Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
J Biol Chem ; 299(6): 104800, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164156

RESUMO

For cells, it is important to repair DNA damage, such as double-strand and single-strand DNA breaks, because unrepaired DNA can compromise genetic integrity, potentially leading to cell death or cancer. Cells have multiple DNA damage repair pathways that have been the subject of detailed genetic, biochemical, and structural studies. Recently, the scientific community has started to gain evidence that the repair of DNA double-strand breaks may occur within biomolecular condensates and that condensates may also contribute to DNA damage through concentrating genotoxic agents used to treat various cancers. Here, we summarize key features of biomolecular condensates and note where they have been implicated in the repair of DNA double-strand breaks. We also describe evidence suggesting that condensates may be involved in the repair of other types of DNA damage, including single-strand DNA breaks, nucleotide modifications (e.g., mismatch and oxidized bases), and bulky lesions, among others. Finally, we discuss old and new mysteries that could now be addressed considering the properties of condensates, including chemoresistance mechanisms.


Assuntos
Reparo do DNA , DNA , Resistencia a Medicamentos Antineoplásicos , DNA/química , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Pareamento Incorreto de Bases/efeitos dos fármacos
2.
ACS Appl Mater Interfaces ; 13(39): 46303-46316, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569240

RESUMO

The antibacterial and cell-proliferative character of atmospheric pressure plasma jets (APPJs) helps in the healing process of chronic wounds. However, control of the plasma-biological target interface remains an open issue. High vacuum ultraviolet/ultraviolet (VUV/UV) radiation and RONS flux from plasma may cause damage of a treated tissue; therefore, controlled interaction is essential. VUV/UV emission from argon APPJs and radiation control with aerosol injection in plasma effluent is the focus of this research. The aerosol effect on radiation is studied by a fluorescent target capable of resolving the plasma oxidation footprint. In addition, DNA damage is evaluated by plasmid DNA radiation assay and cell proliferation assay to assess safety aspects of the plasma jet, the effect of VUV/UV radiation, and its control with aerosol injection. Inevitable emission of VUV/UV radiation from plasmas during treatment is demonstrated in this work. Plasma has no antiproliferative effect on fibroblasts in short treatments (t < 60 s), while long exposure has a cytotoxic effect, resulting in decreased cell survival. Radiation has no effect on cell survival in the medium due to absorption. However, a strong cytotoxic effect on the attached fibroblasts without the medium is apparent. VUV/UV radiation contributes 70% of the integral plasma effect in induction of single- and double-strand DNA breaks and cytotoxicity of the attached cells without the medium. Survival of the attached cells increases by 10% when aerosol is introduced between plasma and the cells. Injection of aerosol in the plasma effluent can help to control the plasma-cell/tissue interaction. Aerosol droplets in the effluent partially absorb UV emission from the plasma, limiting photon flux in the direction of the biological target. Herein, cold and safe plasma-aerosol treatment and a safe operational mode of treatment are demonstrated in a murine model.


Assuntos
Aerossóis/toxicidade , Argônio/toxicidade , Gases em Plasma/toxicidade , Aerossóis/efeitos da radiação , Animais , Argônio/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos da radiação , Feminino , Camundongos Endogâmicos BALB C , Gases em Plasma/efeitos da radiação , Plasmídeos/efeitos dos fármacos , Plasmídeos/efeitos da radiação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta
3.
Mutagenesis ; 35(5): 391-404, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32914844

RESUMO

DNA ligase I (LIG1) joins DNA strand breaks during DNA replication and repair transactions and contributes to genome integrity. The mutations (P529L, E566K, R641L and R771W) in LIG1 gene are described in patients with LIG1-deficiency syndrome that exhibit immunodeficiency. LIG1 senses 3'-DNA ends with a mismatch or oxidative DNA base inserted by a repair DNA polymerase. However, the ligation efficiency of the LIG1 variants for DNA polymerase-promoted mutagenesis products with 3'-DNA mismatches or 8-oxo-2'-deoxyguanosine (8-oxodG) remains undefined. Here, we report that R641L and R771W fail in the ligation of nicked DNA with 3'-8-oxodG, leading to an accumulation of 5'-AMP-DNA intermediates in vitro. Moreover, we found that the presence of all possible 12 non-canonical base pairs variously impacts the ligation efficiency by P529L and R771W depending on the architecture at the DNA end, whereas E566K exhibits no activity against all substrates tested. Our results contribute to the understanding of the substrate specificity and mismatch discrimination of LIG1 for mutagenic repair intermediates and the effect of non-synonymous mutations on ligase fidelity.


Assuntos
DNA Ligase Dependente de ATP/genética , Reparo de Erro de Pareamento de DNA/genética , Mutagênese/genética , 8-Hidroxi-2'-Desoxiguanosina/genética , Monofosfato de Adenosina/genética , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA/genética , Replicação do DNA/genética , Genoma/efeitos dos fármacos , Humanos , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos
4.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664581

RESUMO

Glioblastoma multiforme (GBM) is a severe brain tumor whose ability to mutate and adapt to therapies is at the base for the extremely poor survival rate of patients. Despite multiple efforts to develop alternative forms of treatment, advances have been disappointing and GBM remains an arduous tumor to treat. One of the leading causes for its strong resistance is the innate upregulation of DNA repair mechanisms. Since standard therapy consists of a combinatory use of ionizing radiation and alkylating drugs, which both damage DNA, targeting the DNA damage response (DDR) is proving to be a beneficial strategy to sensitize tumor cells to treatment. In this review, we will discuss how recent progress in the availability of the DDR kinase inhibitors will be key for future therapy development. Further, we will examine the principal existing DDR inhibitors, with special focus on those currently in use for GBM clinical trials.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glioblastoma/tratamento farmacológico , Terapia de Alvo Molecular , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/uso terapêutico , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Compostos de Nitrosoureia/farmacologia , Compostos de Nitrosoureia/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
6.
PLoS One ; 15(5): e0232724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374749

RESUMO

DNA damage in the A549 human lung cancer cell line treated with cold plasma irradiation was investigated. We confirmed that cold atmospheric plasma generated reactive oxygen and nitrogen species (RONS) in a liquid, and the intracellular RONS level was increased in plasma-irradiated cells. However, a notable decrease in cell viability was not observed 24 hours after plasma irradiation. Because RONS induce oxidative damage in cells, strand breaks and chemical modification of DNA in the cancer cells were investigated. We found that 8-oxoguanine (8-oxoG) formation as well as DNA strand breaks, which have been thoroughly investigated, were induced by plasma irradiation. In addition, up-regulation of 8-oxoG repair enzyme was observed after plasma irradiation.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA Glicosilases/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Gases em Plasma/farmacologia , Células A549 , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Guanina/biossíntese , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
7.
J Pharm Biomed Anal ; 187: 113326, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413832

RESUMO

Anti-inflammatory drugs are reported to induce changes in nucleic-acids upon UV-irradiation. Such changes have the potential to cause apoptosis, carcinogenesis, and mutagenesis. In this work, the kinetics of the damage induced in DNA by some anti-inflammatory drugs were compared after UV-irradiation. Five commonly used anti-inflammatory drugs; diclofenac, ketoprofen, leflunomide, piroxicam and tolmetin, were studied. Simple, sensitive and eco-friendly methods for the analysis of DNA-damage were proposed including absorption spectroscopy, MALDI-TOF mass spectrometry and fluorescence using TbCl3. Results show that all drugs induced DNA-damage after UV-irradiation. Absorption spectroscopy results demonstrated hyperchromic shift in the absorption band characteristic to DNA, indicating distortion of the double-strand. Mass spectra showed a significant decrease of the molecular-ion-peak of DNA, together with peaks of smaller m/z that indicated the formation of DNA strand-breaks. TbCl3 fluorescence was observed to increase with incubation time of each drug with DNA, indicating the presence of more single-stranded regions in DNA due to damage. TbCl3 fluorescence was used to obtain the kinetics of the induced damage. Results show that DNA-damage occurred via photoinduced oxidative mechanism. Also, the potency of the studied drugs was examined on calf-thymus real DNA samples using TbCl3 fluorescence with ketoprofen and leflunomide being the most photogenotoxic anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Dano ao DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Animais , Bovinos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Espectrometria de Fluorescência/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Raios Ultravioleta/efeitos adversos
8.
ACS Nano ; 14(3): 2827-2846, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32049495

RESUMO

Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.


Assuntos
Carbono/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Nanopartículas/química , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA , Desferroxamina/farmacologia , Hemina/antagonistas & inibidores , Hemina/farmacologia , Humanos , Ferro/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo
9.
Biomed Pharmacother ; 125: 109875, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32036211

RESUMO

Efficient DNA repair is critical for cell survival following exposure to DNA topoisomerase I (Top1) inhibitors camptothecin, a nature product from which the common chemotherapeutic drugs irinotecan and topotecan are derived. The camptothecin-derived agents exert their antitumor activities by specifically stabilizing the Top1-DNA covalent complexes (Top1cc) and blocking the DNA religation step. When exposed to these DNA damage agents, tumor cells quickly activate DNA damage response. This allows sufficient time to remove the Top1ccs and prevent tumor cells from apoptosis. Several repair pathways have been implicated in this process. One of the most relevant repair modes is DNA single strand break repair (SSBR) pathway. The expression level or mutagenesis of specific repair factors involved in SSBR pathway may play an indispensable role in individual's capacity of repairing camptothecin induced DNA damage. Therefore, understanding of the tolerance pathways counteracted to camptothecin cytotoxicity is crucial in alleviating chemotherapy resistance. This review focus on the SSBR pathway in repair camptothecin induced DNA damage, aiming to provide insights into the potential molecular determinants of camptothecin chemosensitivity.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Camptotecina/efeitos adversos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Transdução de Sinais , Inibidores da Topoisomerase I/efeitos adversos , Animais , Camptotecina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Resistencia a Medicamentos Antineoplásicos , Instabilidade Genômica , Humanos , Ligação Proteica
10.
Biochemistry ; 59(7): 892-900, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31977191

RESUMO

Colibactin is a genotoxic gut microbiome metabolite long suspected of playing an etiological role in colorectal cancer. Evidence suggests that colibactin forms DNA interstrand cross-links (ICLs) in eukaryotic cells and activates ICL repair pathways, leading to the production of ICL-dependent DNA double-strand breaks (DSBs). Here we show that colibactin ICLs can evolve directly to DNA DSBs. Using the topology of supercoiled plasmid DNA as a proxy for alkylation adduct stability, we find that colibactin-derived ICLs are unstable toward depurination and elimination of the 3' phosphate. This ICL degradation pathway leads progressively to single strand breaks (SSBs) and subsequently DSBs. The spontaneous conversion of ICLs to DSBs is consistent with the finding that nonhomologous end joining repair-deficient cells are sensitized to colibactin-producing bacteria. The results herein refine our understanding of colibactin-derived DNA damage and underscore the complexities underlying the DSB phenotype.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , DNA/metabolismo , Peptídeos/farmacologia , Policetídeos/farmacologia , Reagentes de Ligações Cruzadas/química , DNA/química , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Reparo do DNA , Desoxirribonuclease IV (Fago T4-Induzido)/química , Escherichia coli/química , Peptídeos/química , Plasmídeos/química , Policetídeos/química
11.
Nucleic Acids Res ; 48(4): 2013-2025, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31930301

RESUMO

The rolling-circle replication is the most common mechanism for the replication of small plasmids carrying antibiotic resistance genes in Gram-positive bacteria. It is initiated by the binding and nicking of double-stranded origin of replication by a replication initiator protein (Rep). Duplex unwinding is then performed by the PcrA helicase, whose processivity is critically promoted by its interaction with Rep. How Rep and PcrA proteins interact to nick and unwind the duplex is not fully understood. Here, we have used magnetic tweezers to monitor PcrA helicase unwinding and its relationship with the nicking activity of Staphylococcus aureus plasmid pT181 initiator RepC. Our results indicate that PcrA is a highly processive helicase prone to stochastic pausing, resulting in average translocation rates of 30 bp s-1, while a typical velocity of 50 bp s-1 is found in the absence of pausing. Single-strand DNA binding protein did not affect PcrA translocation velocity but slightly increased its processivity. Analysis of the degree of DNA supercoiling required for RepC nicking, and the time between RepC nicking and DNA unwinding, suggests that RepC and PcrA form a protein complex on the DNA binding site before nicking. A comprehensive model that rationalizes these findings is presented.


Assuntos
Proteínas de Bactérias/genética , DNA Helicases/genética , Replicação do DNA/genética , Farmacorresistência Bacteriana/genética , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Geobacillus stearothermophilus/efeitos dos fármacos , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/patogenicidade , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Tetraciclina/farmacologia , Transativadores/genética
12.
Drug Chem Toxicol ; 43(2): 174-181, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30052082

RESUMO

Non-steroidal anti-inflammatory drugs are drugs with analgesic, antipyretic, and anti-inflammatory effects. This study uses in vitro methods to investigate the potential and unknown genotoxic effects of dexketoprofen trometamol, an active substance in painkillers, on healthy human lymphocytes. In this study, a cytokinesis-block micronucleus cytome assay is used to investigate potential clastogenic, aneugenic activity and to identify chromosome breakages caused by the active drug substance dexketoprofen trometamol; a comet assay is performed to identify the genotoxic damage resulting from DNA single-strand breaks; a real-time reverse transcription polymerase chain reaction panel system is used to evaluate the potential negative effects on the expression of the genes responsible for DNA damage assessment. Dexketoprofen trometamol induces toxic effects in healthy human lymphocytes at concentrations of 750-1000 µg/mL and above, and shows clastogenic, aneugenic activity by inducing micronucleus formations at exposures of 750-500 µg/mL. At concentration intervals of 1000, 500, 250, 100 µg/mL, dexketoprofen trometamol also resulted in DNA damage in the form of strand breaks, as demonstrated by highly significant increases in DNA tail length and density comet parameters when compared to spontaneous values. Human lymphocytes exposed to 750-100 µg/mL dexketoprofen trometamol were found to have significantly increased levels of expression of the XPC, XRCC6, PNKP genes in the DNA damage signaling pathway. It can be concluded that dexketoprofen trometamol may have cytotoxic, cytostatic, genotoxic effects on healthy human lymphocytes in vitro, depending on the concentration and duration of exposure. It is anticipated that this outcome will be supported by advanced studies.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Dano ao DNA/efeitos dos fármacos , Cetoprofeno/análogos & derivados , Linfócitos/efeitos dos fármacos , Trometamina/toxicidade , Anti-Inflamatórios não Esteroides/administração & dosagem , Ensaio Cometa , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Cetoprofeno/administração & dosagem , Cetoprofeno/toxicidade , Linfócitos/patologia , Testes para Micronúcleos , Mutagênicos/administração & dosagem , Mutagênicos/toxicidade , Fatores de Tempo , Trometamina/administração & dosagem
13.
Nat Commun ; 10(1): 4846, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649282

RESUMO

DNA topoisomerases are required to resolve DNA topological stress. Despite this essential role, abortive topoisomerase activity generates aberrant protein-linked DNA breaks, jeopardising genome stability. Here, to understand the genomic distribution and mechanisms underpinning topoisomerase-induced DNA breaks, we map Top2 DNA cleavage with strand-specific nucleotide resolution across the S. cerevisiae and human genomes-and use the meiotic Spo11 protein to validate the broad applicability of this method to explore the role of diverse topoisomerase family members. Our data characterises Mre11-dependent repair in yeast and defines two strikingly different fractions of Top2 activity in humans: tightly localised CTCF-proximal, and broadly distributed transcription-proximal, the latter correlated with gene length and expression. Moreover, single nucleotide accuracy reveals the influence primary DNA sequence has upon Top2 cleavage-distinguishing sites likely to form canonical DNA double-strand breaks (DSBs) from those predisposed to form strand-biased DNA single-strand breaks (SSBs) induced by etoposide (VP16) in vivo.


Assuntos
Reparo do DNA , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Antineoplásicos Fitogênicos/farmacologia , Sequência de Bases , Fator de Ligação a CCCTC/genética , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Etoposídeo/farmacologia , Humanos , Mapeamento de Nucleotídeos
14.
Mol Carcinog ; 58(12): 2327-2339, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31544312

RESUMO

Autologous stem cell transplant (ASCT) with high-dose melphalan (HDM) is the standard treatment for fit multiple myeloma (MM) patients. It is generally believed that some DNA repair proteins impact the activity to repair melphalan-induced DNA damage, thus potentially contributing to the patient's clinical response. However, knowledge of these proteins is limited. In the current study, we investigated the roles of XRCC1, a protein involved in base excision repair and single-strand break repair, in melphalan response in MM cells. Small interfering RNA knockdown of XRCC1 significantly increased the accumulation of melphalan-induced DNA damage in MM cells and sensitized them to melphalan treatment, indicating that genetic variation in XRCC1 may impact response to melphalan treatment. We then evaluated the association between an XRCC1 variant with reduced activity, rs25487 (R399Q), and clinical outcomes of 108 MM patients with melphalan therapy. Our results showed that XRCC1 rs25487 was associated with prolonged progression-free survival (PFS) in MM patients. The adjusted hazard ratio for PFS between patients carrying rs25487 AA/AG and GG was 0.42 (95% confidence interval: 0.25, 0.84, P = .014). Taken together, these results indicate that XRCC1 is involved in the repair of melphalan-induced DNA damage and XRCC1 rs25487 variant with impaired DNA repair function influences the clinical responses of HDM in MM patients.


Assuntos
Reparo do DNA , Transplante de Células-Tronco Hematopoéticas/métodos , Melfalan/uso terapêutico , Mieloma Múltiplo/terapia , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Idoso , Antineoplásicos Alquilantes/efeitos adversos , Antineoplásicos Alquilantes/uso terapêutico , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Melfalan/efeitos adversos , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Polimorfismo de Nucleotídeo Único , Intervalo Livre de Progressão , Interferência de RNA , Transplante Autólogo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
15.
J Biochem Mol Toxicol ; 33(11): e22396, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31557364

RESUMO

The furocoumarin backbone is a promising platform for chemical modifications aimed at creating new pharmaceutical agents. However, the high level of biological activity of furocoumarins is associated with a number of negative effects. For example, some of the naturally occurring ones and their derivatives can show genotoxic and mutagenic properties as a result of their forming crosslinks with DNA molecules. Therefore, a particularly important area for the chemical modification of natural furocoumarins is to reduce the negative aspects of their bioactivity. By studying a group of 21 compounds-1,2,3-triazolyl modified derivatives of furocoumarin and peucedanin-using the SOS chromotest, the Ames test, and DNA-comet assays, we revealed modifications that can neutralize the structure's genotoxic properties. Theoretical aspects of the interaction of the compound library were studied using molecular modeling and this identified the leading role of the polyaromatic molecular core that takes part in stacking-interactions with the pi-systems of the nitrogenous bases of DNA.


Assuntos
Cumarínicos/química , Furocumarinas/química , Substâncias Intercalantes/química , Mutagênicos/química , Extratos Vegetais/química , Allium/citologia , Apiaceae/química , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Guanina/química , Ligação de Hidrogênio , Meristema/efeitos dos fármacos , Simulação de Acoplamento Molecular , Salmonella typhimurium/efeitos dos fármacos
16.
J Pharm Biomed Anal ; 176: 112786, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31398506

RESUMO

Electrochemical techniques were used to investigate the behavior of lomustine (CCNU) and its degradation in aqueous solution at a glassy carbon electrode (GCE). The in situ interaction of CCNU and chemically degraded CCNU (cdCCNU) with dsDNA was then investigated in dsDNA incubated solutions, using dsDNA electrochemical biosensors and comet assays. CCNU undergoes electrochemical reduction in two irreversible, diffusion-controlled, and pH-dependent redox processes, each with transfer of two electrons and one proton. At pH ≥ 10.1, the peak potential for the two processes was essentially pH-independent and involved only one electron. A mechanism was proposed for the reduction of CCNU in a neutral medium. In addition, it was found that CCNU underwent spontaneous degradation during incubation in aqueous solution, without the formation of electroactive degradation products. The degradation process was faster in basic media. Moreover, this pro-drug interacted with the DNA. Its metabolite(s) initially caused condensation of the double helix chains, followed by the unwinding of these chains. In addition, free guanine (Gua) was released from the dsDNA and oxidative damage to the DNA by the CCNU metabolite(s) was evidenced from the detection of 8-oxoGua and 2,8-oxoAde. These results were confirmed by the poly(dA)- and poly(dG)-polyhomonucleotide biosensors, which revealed the oxidative damage caused to both bases (guanine and adenine) of the dsDNA by the CCNU metabolite(s). The comet assay indicated breaks in the single strand DNA, complementing the results of the studies using differential pulse voltammetry. Conformational changes of dsDNA caused by CCNU and cdCCNU were confirmed using comet assays.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA/efeitos dos fármacos , Lomustina/farmacologia , Antineoplásicos Alquilantes/química , Técnicas Biossensoriais , DNA/química , Difusão , Estabilidade de Medicamentos , Técnicas Eletroquímicas , Eletrodos , Lomustina/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Água
17.
Nucleic Acids Res ; 47(17): 9132-9143, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31329989

RESUMO

Poly(ADP-ribose) polymerases (PARPs) facilitate the repair of DNA single-strand breaks (SSBs). When PARPs are inhibited, unrepaired SSBs colliding with replication forks give rise to cytotoxic double-strand breaks. These are normally rescued by homologous recombination (HR), but, in cells with suboptimal HR, PARP inhibition leads to genomic instability and cell death, a phenomenon currently exploited in the therapy of ovarian cancers in BRCA1/2 mutation carriers. In spite of their promise, resistance to PARP inhibitors (PARPis) has already emerged. In order to identify the possible underlying causes of the resistance, we set out to identify the endogenous source of DNA damage that activates PARPs. We argued that if the toxicity of PARPis is indeed caused by unrepaired SSBs, these breaks must arise spontaneously, because PARPis are used as single agents. We now show that a significant contributor to PARPi toxicity is oxygen metabolism. While BRCA1-depleted or -mutated cells were hypersensitive to the clinically approved PARPi olaparib, its toxicity was significantly attenuated by depletion of OGG1 or MYH DNA glycosylases, as well as by treatment with reactive oxygen species scavengers, growth under hypoxic conditions or chemical OGG1 inhibition. Thus, clinical resistance to PARPi therapy may emerge simply through reduced efficiency of oxidative damage repair.


Assuntos
Proteína BRCA1/genética , DNA Glicosilases/genética , Neoplasias Ovarianas/tratamento farmacológico , Poli(ADP-Ribose) Polimerases/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/genética , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Oxirredução/efeitos dos fármacos , Ftalazinas/efeitos adversos , Ftalazinas/farmacologia , Piperazinas/efeitos adversos , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Mutações Sintéticas Letais/genética
18.
Environ Pollut ; 252(Pt A): 917-923, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31226516

RESUMO

Glyphosate-based herbicides (GBH) are the most widely used pesticides in the world. The extensive use of them increases the potential human health risk, including the human inhalation toxicity risk. We studied the effect of the most famous GBH Roundup® (RDP) in the concentration range from 50 to 125 µg/mL on Mitochondria-Associated apoptosis and DNA damage in Human alveolar carcinoma cells (A549 cells). Alkaline comet assay, immunofluorescence assay and Flow Cytometric Analysis assay were employed to detect DNA damages and apoptosis of A549 cells. We found RDP caused concentration-dependent increases in DNA damages and proportion of apoptotic cells in A549 cells. RDP induced the DNA single-strand breaks and double-strand breaks; the collapse of mitochondrial membrane by increasing Bax/Bcl-2, resulting in the release of cytochrome c into cytosol and then activated caspase-9/-3, cleaved poly (ADP-ribose) polymerase (PARP) in human lung tissue cells. The results demonstrate that RDP can induce A549 cells cytotoxic effects in vitro at the concentration lower than the occupational exposures level of workers, which means RDP has a potential threat to human health.


Assuntos
Apoptose/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Pulmão/patologia , Mitocôndrias/efeitos dos fármacos , Células A549 , Adenocarcinoma Bronquioloalveolar/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Ensaio Cometa , Citocromos c/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Glicina/toxicidade , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Glifosato
19.
Future Oncol ; 15(17): 2053-2068, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30942614

RESUMO

DC Bead is designed for the embolization of liver malignancies combined with local sustained chemotherapy delivery. It was first demonstrated around a decade ago that irinotecan could be loaded into DC Bead and used in a transarterially directed procedure to treat colorectal liver metastases, commonly referred to as drug-eluting bead with irinotecan (DEBIRI). Despite numerous reports of its safe and effective use in treating colorectal liver metastases patients, there remains a perceived fundamental paradox as to how this treatment works. This review of the mechanism of action of DEBIRI provides a rationale for why intra-arterial delivery of this prodrug from an embolic bead provides for enhanced tumor selectivity, sparing the normal liver while reducing adverse side effects associated with the irinotecan therapy.


Assuntos
Quimioembolização Terapêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Irinotecano/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Inibidores da Topoisomerase I/farmacologia , Ensaios Clínicos como Assunto , Neoplasias Colorretais/patologia , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Composição de Medicamentos/métodos , Humanos , Injeções Intra-Arteriais , Irinotecano/uso terapêutico , Neoplasias Hepáticas/secundário , Tamanho da Partícula , Inibidores da Topoisomerase I/uso terapêutico , Resultado do Tratamento
20.
Food Chem Toxicol ; 124: 349-358, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30562542

RESUMO

The cyanobacterial pentapeptide nodularin (NOD), mainly produced by genus Nodularia, is a potent inhibitor of protein phosphatases PP1 and PP2A, and causes animal mortality. The few studies available indicate that NOD is a potential non-genotoxic carcinogen. In the present study we evaluated NOD (0.01, 0.1 and 1 µg/ml) genotoxic activity in human hepatoma (HepG2) cells with the comet, γH2AX and cytokinesis block micronucleus cytome assays. In addition, induction of oxidative stress was studied. Moreover changes in the expression of selected genes from the P53 pathway, involved in the response to DNA damage (P53, GADD45α, CDKN1A, MDM2), apoptosis (BAX, BCL2) and oxidative stress (GPX1, GSR, GCLC, CAT, SOD1) were determined using qPCR. Non-cytotoxic concentrations induced time and dose dependant increase in reactive oxygen species (ROS) production and substantially increased the formation of oxidative DNA damage. In addition, elevated formation of micronuclei was detected. For the first time it has been shown that NOD deregulated the mRNA level of DNA damage (CDKN1A, GADD45α) and oxidative stress (GPX1, GSR, GCLC, CAT and SOD1) responsive genes and anti-apoptotic gene BCL2. Our results provide new evidence that NOD genotoxic effects are mediated through ROS production, already at low environmentally relevant concentrations.


Assuntos
Mutagênicos/toxicidade , Peptídeos Cíclicos/toxicidade , Apoptose/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA