Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 212: 442-450, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623459

RESUMO

Human epithelial keratin is an intermediate filament protein that serves as a backbone to maintain the stability of the cell nucleus and mechanical stability of the whole cells. The present study focused on two point mutations, F231L and S233L, of the 1B domain of keratin K 1/10 related to the rare genetic skin disease palmoplantar keratoderma (PPK). We used molecular dynamics simulation to study the effects of the mutations on various hierarchical structures, including heterodimers, tetramers, and octamers of the K1/10 1B domain at the atomic scale. The initial results demonstrated that the wild type and mutant proteins were highly similar at the dimer level but had different microstructures and mechanics at a higher-level assembly. A decrease in the hydrophobic interactions and hydrogen bonds at the terminus resulted in weakened mechanical properties of the tetramer and octamer of the F231L mutant. The asymmetrical structure of the S233L tetramer with an uneven distribution of the hydrogen bonds decreased its mechanical properties. However, the S233L mutation provided extra hydrophobic interactions between these mutated amino acid residues in the octamer, leading to improved mechanical properties. The results of the present study provided a deeper understanding of how the differences in point mutations induced the changes in the configuration and mechanical properties at the molecular scale. The differences in these properties may influence keratin assembly at the microscopic scale and ultimately cause diseases at the macroscopic scale.


Assuntos
Queratina-10 , Queratina-1 , Mutação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Queratina-1/química , Queratina-1/genética , Queratina-1/metabolismo , Queratina-10/química , Queratina-10/genética , Queratina-10/metabolismo , Estrutura Molecular
2.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188664, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890750

RESUMO

Keratins are fibrous proteins that take part in several important cellular functions, including the formation of intermediate filaments. In addition, keratins serve as epithelial cell markers, which has made their role in cancer progression, diagnosis, and treatment an important focus of research. Keratin 1 (K1) is a type II keratin whose structure is comprised of a coiled-coil central domain flanked by flexible, glycine-rich loops in the N- and C-termini. While the structure of cytoplasmic K1 is established, the structure of cell-surface K1 is not known. Several transformed cells, such as cancerous cells and cells that have undergone oxidative stress, display increased levels of overall and/or cell-surface K1 expression. Cell-surface keratins (CSKs) may be modified or truncated, and their role is yet to be fully elucidated. Current studies suggest that CSKs are involved in receptor-mediated endocytosis and immune evasion. In this Review, we discuss findings relating to K1 structure, overexpression, and cell-surface expression in the context of utilizing CSK1 as a receptor for targeted drug delivery to cancer cells, and other strategies to develop novel treatments for cancer.


Assuntos
Queratina-1 , Neoplasias , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Queratina-1/química , Queratina-1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199056

RESUMO

Palmoplantar keratodermas (PPKs) are characterized by thickness of stratum corneum and epidermal hyperkeratosis localized in palms and soles. PPKs can be epidermolytic (EPPK) or non epidermolytic (NEPPK). Specific mutations of keratin 16 (K16) and keratin 1 (K1) have been associated to EPPK, and NEPPK. Cases of mosaicism in PPKs due to somatic keratin mutations have also been described in scientific literature. We evaluated a patient presenting hyperkeratosis localized monolaterally in the right palmar area, characterized by linear yellowish hyperkeratotic lesions following the Blaschko lines. No other relatives of the patient showed any dermatological disease. Light and confocal histological analysis confirmed the presence of epidermolityic hyperkeratosis. Genetic analysis performed demonstrates the heterozygous deletion NM_006121.4:r.274_472del for a total of 198 nucleotides, in KRT1 cDNA obtained by a palmar lesional skin biopsy, corresponding to the protein mutation NP_006112.3:p.Gly71_Gly137del. DNA extracted from peripheral blood lymphocytes did not display the presence of the mutation. These results suggest a somatic mutation causing an alteration in K1 N-terminal variable domain (V1). The deleted sequence involves the ISIS subdomain, containing a lysine residue already described as fundamental for epidermal transglutaminases in the crosslinking of IF cytoskeleton. Moreover, a computational analysis of the wild-type and V1-mutated K1/K10 keratin dimers, suggests an unusual interaction between these keratin filaments. The mutation taster in silico analysis also returned a high probability for a deleterious mutation. These data demonstrate once again the importance of the head domain (V1) of K1 in the formation of a functional keratinocyte cytoskeleton. Moreover, this is a further demonstration of the presence of somatic mutations arising in later stages of the embryogenesis, generating a mosaic phenotype.


Assuntos
Queratina-10/química , Queratina-1/química , Queratina-1/genética , Nevo/etiologia , Domínios e Motivos de Interação entre Proteínas , Deleção de Sequência , Neoplasias Cutâneas/etiologia , Sequência de Aminoácidos , Sequência de Bases , Biópsia , Análise Mutacional de DNA , Imunofluorescência , Humanos , Imuno-Histoquímica , Queratina-1/metabolismo , Queratina-10/metabolismo , Modelos Moleculares , Nevo/metabolismo , Nevo/patologia , Conformação Proteica , Multimerização Proteica , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927888

RESUMO

Keratin intermediate filaments constitute the primary cytoskeletal component of epithelial cells. Numerous human disease phenotypes related to keratin mutation remain mechanistically elusive. Our recent crystal structures of the helix 1B heterotetramer from keratin 1/10 enabled further investigation of the effect of pathologic 1B domain mutations on keratin structure. We used our highest resolution keratin 1B structure as a template for homology-modeling the 1B heterotetramers of keratin 5/14 (associated with blistering skin disorders), keratin 8/18 (associated with liver disease), and keratin 74/28 (associated with hair disorder). Each structure was examined for the molecular alterations caused by incorporating pathogenic 1B keratin mutations. Structural modeling indicated keratin 1B mutations can harm the heterodimer interface (R265PK5, L311RK5, R211PK14, I150VK18), the tetramer interface (F231LK1, F274SK74), or higher-order interactions needed for mature filament formation (S233LK1, L311RK5, Q169EK8, H128LK18). The biochemical changes included altered hydrophobic and electrostatic interactions, and altered surface charge, hydrophobicity or contour. Together, these findings advance the genotype-structurotype-phenotype correlation for keratin-based human diseases.


Assuntos
Queratina-1/química , Modelos Moleculares , Humanos , Queratina-1/genética , Ceratodermia Palmar e Plantar Epidermolítica/genética , Hepatopatias/genética , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína
5.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31036554

RESUMO

To characterize keratin intermediate filament assembly mechanisms at atomic resolution, we determined the crystal structure of wild-type human keratin-1/keratin-10 helix 1B heterotetramer at 3.0 Å resolution. It revealed biochemical determinants for the A11 mode of axial alignment in keratin filaments. Four regions on a hydrophobic face of the K1/K10-1B heterodimer dictated tetramer assembly: the N-terminal hydrophobic pocket (defined by L227K1, Y230K1, F231K1, and F234K1), the K10 hydrophobic stripe, K1 interaction residues, and the C-terminal anchoring knob (formed by F314K1 and L318K1). Mutation of both knob residues to alanine disrupted keratin 1B tetramer and full-length filament assembly. Individual knob residue mutant F314AK1, but not L318AK1, abolished 1B tetramer formation. The K1-1B knob/pocket mechanism is conserved across keratins and many non-keratin intermediate filaments. To demonstrate how pathogenic mutations cause skin disease by altering filament assembly, we additionally determined the 2.39 Å structure of K1/10-1B containing a S233LK1 mutation linked to epidermolytic palmoplantar keratoderma. Light scattering and circular dichroism measurements demonstrated enhanced aggregation of K1S233L/K10-1B in solution without affecting secondary structure. The K1S233L/K10-1B octamer structure revealed S233LK1 causes aberrant hydrophobic interactions between 1B tetramers.


Assuntos
Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/metabolismo , Queratina-10 , Queratina-1 , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/fisiologia , Substituição de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Citoesqueleto/química , Citoesqueleto/metabolismo , Difusão Dinâmica da Luz , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Filamentos Intermediários/genética , Queratina-1/química , Queratina-1/genética , Queratina-1/metabolismo , Queratina-10/química , Queratina-10/genética , Queratina-10/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Dermatopatias/genética , Dermatopatias/metabolismo , Dermatopatias/patologia
6.
PLoS One ; 13(4): e0195792, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689068

RESUMO

Ichthyosis Hystrix of Curth-Macklin (IH-CM) is a rare manifestation of epidermolytic ichthyosis (EI) that is characterised by generalised spiky or verrucous hyperkeratosis. The disorder is further distinguished by the presence of binucleated cells in the affected skin, whereas epidermolysis and clumping of tonofilaments, as seen in EI, are absent. While IH-CM is associated with mutations in the keratin 1 (KRT1) gene, reports to date have indicated that mutations in the KRT1 gene result in an aberrant and truncated protein tail, essentially affecting the function of the V2 domain. Here, we studied a female sporadic patient who was born with diffused erythrodermic hyperkeratosis and who presented at the age of 13 months with an intense and widespread hyperkeratosis with a papillomatous appearance and typical palmoplantar keratoderma. Genetic analysis demonstrated a "de novo" mutation in the keratin 10 gene (KRT10) consisting of a three-base-pair deletion, resulting in the substitution of amino acids p.Glu445 and p.Ile446 by Asp at the end of the 2B domain of the protein. We performed structural and functional studies showing that this mutation modifies the structure of the paired 2B and V2 K1/10 domains, leading to the disease phenotype. Our results highlight the importance and complexity of the KRT1/10 V2 domain in keratin dimer formation and the potential consequences of its alteration.


Assuntos
Substituição de Aminoácidos , Dermatite Seborreica/genética , Ictiose/genética , Queratina-10/genética , Queratina-1/genética , Feminino , Humanos , Lactente , Queratina-1/química , Queratina-10/química , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
7.
J Invest Dermatol ; 137(1): 142-150, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27595935

RESUMO

Keratins 1 (K1) and 10 (K10) are the primary keratins expressed in differentiated epidermis. Mutations in K1/K10 are associated with human skin diseases. We determined the crystal structure of the complex between the distal (2B) helices of K1 and K10 to better understand how human keratin structure correlates with function. The 3.3 Å resolution structure confirms many features inferred by previous biochemical analyses, but adds unexpected insights. It demonstrates a parallel, coiled-coil heterodimer with a predominantly hydrophobic intermolecular interface; this heterodimer formed a higher order complex with a second K1-K10-2B heterodimer via a Cys401K10 disulfide link, although the bond angle is unanticipated. The molecular surface analysis of K1-K10-2B identified several pockets, one adjacent to the disulfide linkage and conserved in K5-K14. The solvent accessible surface area of the K1-K10 structure is 20-25% hydrophobic. The 2B region contains mixed acidic and basic patches proximally (N-terminal), whereas it is largely acidic distally (C-terminal). Mapping of conserved and nonconserved residues between K1-K10 and K5-K14 onto the structure demonstrated the majority of unique residues align along the outer helical ridge. Finally, the structure permitted a fresh analysis of the deleterious effects caused by K1/K10 missense mutations found in patients with phenotypic skin disease.


Assuntos
Queratina-10/genética , Queratina-1/genética , Estrutura Molecular , Dermatopatias/genética , Células Cultivadas , Células Epidérmicas , Epiderme/metabolismo , Humanos , Queratina-1/química , Queratina-10/química , Mutação de Sentido Incorreto , Sensibilidade e Especificidade , Dermatopatias/patologia , Propriedades de Superfície
8.
Oncotarget ; 7(33): 52766-52780, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27421141

RESUMO

The K1 and K10 associated genodermatoses are characterized by clinical symptoms of mild to severe redness, blistering and hypertrophy of the skin. In this paper, we set out to computationally investigate the structural and functional effects of missense mutations on the 2B domain of K1/K10 heterodimer and its consequences in disease phenotype. We modeled the structure of the K1/K10 heterodimer based on crystal structures for the human homolog K5/K14 heterodimer, and identified that the missense mutations exert their effects on stability and assembly competence of the heterodimer by altering physico-chemical properties, interatomic interactions, and inter-residue atomic contacts. Comparative structural analysis between all the missense mutations and SNPs showed that the location and physico-chemical properties of the substituted amino acid are significantly correlated with phenotypic variations. In particular, we find evidence that a particular SNP (K10, p.E443K) is a pathogenic nsSNP which disrupts formation of the hydrophobic core and destabilizes the heterodimer through the loss of interatomic interactions. Our study is the first comprehensive report analyzing the mutations located on 2B domain of K1/K10 heterodimeric coiled-coil complex.


Assuntos
Simulação por Computador , Queratina-10/genética , Queratina-1/genética , Mutação de Sentido Incorreto , Dermatopatias Genéticas/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Humanos , Queratina-1/química , Queratina-1/metabolismo , Queratina-10/química , Queratina-10/metabolismo , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Pele/metabolismo , Pele/patologia , Dermatopatias Genéticas/metabolismo
9.
PLoS One ; 10(7): e0132706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26181054

RESUMO

Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.


Assuntos
Dissulfetos/química , Filamentos Intermediários/química , Queratina-10/química , Queratina-1/química , Multimerização Proteica , Sequência de Aminoácidos , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
J Biol Chem ; 290(10): 6256-69, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25605727

RESUMO

Core 2 N-acetylglucosaminyltransferase 2/M (C2GnT-M) synthesizes all three ß6GlcNAc branch structures found in secreted mucins. Loss of C2GnT-M leads to development of colitis and colon cancer. Recently we have shown that C2GnT-M targets the Golgi at the Giantin site and is recycled by binding to non-muscle myosin IIA, a motor protein, via the cytoplasmic tail (CT). But how this enzyme is retained in the Golgi is not known. Proteomics analysis identifies keratin type II cytoskeletal 1 (KRT1) as a protein pulled down with anti-c-Myc antibody or C2GnT-M CT from the lysate of Panc1 cells expressing bC2GnT-M tagged with c-Myc. Yeast two-hybrid analysis shows that the rod domain of KRT1 interacts directly with the WKR(6) motif in the C2GnT-M CT. Knockdown of KRT1 does not affect Golgi morphology but increases the interaction of C2GnT-M with non-muscle myosin IIA and its transportation to the endoplasmic reticulum, ubiquitination, and degradation. During Golgi recovery after brefeldin A treatment, C2GnT-M forms a complex with Giantin before KRT1, demonstrating CT-mediated sequential events of Golgi targeting and retention of C2GnT-M. In HeLa cells transiently expressing C2GnT-M-GFP, knockdown of KRT1 does not affect Golgi morphology but leaves C2GnT-M outside of the Golgi, resulting in the formation of sialyl-T antigen. Interaction of C2GnT-M and KRT1 was also detected in the goblet cells of human colon epithelial tissue and primary culture of colonic epithelial cells. The results indicate that glycosylation and thus the function of glycoconjugates can be regulated by a protein that helps retain a glycosyltransferase in the Golgi.


Assuntos
Complexo de Golgi/metabolismo , Queratina-1/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Transporte Proteico , Animais , Brefeldina A/farmacologia , Citoplasma/genética , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/genética , Complexo de Golgi/ultraestrutura , Proteínas da Matriz do Complexo de Golgi , Células HeLa , Humanos , Queratina-1/química , Queratina-1/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/química
11.
J Proteomics ; 75(2): 435-49, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21884835

RESUMO

Keratins are the main constituent of human skin and have been identified as major oxidative target proteins. However, there has been a lack of studies aimed at identifying the oxidation sites of keratins because of the difficulties associated with their insolubility and handling. Here, we introduce a mass spectrometry (MS)-based proteomic methodology to screen oxidative modifications in human skin keratins. Human skin proteins were obtained non-invasively by tape stripping and solubilized in SDS buffer, followed by purification and digestion using the modified filter-aided sample preparation method. The tryptic peptides were then analyzed by MALDI-TOF/MS, LC-ESI/MS, and MS/MS. PMF analyses have identified keratins K1 and K10 as the major proteins of human skin. Met(259), Met(262), Met(296), and Met(469), located in the α-helical rod domain of K1, were the most susceptible sites to oxidation induced by hydrogen peroxide in vitro and in vivo. Our results indicate a potential use of the identified methionine residues as biomarkers of oxidative skin damage. The present methodology is the first MS-based approach to detecting oxidative modifications in keratins obtained directly from human skin and can be easily applied to the monitoring of other keratin modifications in various skin conditions.


Assuntos
Queratinas/análise , Metionina/química , Pele/química , Sequência de Aminoácidos , Artefatos , Humanos , Peróxido de Hidrogênio/química , Queratina-1/química , Queratina-10/química , Queratina-2/química , Queratina-9/química , Queratinas/química , Queratinas/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Oxirredução , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA