Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.304
Filtrar
1.
J Biol Inorg Chem ; 29(6): 625-638, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39207604

RESUMO

We have approached the construction of an artificial enzyme by employing a robust protein scaffold, lactococcal multidrug resistance regulator, LmrR, providing a structured secondary and outer coordination spheres around a molecular rhodium complex, [RhI(PEt2NglyPEt2)2]-. Previously, we demonstrated a 2-3 fold increase in activity for one Rh-LmrR construct by introducing positive charge in the secondary coordination sphere. In this study, a series of variants was made through site-directed mutagenesis where the negative charge is located in the secondary sphere or outer coordination sphere, with additional variants made with increasingly negative charge in the outer coordination sphere while keeping a positive charge in the secondary sphere. Placing a negative charge in the secondary or outer coordination sphere demonstrates decreased activity by a factor of two compared to the wild-type Rh-LmrR. Interestingly, addition of positive charge in the secondary sphere, with the negatively charged outer coordination sphere restores activity. Vibrational and NMR spectroscopy suggest minimal changes to the electronic density at the rhodium center, regardless of inclusion of a negative or positive charge in the secondary sphere, suggesting another mechanism is impacting catalytic activity, explored in the discussion.


Assuntos
Dióxido de Carbono , Ródio , Ródio/química , Hidrogenação , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Biocatálise , Modelos Moleculares , Catálise , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo
2.
Front Biosci (Landmark Ed) ; 29(8): 304, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39206916

RESUMO

BACKGROUND: The six Platinum group metal elements (PGEs) comprising Ruthenium, Rhodium, Palladium, Platinum, Iridium and Osmium are grouped together in the periodic table. Human activities are mostly responsible for releasing PGEs into the environment. This systematic review focused on three PGEs with the greatest anthropogenic use, including in vehicle catalytic converters: Platinum (Pt), Palladium (Pd), and Rhodium (Rh). Consequently, these represent the greatest contributors to environmental pollution. The current review of in vivo toxicological studies (mammalian models) and in vitro cell exposure studies examined the potential harmful effects of these metalloids to mammalians, and their possible toxicity to human health. METHODS: We applied Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to conduct a comprehensive search and evaluation of records in the available literature published between 01/01/2009 and 01/15/2024 in four databases. PROSPERO code ID: CRD42024471558. Results concerning the health effects of PGEs were extracted from articles according to the inclusion and exclusion criteria. After screening the records for eligibility, 22 studies were included in the final analysis. RESULTS: This systematic review revealed that airborne PGEs significantly increased the activation of pathologic pathways in several human organs and/or perturbed various metabolic pathways. In view of the known pro-inflammatory and organ-degenerative effects of PGEs, the paucity of studies on the effect of PGEs on the central nervous system and on possible correlations with neurodegenerative diseases were particularly evident. CONCLUSIONS: The clinical complexity and chronic nature of PGE-related pathologies indicate that targeted research is essential. In light of the increasing incidence of non-communicable diseases, particular attention should be paid to the design of epidemiological studies and to environmental monitoring services.


Assuntos
Platina , Humanos , Animais , Platina/toxicidade , Ródio/toxicidade , Irídio/toxicidade , Irídio/química , Paládio/toxicidade , Rutênio/química
3.
J Med Chem ; 67(16): 13778-13787, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39134504

RESUMO

Metal-based chemoimmunotherapy has recently garnered significant attention for its capacity to stimulate tumor-specific immunity beyond direct cytotoxic effects. Such effects are usually caused by ICD via the activation of DAMP signals. However, metal complexes that can elicit antitumor immune responses other than ICD have not yet been described. Herein, we report that a rhodium complex (Rh-1) triggers potent antitumor immune responses by downregulating Wnt/ß-catenin signaling with subsequent activation of T lymphocyte infiltration to the tumor site. The results of mechanistic experiments suggest that ROS accumulation following Rh-1 treatment is a critical trigger of a decrease in ß-catenin and enhanced secretion of CCL4, a key mediator of T cell infiltration. Through these properties, Rh-1 exerts a synergistic effect in combination with PD-1 inhibitors against tumor growth in vivo. Taken together, our work describes a promising metal-based antitumor agent with a noncanonical mode of action to sensitize tumor tissues to ICB therapy.


Assuntos
Antineoplásicos , Ródio , Via de Sinalização Wnt , Ródio/química , Ródio/farmacologia , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Camundongos , beta Catenina/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL
4.
Inorg Chem ; 63(29): 13602-13612, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38973094

RESUMO

Metal nanozymes have offered attractive opportunities for biocatalysis and biomedicine. However, fabricating nanozymes simultaneously possessing highly catalytic selectivity and activity remains a great challenge due to the lack of three-dimensional (3D) architecture of the catalytic pocket in natural enzymes. Here, we integrate rhodium nanocluster (RhNC), reduced graphene oxide (rGO), and protamine (PRTM, a typical arginine-rich peptide) into a composite facilely based on the single peptide. Remarkably, the PRTM-RhNC@rGO composite displays outstanding selectivity, activity, and stability for the catalytic degradation of uric acid. The reaction rate constant of the uric acid oxidation catalyzed by the PRTM-RhNC@rGO composite is about 1.88 × 10-3 s-1 (4 µg/mL), which is 37.6 times higher than that of reported RhNP (k = 5 × 10-5 s-1, 20 µg/mL). Enzyme kinetic studies reveal that the PRTM-RhNC@rGO composite exhibits a similar affinity for uric acid as natural uricase. Furthermore, the uricase-like activity of PRTM-RhNC@rGO nanozymes remains in the presence of sulfur substances and halide ions, displaying incredibly well antipoisoning abilities. The analysis of the structure-function relationship indicates the PRTM-RhNC@rGO composite features the substrate binding site near the catalytic site in a confined space contributed by 2D rGO and PRTM, resulting in the high-performance of the composite nanozyme. Based on the outstanding uricase-like activity and the interaction of PRTM and uric acid, the PRTM-RhNC@rGO composite can retard the urate crystallization significantly. The present work provides new insights into the design of metal nanozymes with suitable binding sites near catalytic sites by mimicking pocket-like structures in natural enzymes based on simple peptides, conducing to broadening the practical application of high-performance nanozymes in biomedical fields.


Assuntos
Grafite , Ródio , Ácido Úrico , Grafite/química , Ácido Úrico/química , Ácido Úrico/metabolismo , Ródio/química , Urato Oxidase/química , Urato Oxidase/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Oxirredução , Arginina/química , Nanopartículas Metálicas/química
5.
Environ Sci Pollut Res Int ; 31(35): 48620-48628, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037624

RESUMO

Obliteration of carbon monoxide is significant due to its hazardous effect on human health and potential application in different fields. Catalytic CO oxidation at lower temperature is the most convenient method to diminish the toxicity of CO. The low-cost catalysts which are exhibiting higher activity at lower temperature with good stability are in demand. The nanosized Rh-doped MnO2 catalysts have been prepared by dextrose-assisted co-precipitation method. Catalytic CO oxidation reaction was carried out over these prepared nanocatalysts under environmentally suitable conditions. XRD confirms the phase formation of prepared catalysts. These samples exhibit rod-like morphology with thickness of rods of less than 10 nm which is substantiated from electron microscopy images. XPS data reveals the oxidation state of Mn (+ 4) and Rh (+ 3). These catalysts are highly active for CO oxidation reaction at lower temperature, and one showed complete CO conversion at room temperature. The time-on-stream studies revealed that these catalysts are highly stable for CO oxidation for several hours. These catalysts are decidedly stable in moist condition and also showed higher activity in the presence of moisture, indicating participation of moisture in the oxidation reaction at above room temperatures.


Assuntos
Monóxido de Carbono , Compostos de Manganês , Oxirredução , Óxidos , Temperatura , Catálise , Monóxido de Carbono/química , Compostos de Manganês/química , Óxidos/química , Ródio/química
6.
Biochemistry ; 63(15): 1955-1962, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39012171

RESUMO

In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh-carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh-carbon bond formation, converting rhodi(I)balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh-carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co-carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.


Assuntos
Vitamina B 12 , Vitamina B 12/metabolismo , Vitamina B 12/química , Vitamina B 12/análogos & derivados , Humanos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Metilmalonil-CoA Mutase/química , Ródio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Mimetismo Molecular , Modelos Moleculares , Alquil e Aril Transferases
7.
J Am Chem Soc ; 146(30): 20868-20877, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024122

RESUMO

Contemporary developments in the field of peptide macrocyclization methodology are imperative for enabling the advance of drug design in medicinal chemistry. This report discloses a Rh(III)-catalyzed macrocyclization via carboamidation, reacting acryloyl-peptide-dioxazolone precursors and arylboronic acids to form complex cyclic peptides with concomitant incorporation of noncanonical α-amino acids. The diverse and modular technology allows for expedient access to a wide variety of cyclic peptides from 4 to 15 amino acids in size and features simultaneous formation of unnatural phenylalanine and tyrosine derivatives with up to >20:1 diastereoselectivity. The reaction showcases an expansive substrate scope with 45 examples and is compatible with the majority of standard protected amino acids used in Fmoc-solid phase peptide synthesis. The methodology is applied to the synthesis of multiple peptidomimetic macrocyclic analogs, including derivatives of cyclosomatostatin and gramicidin S.


Assuntos
Peptídeos Cíclicos , Ródio , Ródio/química , Catálise , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Ciclização , Estrutura Molecular
8.
Chemosphere ; 362: 142755, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969226

RESUMO

Continuous growth in fluoroarene production has led to environmental pollution and health concerns owing to their persistence, which is attributed to the stable C-F bond in their structures. Herein, we investigated fluoroarene decomposition via hydrodefluorination using a rhodium-based catalyst, focusing on the effects of the chemical structure and functional group on the defluorination yield. Most compounds, except (pentafluoroethyl)benzene, exhibited full or partial reduction with pseudo-first-order rate constants in the range of 0.002-0.396 min-1 and defluorination yields of 0%-100%. Fluoroarenes with hydroxyl, methyl, and carboxylate groups were selected to elucidate how hydrocarbon and oxygen-containing functional groups influence the reaction rate and defluorination. Inhibition of the reaction rate and defluorination yield based on functional groups increased in the order of hydroxyl < methyl < carboxylate, which was identical to the order of the electron-withdrawing effect. Fluoroarenes with polyfluoro groups were also assessed; polyfluoro groups demonstrated a different influence on catalyst activity than non-fluorine functional groups because of fluorine atoms in the substituents undergoing defluorination. The reaction kinetics of (difluoromethyl)fluorobenzenes and their intermediates suggested that hydrogenation and defluorination occurred during degradation. Finally, the effects of the type and position of functional groups on the reaction rate and defluorination yield were investigated via multivariable linear regression analysis. Notably, the electron-withdrawing nature of functional groups appeared to have a greater impact on the defluorination yield of fluoroarenes than the calculated C-F bond dissociation energy.


Assuntos
Ródio , Catálise , Ródio/química , Cinética , Halogenação , Oxirredução , Fluorbenzenos/química , Hidrocarbonetos Fluorados/química
9.
J Med Chem ; 67(15): 13349-13362, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39058952

RESUMO

This study investigates the potential of using ionic liquids as cosolvents to enhance the solubility and activity of poorly soluble rhodium(III) complexes, particularly those with diene, pyridine derivatives, and camphor-derived bis-pyrazolylpyridine ligands, in relation to 5'-GMP, CT-DNA, and HSA as well as their biological activity. Findings indicate that ionic liquids significantly increase the substitution activity of these complexes toward 5'-GMP while only marginally affecting DNA/HSA binding affinities with molecular docking, further confirming the experimental results. Lipophilicity assessments indicated good lipophilicity. Notably, cytotoxicity studies show that Rh2 is selectively effective against HeLa cancer cells, with IL1 and IL10 modulating the cytotoxic effects. Redox evaluations indicate that rhodium complexes induce oxidative stress in cancerous cells while maintaining redox balance in noncancerous cells. By elucidating the role of ionic liquids in modulating these effects, the study proposes a promising avenue for augmenting the efficacy and selectivity of cancer treatments, thus opening new horizons in cancer therapeutics.


Assuntos
Antineoplásicos , Complexos de Coordenação , Líquidos Iônicos , Ródio , Humanos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/síntese química , Ródio/química , Ródio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/uso terapêutico , Simulação de Acoplamento Molecular , Células HeLa , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , DNA/metabolismo , DNA/química , Relação Estrutura-Atividade , Solubilidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo
10.
J Mol Graph Model ; 131: 108806, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38824876

RESUMO

Multiple medicinal strategies involve modifications of the structure of DNA or RNA, which disrupt their correct functioning. Metal complexes with medicinal effects, also known as metallodrugs, are among the agents intended specifically for the attack onto nucleosides. The diruthenium (II,III) and dirhodium (II,II) paddlewheel complexes constitute promising dual acting drugs due to their ability to release the therapeutically active bridging ligands upon their substitution by endogenous ligands. In this paper, we study the structure and the stability of the complexes formed by the diruthenium (II,III) and dirhodium (II,II) paddlewheel complexes coordinated in axial positions with the DNA/RNA nucleobases or base pairs, assuming the attainable metalation at all the accessible pyridyl nitrogens. Dirhodium complexes coordinate at the pyridyl nitrogens more strongly than the diruthenium complexes. On the other hand, we found that the diruthenium scaffold binds more selectively to nucleobase targets. Furthermore, we reveal a tighter coordination of diruthenium complex at the adenine-uracil base pair, compared to adenine-thymine, hence constituting a scarce instance of RNA-selectivity. We envision that the here reported computational outcomes may pace future experiments addressing the binding of diruthenium and dirhodium paddlewheel complexes at either single nucleobases or DNA/RNA fragments.


Assuntos
Pareamento de Bases , Complexos de Coordenação , DNA , RNA , Rutênio , DNA/química , RNA/química , Complexos de Coordenação/química , Rutênio/química , Ligantes , Modelos Moleculares , Ródio/química
11.
Dalton Trans ; 53(27): 11578-11584, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38922335

RESUMO

The preparation of nanozymes with high specific activity is highly important for various applications. However, only a few nanozymes have specific activities comparable to natural enzymes. Herein, novel Pt-on-Rh hollow nanorods (PtRh HNRs) were developed, in which surface Pt exhibited adjustable dispersity and interior Rh served as the support. The optimized PtRh HNRs demonstrated high-performance peroxidase (POD)-like activity, with a specific activity as high as 1352 U mg-1, which was 3.86 times that of their monometallic Pt counterparts. Density functional theory (DFT) calculations illustrated that the presence of Rh decreased the energy barrier of the rate-determining step. When PtRh HNRs were used as nanozymes in the colorimetric detection of hydrogen peroxide (H2O2) and ascorbic acid (AA), the limits of detection (LODs) were as low as 9.97 µM and 0.039 µM, respectively. The current work highlights a facile and powerful strategy for manufacturing nanozymes with high specific activity and demonstrates that the prepared PtRh HNRs have the potential for analysis and determination.


Assuntos
Colorimetria , Peróxido de Hidrogênio , Nanotubos , Platina , Ródio , Colorimetria/métodos , Platina/química , Nanotubos/química , Peróxido de Hidrogênio/química , Ródio/química , Peroxidase/metabolismo , Peroxidase/química , Ácido Ascórbico/química , Teoria da Densidade Funcional , Limite de Detecção
12.
Org Lett ; 26(23): 4958-4962, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38833318

RESUMO

Inspired by previous selection outcomes, we investigated and developed a rhodium-promoted C-H activation/annulation reaction of DNA-linked terminal alkynes and aromatic acids. This reaction exhibits excellent efficiency with high conversions and a broad substrate scope. Most importantly, the unique DEL-compatible conditions provide a better scenario for yielding an isocoumarin scaffold compared to conventional organic reaction conditions, and this newly developed on-DNA method has confirmed its feasibility in preparing DNA-encoded libraries.


Assuntos
Alcinos , DNA , Ródio , Ródio/química , Alcinos/química , Estrutura Molecular , DNA/química , Catálise , Isocumarinas/química , Isocumarinas/síntese química
13.
Org Lett ; 26(20): 4212-4217, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38743309

RESUMO

An unusual rhodium-catalyzed C-H activation/Lossen rearrangement/oxa-Michael addition tandem cyclization has been achieved along with a tunable well-known C-H activation/[4 + 2] annulation, leading to regio-, chemo-, and diastereoselective access to diverse pentacyclic α-carbolines and ß-carboline-1-one derivatives in moderate to good yields with significant anticancer activity.


Assuntos
Antineoplásicos , Carbolinas , Ródio , Ródio/química , Carbolinas/química , Carbolinas/síntese química , Carbolinas/farmacologia , Catálise , Ciclização , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estereoisomerismo , Humanos , Ensaios de Seleção de Medicamentos Antitumorais
14.
Dalton Trans ; 53(22): 9330-9349, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38747564

RESUMO

Four neutral Rh1-Rh4 complexes of the general formula [Rh2(CH3COO)4L2], where L is an N-alkylimidazole ligand, were synthesized and characterized using various spectroscopic techniques, and in the case of Rh4 the crystal structure was confirmed. Investigation of the interactions of these complexes with HSA by fluorescence spectroscopy revealed that the binding constants Kb are moderately strong (∼104 M-1), and site-marker competition experiments showed that the complexes bind to Heme site III (subdomain IB). Competitive binding studies for CT DNA using EB and HOE showed that the complexes bind to the minor groove, which was also confirmed by viscosity experiments. Molecular docking confirmed the experimental data for HSA and CT DNA. Antimicrobial tests showed that the Rh2-Rh4 complexes exerted a strong inhibitory effect on G+ bacteria B. cereus and G- bacteria V. parahaemolyticus as well as on the yeast C. tropicalis, which showed a higher sensitivity compared to fluconazole. The cytotoxic activity of Rh1-Rh4 complexes tested on three cancer cell lines (HeLa, HCT116 and MDA-MB-231) and on healthy MRC-5 cells showed that all investigated complexes elicited more efficient cytotoxicity on all tested tumor cells than on control cells. Investigation of the mechanism of action revealed that the Rh1-Rh4 complexes inhibit cell proliferation via different mechanisms of action, namely apoptosis (increase in expression of the pro-apoptotic Bax protein and caspase-3 protein in HeLa and HCT116 cells; changes in mitochondrial potential and mitochondrial damage; release of cytochrome c from the mitochondria; cell cycle arrest in G2/M phase in both HeLa and HCT116 cells together with a decrease in the expression of cyclin A and cyclin B) and autophagy (reduction in the expression of the protein p62 in HeLa and HCT116 cells).


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Ródio , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Ródio/química , Ródio/farmacologia , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Candida tropicalis/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Células HeLa
15.
Int J Biol Macromol ; 270(Pt 2): 132541, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777012

RESUMO

Bio-based polymers are materials of high interest given the harmful environmental impact that involves the use of non-biodegradable fossil products for industrial applications. These materials are also particularly interesting as bio-based ligands for the preparation of metal nanoparticles (MNPs), employed as catalysts for the synthesis of high value chemicals. In the present study, Ru (0) and Rh(0) Metal Nanoparticles supported on Sodium Carboxymethyl cellulose (MNP(0)s-CMCNa) were prepared by simply mixing RhCl3x3H2O or RuCl3 with an aqueous solution of CMCNa, followed by NaBH4 reduction. The formation of MNP(0)s-CMCNa was confirmed by FT-IR and XRD, and their size estimated to be around 1.5 and 2.2 nm by TEM analysis. MNP(0)s-CMCNa were employed for the hydrogenation of (E)-cinnamic aldehyde, furfural and levulinic acid. Hydrogenation experiments revealed that CMCNa is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles allowing to obtain high conversions (>90 %) and selectivities (>98 %) with all substrates tested. Easy recovery by liquid/liquid extraction allowed to separate the catalyst from the reaction products, and recycling experiments demonstrated that MNPs-CS were highly efficiency up to three times in best hydrogenation conditions.


Assuntos
Carboximetilcelulose Sódica , Nanopartículas Metálicas , Solubilidade , Água , Carboximetilcelulose Sódica/química , Catálise , Água/química , Nanopartículas Metálicas/química , Hidrogenação , Rutênio/química , Ródio/química
16.
Eur J Med Chem ; 272: 116478, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718624

RESUMO

Metallodrugs exhibiting distinct mechanisms of action compared with cisplatin hold promise for overcoming cisplatin resistance and improving the efficacy of anticancer drugs. In this study, a new series of rhodium (Rh)(III) complexes containing tris(triphenylphosphine)rhodium(I) chloride [(TPP)3RhCl] (TPP = triphenylphosphine, TPP=O = triphenylphosphine oxide) and 8-hydroxyquinoline derivatives (H-XR1-H-XR4), namely [Rh(XR1)2(TPP)Cl]·(TPP=O) (Yulin Normal University-1a [YNU-1a]), [Rh(XR2)2(TPP)Cl] (YNU-1b), [Rh(XR3)2(TPP)Cl] (YNU-1c), and [Rh(XR4)2(TPP)Cl] (YNU-1d), was synthesized and characterized via X-ray diffraction, mass spectrometry and IR. The cytotoxicity of the compounds YNU-1a-YNU-1d in Hep-G2 and HCC1806 human cancer cell lines and normal HL-7702 cell line was evaluated. YNU-1c exhibited cytotoxicity and selectivity in HCC1806 cells (IC50 = 0.13 ± 0.06 µM, selectivity factor (SF) = 384.6). The compounds YNU-1b and YNU-1c, which were selected for mechanistic studies, induced the activation of apoptotic pathways and mitophagy. In addition, these compounds released cytochrome c, cleaved caspase-3/pro-caspase-3 and downregulated the levels of mitochondrial respiratory chain complexes I/IV (M1 and M4) and ATP. The compound YNU-1c, which was selected for in vivo experiments, exhibited tumor growth inhibition (58.9 %). Importantly, hematoxylin and eosin staining and TUNEL revealed that HCC1806 tumor tissues exhibited significant apoptotic characteristics. YNU-1a-YNU-1d compounds are promising drug candidates that can be used to overcome cisplatin resistance.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Mitofagia , Oxiquinolina , Ródio , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ródio/química , Ródio/farmacologia , Oxiquinolina/química , Oxiquinolina/farmacologia , Oxiquinolina/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Animais , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Estrutura Molecular , Compostos Organofosforados/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/síntese química , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral
17.
Org Lett ; 26(16): 3338-3342, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38608176

RESUMO

Isoquinolone is one of the most common heterocyclic core structures in countless natural products and many bioactive compounds. Here, a highly efficient approach to synthesize isoquinolone scaffolds on DNA via rhodium(III)-catalyzed C-H activation has been described. This chemistry transformation is robust and has shown good compatibility with DNA, which is suitable for DNA-encoded library synthesis.


Assuntos
DNA , Ródio , Ródio/química , Catálise , Estrutura Molecular , DNA/química , Isoquinolinas/química , Isoquinolinas/síntese química
18.
J Am Chem Soc ; 146(17): 11866-11875, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621677

RESUMO

The available methods of chemical synthesis have arguably contributed to the prevalence of aromatic rings, such as benzene, toluene, xylene, or pyridine, in modern pharmaceuticals. Many such sp2-carbon-rich fragments are now easy to synthesize using high-quality cross-coupling reactions that click together an ever-expanding menu of commercially available building blocks, but the products are flat and lipophilic, decreasing their odds of becoming marketed drugs. Converting flat aromatic molecules into saturated analogues with a higher fraction of sp3 carbons could improve their medicinal properties and facilitate the invention of safe, efficacious, metabolically stable, and soluble medicines. In this study, we show that aromatic and heteroaromatic drugs can be readily saturated under exceptionally mild rhodium-catalyzed hydrogenation, acid-mediated reduction, or photocatalyzed-hydrogenation conditions, converting sp2 carbon atoms into sp3 carbon atoms and leading to saturated molecules with improved medicinal properties. These methods are productive in diverse pockets of chemical space, producing complex saturated pharmaceuticals bearing a variety of functional groups and three-dimensional architectures. The rhodium-catalyzed method tolerates traces of dimethyl sulfoxide (DMSO) or water, meaning that pharmaceutical compound collections, which are typically stored in wet DMSO, can finally be reformatted for use as substrates for chemical synthesis. This latter application is demonstrated through the late-stage saturation (LSS) of 768 complex and densely functionalized small-molecule drugs.


Assuntos
Ródio , Catálise , Ródio/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Hidrogenação , Estrutura Molecular
19.
ACS Appl Mater Interfaces ; 16(17): 21653-21664, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644787

RESUMO

Analogous to thermal ablation techniques in clinical settings, cell necrosis induced during tumor photothermal therapy (PTT) can provoke an inflammatory response that is detrimental to the treatment of tumors. In this study, we employed a straightforward one-step liquid-phase reduction process to synthesize uniform RhRe nanozymes with an average hydrodynamic size of 41.7 nm for non-inflammatory photothermal therapy. The obtained RhRe nanozymes showed efficient near-infrared (NIR) light absorption for effective PTT, coupled with a remarkable capability to scavenge reactive oxygen species (ROS) for anti-inflammatory treatment. After laser irradiation, the 4T1 tumors were effectively ablated without obvious tumor recurrence within 14 days, along with no obvious increase in pro-inflammatory cytokine levels. Notably, these RhRe nanozymes demonstrated high biocompatibility with normal cells and tissues, both in vitro and in vivo, as evidenced by the lack of significant toxicity in female BALB/c mice treated with 10 mg/kg of RhRe nanozymes over a 14 day period. This research highlights RhRe alloy nanoparticles as bioactive nanozymes for non-inflammatory PTT in tumor therapy.


Assuntos
Ligas , Camundongos Endogâmicos BALB C , Terapia Fototérmica , Rênio , Ródio , Animais , Ródio/química , Ródio/farmacologia , Camundongos , Ligas/química , Ligas/farmacologia , Feminino , Rênio/química , Rênio/farmacologia , Linhagem Celular Tumoral , Humanos , Espécies Reativas de Oxigênio/metabolismo
20.
ACS Sens ; 9(5): 2325-2333, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38666660

RESUMO

Organophosphorus nerve agents (OPNAs) pose a great threat to humanity. Possessing extreme toxicity, rapid lethality, and an unassuming appearance, these chemical warfare agents must be quickly and selectively identified so that treatment can be administered to those affected. Chromogenic detection is the most convenient form of OPNA detection, but current methods suffer from false positives. Here, nitrogenous base adducts of dirhodium(II,II) acetate were synthesized and used as chromogenic detectors of diethyl chlorophosphate (DCP), an OPNA simulant. UV-vis spectrophotometry was used to evaluate the sensitivity and selectivity of the complexes in the detection of DCP. Visual limits of detection (LOD) for DCP were as low as 1.5 mM DCP, while UV-vis-based LODs were as low as 0.113 µM. The dirhodium(II,II) complexes were also tested with several potential interferents, none of which produced a visual color change that could be mistaken for OPNA response. Ultimately, the Rh2(OAc)4(1,8-diazabicyclo[5.4.0]undec-7-ene)2 complex showed the best combination of detection capability and interferent resistance. These results, when taken together, show that dirhodium(II,II) paddlewheel complexes with nitrogenous base adducts can produce instant, selective, and sensitive detection of DCP. It is our aim to further explore and apply this new motif to produce even more capable OPNA sensors.


Assuntos
Agentes Neurotóxicos , Ródio , Ródio/química , Agentes Neurotóxicos/análise , Agentes Neurotóxicos/química , Complexos de Coordenação/química , Compostos Organofosforados/análise , Compostos Organofosforados/química , Limite de Detecção , Compostos Cromogênicos/química , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA