Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 155177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412667

RESUMO

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Assuntos
Ataxia Telangiectasia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/uso terapêutico , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
2.
Pigment Cell Melanoma Res ; 37(1): 45-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37614154

RESUMO

Treatment of melanomas with targeted and immunotherapies has proven effective, but resistance to both treatments is a common outcome leaving a high proportion of patients without effective alternative treatment options. Replication stress is a common feature of melanomas, and this is effectively targeted using a combination of checkpoint kinase 1 (CHK1) inhibitor and low-dose hydroxyurea (LDHU). This combination also promotes inflammatory and anti-tumour immune responses in vivo. Melanoma cell lines resistant to BRAF inhibitor (BRAFi) or immune checkpoint inhibitors (ICI) retain their sensitivity to CHK1i + LDHU, with sensitivity similar to that of parental tumours. In vivo, BRAFi-resistant and BRAFi-sensitive parental tumours produce an identical immune response with treatment.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Proteínas Proto-Oncogênicas B-raf , Quinase 1 do Ponto de Checagem/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
3.
Nat Rev Drug Discov ; 22(1): 38-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202931

RESUMO

Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/uso terapêutico , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dano ao DNA , Replicação do DNA
4.
Hum Exp Toxicol ; 40(7): 1141-1152, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33501840

RESUMO

Arsenic is a naturally occurring environmental toxicant, chronic exposure to arsenic can cause multiorgan damage, except for typical skin lesions, liver damage is the main problem for health concern in population with arsenic poisoning. Abnormal apoptosis is closely related to liver-related diseases, and p53 is one of the important hallmark proteins in apoptosis progression. This study was to investigate whether arsenic poisoning-induced hepatocyte apoptosis and the underlying role of p53 signaling pathway. A rat model of arsenic poisoning was established by feeding corn powder for 90 days, which was baked with high arsenic coal, then were treated with Ginkgo biloba extract (GBE) for 45 days by gavage. The results showed that arsenic induced liver damage, increased hepatocyte apoptosis and elevated the expression level of Chk1 and the ratios of p-p53/p53 and Bax/Bcl-2 in liver tissues, which were significantly attenuated by GBE. Additionally, to further demonstrate the potential apoptosis-associated mechanism, L-02 cells were pre-incubated with p53 inhibitor pifithrin-α (PFTα), ataxia telangiectasia-mutated (ATM)/ataxia telangiectasia-mutated and Rad3-related (ATR) inhibitor (CGK733) or GBE, then treated with sodium arsenite (NaAsO2) for 24 h. The results showed that GBE, PFTα or CGK733 significantly reduced arsenic-induced Chk1 expression and the ratios of p-p53/p53 and Bax/Bcl-2. In conclusion, Chk1-p53 pathway was involved in arsenic poisoning-induced hepatotoxicity, and inhibiting of Chk1-p53 pathway ameliorated hepatocyte apoptosis caused by coal-burning arsenic poisoning. The study provides a pivotal clue for understanding of the mechanism of arsenic poisoning-induced liver damage, and possible intervention strategies.


Assuntos
Intoxicação por Arsênico/tratamento farmacológico , Arsênio/toxicidade , Quinase 1 do Ponto de Checagem/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Carvão Mineral , Calefação , Hepatócitos/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Ginkgo biloba/química , Humanos , Modelos Animais , Fitoterapia , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA