874

RESUMO

Glutamate transporters are cation-coupled secondary active membrane transporters that clear the neurotransmitter L-glutamate from the synaptic cleft. These transporters are homotrimers, with each protomer functioning independently by an elevator-type mechanism, in which a mobile transport domain alternates between inward- and outward-oriented states. Using single-particle cryo-EM we have determined five structures of the glutamate transporter homologue GltTk, a Na+- L-aspartate symporter, embedded in lipid nanodiscs. Dependent on the substrate concentrations used, the protomers of the trimer adopt a variety of asymmetrical conformations, consistent with the independent movement. Six of the 15 resolved protomers are in a hitherto elusive state of the transport cycle in which the inward-facing transporters are loaded with Na+ ions. These structures explain how substrate-leakage is prevented - a strict requirement for coupled transport. The belt protein of the lipid nanodiscs bends around the inward oriented protomers, suggesting that membrane deformations occur during transport.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Proteínas Arqueais/química , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ácido Aspártico/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Lipídeos/química , Modelos Moleculares , Nanoestruturas/química , Conformação Proteica , Estrutura Quaternária de Proteína , Pyrococcus horikoshii/metabolismo , Imagem Individual de Molécula , Simportadores/química , Simportadores/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
19.
Chembiochem ; 21(3): 346-352, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31265209

RESUMO

Protein C-terminal hydrazides are useful for bioconjugation and construction of proteins from multiple fragments through native chemical ligation. To generate C-terminal hydrazides in proteins, an efficient intein-based preparation method has been developed by using thiols and hydrazine to accelerate the formation of the transient thioester intermediate and subsequent hydrazinolysis. This approach not only increases the yield, but also improves biocompatibility. The scope of the method has been expanded by employing Pyrococcus horikoshii RadA split intein, which can accommodate a broad range of extein residues before the site of cleavage. The use of split RadA minimizes premature intein N cleavage in vivo and offers control over the initiation of the intein N cleavage reaction. It is expected that this versatile preparation method will expand the utilization of protein C-terminal hydrazides in protein preparation and modification.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidrazinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Hidrazinas/química , Inteínas , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo
20.
Elife ; 82019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31855177

RESUMO

That channels and transporters can influence the membrane morphology is increasingly recognized. Less appreciated is that the extent and free-energy cost of these deformations likely varies among different functional states of a protein, and thus, that they might contribute significantly to defining its mechanism. We consider the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known. Molecular simulations indicate that when the protomers become inward-facing, they cause deep, long-ranged, and yet mutually-independent membrane deformations. Using a novel simulation methodology, we estimate that the free-energy cost of this membrane perturbation is in the order of 6-7 kcal/mol per protomer. Compensating free-energy contributions within the protein or its environment must thus stabilize this inward-facing conformation for the transporter to function. We discuss these striking results in the context of existing experimental observations for this and other transporters.


Assuntos
Metabolismo Energético , Conformação Proteica , Sódio/metabolismo , Simportadores/genética , Ácido Aspártico/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Íons/química , Íons/metabolismo , Simulação de Dinâmica Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pyrococcus horikoshii/química , Simportadores/metabolismo , Simportadores/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA