Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.775
Filtrar
1.
Commun Biol ; 7(1): 566, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745065

RESUMO

Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.


Assuntos
Quinolonas , Especificidade por Substrato , Quinolonas/química , Quinolonas/metabolismo , Domínio Catalítico , Modelos Moleculares , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Policetídeo Sintases/genética , Cristalografia por Raios X , Conformação Proteica
2.
Int J Biol Macromol ; 267(Pt 2): 131188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599434

RESUMO

Traditional spiking methods for preparing matrix reference material of aquatic products is difficult to control the drug content in the matrix, especially one matrix containing multiple drugs. Minced fish is commonly used for the preparation of matrix reference materials in aquatic products, which is a relatively complex matrix with stickiness and difficult handling. Drug loading capacity is a key factor affecting the effectiveness of matrix reference materials. Here, we proposed a new spiking approach to improve the drug loading capacity of seven quinolones based on microfluidics, simultaneously. Fresh grass carp tissue underwent grinding, fine filtration, centrifugation and reconstituted in distilled water to form a liquid sample, which was subsequently mixed with a sodium alginate solution (1 %) at a ratio of 1:1.2. The mixed solution was supplemented with seven quinolones of equal concentration, followed by the preparation of uniform fish gel microspheres using microfluidic technology. The results indicated that the recoveries of seven quinolones ranged from 82.54 % to 114.17 %, demonstrating a significant improvement in the drug loading capacity of these quinolones compared to traditional methods. Moreover, the drug concentration in the matrix can be precisely controlled. A strong linear relationship was observed between the concentration of seven quinolones in the matrix and its initial concentration, which could serve as a reference for the development of other matrix reference materials.


Assuntos
Microfluídica , Quinolonas , Animais , Quinolonas/química , Microfluídica/métodos , Carpas , Alginatos/química , Peixes , Microesferas
3.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688063

RESUMO

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Assuntos
Artrite Reumatoide , Isoquinolinas , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Antirreumáticos/farmacologia , Antirreumáticos/química , Antirreumáticos/síntese química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Relação Dose-Resposta a Droga , Descoberta de Drogas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/síntese química , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacologia
4.
Eur J Med Chem ; 271: 116399, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640868

RESUMO

The structural optimization of B14, an antibacterial agent we previously obtained, has led to the discovery of a new class of CH2-linked quinolone-aminopyrimidine hybrids with potent anti-MRSA activities. Surprisingly, the hybrids lacking a C-6 fluoro atom at the quinolone nucleus showed equal or even stronger anti-MRSA activities than their corresponding 6-fluoro counterparts, despite the well-established structure-activity relationships (SARs) indicating that the 6-fluoro substituent enhances the antibacterial activity in conventional fluoroquinolone antibiotics. Moreover, these new hybrids, albeit structurally related to conventional fluoroquinolones, showed no cross-resistance with fluoroquinolone drugs. The most active compound, 15m, exhibited excellent activities with a MIC value of 0.39 µg/mL against both fluoroquinolone-sensitive strain USA500 and -resistant MRSA isolate Mu50. Further resistance development studies indicated MRSA is unlikely to acquire resistance against 15m. Moreover, 15m displayed favorable in vivo half-life and safety profiles. These findings suggest a rationale for further evolution of quinolone antibiotics with a high barrier to resistance.


Assuntos
Antibacterianos , Fluoroquinolonas , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Pirimidinas , Quinolonas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Fluoroquinolonas/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/síntese química , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/síntese química , Estrutura Molecular , Farmacorresistência Bacteriana/efeitos dos fármacos , Relação Dose-Resposta a Droga , Animais , Humanos
5.
AAPS PharmSciTech ; 25(5): 90, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649513

RESUMO

To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.


Assuntos
Antibacterianos , Emulsões , Impetigo , Quinolonas , Animais , Impetigo/tratamento farmacológico , Camundongos , Quinolonas/administração & dosagem , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química , Nanopartículas/química , Géis/química , Química Farmacêutica/métodos , Modelos Animais de Doenças , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/química , Aminopiridinas/farmacocinética , Excipientes/química , Pele/efeitos dos fármacos , Pele/metabolismo , Testes de Sensibilidade Microbiana/métodos , Absorção Cutânea/efeitos dos fármacos , Administração Tópica , Viscosidade , Composição de Medicamentos/métodos
6.
Bioorg Med Chem Lett ; 105: 129726, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580135

RESUMO

The enhancer of zeste homologue 2 (EZH2) is the core catalytic subunit of polycomb repressive complex 2, which catalyzes lysine 27 methylation of histone H3. Herein, a series of quinolinone derivatives were designed and synthesized based on the structure of Tazemetostat as the lead compound. Compound 9l (EZH2WT IC50 = 0.94 nM) showed stronger antiproliferative activity in HeLa cells than the lead compound. Moreover, compound 9e (EZH2WT IC50 = 1.01 nM) significantly inhibited the proliferation and induced apoptosis in A549 cells.


Assuntos
Proliferação de Células , Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Quinolonas , Humanos , Quinolonas/farmacologia , Quinolonas/síntese química , Quinolonas/química , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células A549 , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral
7.
J Labelled Comp Radiopharm ; 67(5): 186-196, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661253

RESUMO

Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.


Assuntos
Técnicas de Química Sintética , Deutério , Quinolonas , Quinolonas/síntese química , Quinolonas/química , Deutério/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia
8.
Carbohydr Res ; 539: 109105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583285

RESUMO

Herein, we report the development of a diastereoselective and efficient route to construct sugar-derived pyrano[3,2-c]quinolones utilizing 1-C-formyl glycal and 4-hydroxy quinolone annulation. This methodology will open a route to synthesize nature inspired pyrano[3,2-c]quinolones. This is the first report for the stereoselective synthesis of sugar-derived pyrano[3,2-c]quinolones, where 100% stereoselectivity was observed. A total of sixteen compounds have been synthesized in excellent yields with 100% stereoselectivity. The molecular docking of the synthesized novel natural product analogues demonstrated their binding modes within the active site of type II topoisomerase. The results of the in-silico studies displayed more negative binding energies for the all the synthesized compounds in comparison to the natural product huajiosimuline A, indicating their affinity for the active pocket. Ten out of the sixteen novel synthesized compounds were found to have comparative or relatively more negative binding energy in comparison to the standard anti-cancer drug, doxorubicin. Additionally, the scalability and viability of this protocol was illustrated by the gram scale synthesis.


Assuntos
Produtos Biológicos , Simulação de Acoplamento Molecular , Quinolonas , Produtos Biológicos/química , Produtos Biológicos/síntese química , Estereoisomerismo , Quinolonas/química , Quinolonas/síntese química , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química
9.
Dalton Trans ; 53(19): 8298-8314, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661529

RESUMO

Three newly synthesized triphenyltin(IV) compounds, Ph3SnL1 (L1- = 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoato), Ph3SnL2 (L2- = 2-(4-methyl-2-oxoquinolin-1(2H)-yl)ethanoato), and Ph3SnL3 (L3- = 2-(4-hydroxy-2-oxoquinolin-1(2H)-yl)ethanoato), were characterized by elemental microanalysis, FT-IR spectroscopy and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. A single X-ray diffraction study indicates that compounds Ph3SnL1 and Ph3SnL2 exhibit a 1D zig-zag chain polymeric structure, which in the case of Ph3SnL2 is additionally stabilized by π-interactions. In addition, the synthesized compounds were further examined using density functional theory and natural bond orbital analysis. The compounds have been evaluated for their in vitro anticancer activity against three human cell lines: MCF-7 (breast adenocarcinoma), A375 (melanoma), HCT116 (colorectal carcinoma), and three murine cell lines: 4T1 (breast carcinoma), B16 (melanoma), CT26 (colon carcinoma) using MTT and CV assays. The IC50 values fall in the nanomolar range, indicating that these compounds possess better anticancer activity than cisplatin. The study of the effect of the newly developed drug Ph3SnL1 showed its plasticity in achieving an antitumor effect in vitro, which depends on the specificity of the phenotype and the redox status of the malignant cell line and ranges from the initiation of apoptotic cell death to the induction of differentiation to a more mature cell form. In the syngeneic model of murine melanoma, Ph3SnL1 showed the potential to reduce the tumor volume similar to cisplatin, but in a well-tolerated form and with low systemic toxicity, representing a significant advantage over the conventional drug.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Orgânicos de Estanho , Quinolonas , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia , Compostos Orgânicos de Estanho/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Animais , Camundongos , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Estrutura Molecular , Relação Estrutura-Atividade , Sobrevivência Celular/efeitos dos fármacos
10.
Chem Biodivers ; 21(5): e202400090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38486477

RESUMO

Streptomide (1), a new amide analogue, streptomynone (2), a new quinolinone, and ten known compounds including three aliphatic acids (3-5), two amides (6-7), four cyclic dipeptides (8-11), and an adenosine (12) were isolated from the fermentation broth of Streptomyces sp. YIM S01983 isolated from a sediment sample collected in Bendong Village, Huadong Town, Chuxiong, China. Their structures were determined by analysis of the 1D/2D-NMR and HR-ESI-MS spectra. Compound 12 presented weak antimicrobial activities against Candida albicans and Aligenes faecalis (MIC=64 µg/mL). Compounds 7 and 12 showed weak cytotoxic activity against MHCC97H.


Assuntos
Amidas , Candida albicans , Testes de Sensibilidade Microbiana , Quinolonas , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Amidas/química , Amidas/farmacologia , Amidas/isolamento & purificação , Candida albicans/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/isolamento & purificação , Humanos , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Enterococcus faecalis/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
11.
J Nat Prod ; 87(4): 705-712, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547118

RESUMO

Penicilloneines A (1) and B (2) are the first reported quinolone-citrinin hybrids. They were isolated from the starfish-derived fungus Penicillium sp. GGF16-1-2, and their structures were elucidated using spectroscopic, chemical, computational, and single-crystal X-ray diffraction methods. Penicilloneines A (1) and B (2) share a common 4-hydroxy-1-methyl-2(1H)-quinolone unit; however, they differ in terms of citrinin moieties, and these two units are linked via a methylene bridge. Penicilloneines A (1) and B (2) exhibited antifungal activities against Colletotrichum gloeosporioides, with lethal concentration 50 values of 0.02 and 1.51 µg/mL, respectively. A mechanistic study revealed that 1 could inhibit cell growth and promote cell vacuolization and consequent disruption of the fungal cell walls via upregulating nutrient-related hydrolase genes, including putative hydrolase, acetylcholinesterase, glycosyl hydrolase, leucine aminopeptidase, lipase, and beta-galactosidase, and downregulating their synthase genes 3-carboxymuconate cyclase, pyruvate decarboxylase, phosphoketolase, and oxalate decarboxylase.


Assuntos
Antifúngicos , Citrinina , Colletotrichum , Penicillium , Quinolonas , Penicillium/química , Colletotrichum/efeitos dos fármacos , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/isolamento & purificação , Estrutura Molecular , Animais , Citrinina/farmacologia , Citrinina/química , Citrinina/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Testes de Sensibilidade Microbiana
12.
J Inorg Biochem ; 255: 112525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522216

RESUMO

Four erbium(III) complexes with the fluoroquinolones enrofloxacin, levofloxacin, flumequine and sparfloxacin as ligands were synthesized and characterized by a wide range of physicochemical and spectroscopic techniques as well as single-crystal X-ray crystallography. The compounds were evaluated for their activity against the bacterial strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Xanthomonas campestris, which was higher than that of the corresponding free quinolones. The interaction mode of the complexes with calf-thymus DNA is via intercalation, as suggested by diverse studies such as UV-vis spectroscopy, DNA-viscosity measurements and competitive studies with ethidium bromide. Fluorescence emission spectroscopy revealed the high affinity of the complexes for bovine and human serum albumin and the determined binding constants suggested a tight and reversible binding of the compounds with both albumins.


Assuntos
Complexos de Coordenação , Quinolonas , Animais , Bovinos , Humanos , Érbio , Fluoroquinolonas/farmacologia , Fluoroquinolonas/química , Albuminas , Quinolonas/química , DNA/química , Complexos de Coordenação/química , Cristalografia por Raios X , Soroalbumina Bovina/química
13.
ChemMedChem ; 19(9): e202300667, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326914

RESUMO

Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 µM), and most were non-toxic to HEK293 cells (CC50 values>5 µM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.


Assuntos
Testes de Sensibilidade Parasitária , Quinolonas , Tripanossomicidas , Trypanosoma brucei brucei , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Células HEK293 , Trypanosoma brucei brucei/efeitos dos fármacos , Relação Estrutura-Atividade , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Estrutura Molecular , Hidrazinas/química , Hidrazinas/farmacologia , Hidrazinas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Relação Dose-Resposta a Droga
14.
Molecules ; 28(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836772

RESUMO

Antibiotic resistance is a global threat to public health, and the search for new antibacterial therapies is a current research priority. The aim of this in silico study was to test nine new fluoroquinolones previously designed with potential leishmanicidal activity against Campylobacter jejuni, Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Salmonella typhi, all of which are considered by the World Health Organization to resistant pathogens of global concern, through molecular docking and molecular dynamics (MD) simulations using wild-type (WT) and mutant-type (MT) DNA gyrases as biological targets. Our results showed that compound 9FQ had the best binding energy with the active site of E. coli in both molecular docking and molecular dynamics simulations. Compound 9FQ interacted with residues of quinolone resistance-determining region (QRDR) in GyrA and GyrB chains, which are important to enzyme activity and through which it could block DNA replication. In addition to compound 9FQ, compound 1FQ also showed a good affinity for DNA gyrase. Thus, these newly designed molecules could have antibacterial activity against Gram-negative microorganisms. These findings represent a promising starting point for further investigation through in vitro assays, which can validate the hypothesis and potentially facilitate the development of novel antibiotic drugs.


Assuntos
Fluoroquinolonas , Quinolonas , Fluoroquinolonas/farmacologia , Fluoroquinolonas/química , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/química , Quinolonas/química , DNA Girase/química , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
15.
Fitoterapia ; 168: 105559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271296

RESUMO

Four new oxepine-containing pyrazinopyrimidine alkaloids, versicoxepines A - D (1-4), two quinolinone alkaloid analogs including 3-hydroxy-6-methoxy-4-phenylquinolin-2(1H)-one (5) and 3-methoxy-6-hydroxy-4-phenylquinolin-2(1H)-one (6) which were new naturally occurring compounds, together with two known compounds (7 and 8) were isolated from Aspergillus versicolor AS-212, an endozoic fungus isolated from the deep-sea coral Hemicorallium cf. imperiale, which was collected from the Magellan Seamounts in the Western Pacific Ocean. Their structures were determined by extensive analysis of the spectroscopic and X-ray crystallographic data as well as by chiral HPLC analysis, ECD calculation, and DP4+ probability prediction. Structurally, versicoxepines B and C (2 and 3) represent the first example of a new oxepine-containing pyrazinopyrimidine alkaloid whose cyclic dipeptide moiety is composed of the same type of amino acid (Val or Ile). Compound 5 displayed antibacterial activity against aquatic pathogens, Vibrio harveyi and V. alginolyticus, with MICs of 8 µg/mL.


Assuntos
Alcaloides , Aspergillus , Quinolonas , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Aspergillus/química , Estrutura Molecular , Oxepinas/química , Quinolonas/química , Quinolonas/isolamento & purificação , Quinolonas/farmacologia , Oceano Pacífico , Cristalografia por Raios X , Antibacterianos/farmacologia , Vibrio/efeitos dos fármacos , Espectroscopia de Ressonância Magnética
16.
Dalton Trans ; 52(27): 9482-9498, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366535

RESUMO

Bioorganometallic complexes have attracted considerable interest and have shown promise for potential application in the treatment and diagnosis of cancer, as well as bioimaging agents, some acting as theranostic agents. The series of novel ferrocene, benzimidazo[1,2-a]quinoline and fluorescein derivatives with bidentate pyridyl-1,2,3-triazole and 2,2'-dipyridylamine and their tricarbonylrhenium(I) complexes was prepared and fully characterised by NMR, single-crystal X-ray diffraction, UV-Vis and fluorescence spectroscopy in biorelevant conditions. The fluorescein and benzimidazo[1,2-a]quinoline ligands and their complexes with Re(I) showed interactions with ds-DNA/RNA and HSA, characterised by thermal denaturation measurements, fluorimetric and circular dichroism titrations. The binding constants revealed that addition of Re(I) increases the affinity of fluorescein but decreases the affinity of benzimidazo[1,2-a]quinoline. The complexation of Re(I) had the opposite effect on fluorescein and benzimidazo[1,2-a]quinoline ligands' fluorimetric sensitivity upon biomacromolecule binding, Re(I) fluorescein complex emission being strongly quenched by DNA/RNA or HSA, while emission of Re(I) benzimidazo[1,2-a]quinolone complex was enhanced, particularly for HSA, making it a promising fluorescent probe. Some mono- and heterobimetallic complexes showed considerable antiproliferative activity on colon cancer cells (CT26 and HT29), with ferrocene dipyridylamine complexes exhibiting the best inhibitory activity, comparable to cisplatin. The correlation of the cytotoxicity data with the linker type between the ferrocene and the 1,2,3-triazole ring suggests that direct binding of the metallocene to the 1,2,3-triazole is favourable for antitumor activity. The Re(I) benzimidazo[1,2-a]quinolone complex showed moderate antiproliferative activity, in contrast to the Re(I) fluorescein complex, which exhibited weak activity on CT26 cells and no activity on HT29 cells. The accumulation of the Re(I) benzimidazo[1,2-a]quinolone complex in the lysosomes of CT26 cells indicates the site of its bioactivity, thus making this complex a potential theranostic agent.


Assuntos
Antineoplásicos , Complexos de Coordenação , Quinolonas , Humanos , Metalocenos , Ligantes , Quelantes , DNA/química , Quinolonas/química , Piridinas/farmacologia , Piridinas/química , Triazóis/farmacologia , Triazóis/química , RNA , Fluoresceínas , Complexos de Coordenação/química , Antineoplásicos/química
17.
J Org Chem ; 88(9): 6209-6217, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37071556

RESUMO

An improved method for the synthesis of a new quinolone class of antibiotics, which are exceptionally potent against gram-positive bacteria, has been developed and the structure confirmed by single-crystal X-ray analysis. In the course of synthesis, using either Chan-Lam coupling or Buchwald-Hartwig amination, we have shown that the careful choice of protecting group at the C4 position of the quinoline is required for selective amination at the C5 position and subsequent deprotection to avoid the formation of a novel pyrido[4,3,2-de]quinazoline tetracycle.


Assuntos
Quinolonas , Quinolonas/química , Relação Estrutura-Atividade , Antibacterianos/química , Bactérias Gram-Positivas , 4-Quinolonas
18.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903552

RESUMO

Hydrogen-bonding catalytic reactions have gained great interest. Herein, a hydrogen-bond-assisted three-component tandem reaction for the efficient synthesis of N-alkyl-4-quinolones is described. This novel strategy features the first proof of polyphosphate ester (PPE) as a dual hydrogen-bonding catalyst and the use of readily available starting materials for the preparation of N-alkyl-4-quinolones. The method provides a diversity of N-alkyl-4-quinolones in moderate to good yields. The compound 4h demonstrated good neuroprotective activity against N-methyl-ᴅ-aspartate (NMDA)-induced excitotoxicity in PC12 cells.


Assuntos
Quinolonas , Ratos , Animais , Quinolonas/química , Ligação de Hidrogênio , Catálise , Hidrogênio , 4-Quinolonas
19.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769202

RESUMO

Fluoroquinolones are an important class of antibacterials, and rising levels of resistance threaten their clinical efficacy. Gaining a more full understanding of their mechanism of action against their target enzymes-the bacterial type II topoisomerases gyrase and topoisomerase IV-may allow us to rationally design quinolone-based drugs that overcome resistance. As a step toward this goal, we investigated whether the water-metal ion bridge that has been found to mediate the major point of interaction between Escherichia coli topoisomerase IV and Bacillus anthracis topoisomerase IV and gyrase, as well as Mycobacterium tuberculosis gyrase, exists in E. coli gyrase. This is the first investigation of the water-metal ion bridge and its function in a Gram-negative gyrase. Evidence suggests that the water-metal ion bridge does exist in quinolone interactions with this enzyme and, unlike the Gram-positive B. anthracis gyrase, does use both conserved residues (serine and acidic) as bridge anchors. Furthermore, this interaction appears to play a positioning role. These findings raise the possibility that the water-metal ion bridge is a universal point of interaction between quinolones and type II topoisomerases and that it functions primarily as a binding contact in Gram-positive species and primarily as a positioning interaction in Gram-negative species. Future studies will explore this possibility.


Assuntos
Quinolonas , Quinolonas/farmacologia , Quinolonas/química , DNA Topoisomerase IV/metabolismo , Escherichia coli/metabolismo , Água/química , Antibacterianos/farmacologia , Antibacterianos/química , Metais/química , Fluoroquinolonas/farmacologia , DNA Girase , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , DNA Topoisomerases Tipo II/metabolismo
20.
Eur J Med Chem ; 250: 115176, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805945

RESUMO

The human African trypanosomiasis is a devastating parasitic infection, which is caused by the protozoan Trypanosoma brucei and transmitted by the bite of the tsetse fly. An untreated infection usually results in death and only few drugs with significant drawbacks are currently available for treatment. Previous investigations revealed the quinolone amide MB007 as a lead compound with an excellent selectivity for T. b. brucei. Here, new quinolone amides were synthesized for deeper insights into the structure-activity relationship. Furthermore, the aqueous solubility of the compounds was analyzed, as the poor solubility of previous quinolone amides impeded in vivo studies for target identification. The biological evaluation led to the new lead structure 9f, which exhibits a promising in vitro activity against T. b. brucei (IC50 = 22 nM) and showed no cytotoxicity against macrophages. Moreover, compounds 10b and 10c were discovered, which possessed an improved solubility combined with a decent selectivity.


Assuntos
Quinolonas , Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Amidas/química , Quinolonas/química , Solubilidade , Tripanossomicidas/química , Tripanossomíase Africana/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA