Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 909, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145884

RESUMO

BACKGROUND: Inflammatory cytokines such as Interleukin 1ß(IL1ß), IL6,Tumor Necrosis Factor-α (TNF-α) can inhibit osteoblast differentiation and induce osteoblast apoptosis. PANoptosis, a newly identified type of programmed cell death (PCD), may be influenced by long noncoding RNA (lncRNAs) which play important roles in regulating inflammation. However, the potential role of lncRNAs in inflammation and PANoptosis during osteogenic differentiation remains unclear. This study aimed to investigate the regulatory functions of lncRNAs in inflammation and apoptosis during osteogenic differentiation. METHODS AND RESULTS: High-throughput sequencing was used to identify differentially expressed genes involved in osteoblast differentiation under inflammatory conditions. Two lncRNAs associated with inflammation and PANoptosis during osteogenic differentiation were identified from sequencing data and Gene Expression Omnibus (GEO) databases. Their functionalities were analyzed using diverse bioinformatics methodologies, resulting in the construction of the lncRNA-miRNA-mRNA network. Among these, lncRNA (MIR17HG) showed a high correlation with PANoptosis. Bibliometric methods were employed to collect literature data on PANoptosis, and its components were inferred. PCR and Western Blotting experiments confirmed that lncRNA MIR17HG is related to PANoptosis in osteoblasts during inflammation. CONCLUSIONS: Our data suggest that TNF-α-induced inhibition of osteogenic differentiation and PANoptosis in MC3T3-E1 osteoblasts is associated with MIR17HG. These findings highlight the critical role of MIR17HG in the interplay between inflammation, PANoptosis, and osteogenic differentiation, suggesting potential therapeutic targets for conditions involving impaired bone formation and inflammatory responses.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Osteogênese , RNA Endógeno Competitivo , RNA Longo não Codificante , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Apoptose/genética , Diferenciação Celular/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , RNA Endógeno Competitivo/genética , RNA Endógeno Competitivo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
PeerJ ; 12: e17859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148682

RESUMO

Background: CeRNA axis is an important way to regulate the occurrence and development of Nasopharyngeal carcinoma (NPC). Although the research on inducing cuproptosis of tumor cells is in the early stage of clinical practice, its mechanism of action is still of great significance for tumor treatment, including NPC. However, the regulation mechanism of cuproptosis in NPC by ceRNA network remains unclear. Methods: The ceRNA network related to the survival of nasopharyngeal carcinoma related genes was constructed by bioinformatics. Dual-luciferase reporter assay and other experiments were used to prove the conclusion. Results: Our findings indicate that the AC008083.2/miR-142-3p axis drives STRN3 to promote the malignant progression of NPC. By performing enrichment analysis and phenotypic assays, we demonstrated that the changes in the expressions of AC008083.2/miR-142-3p/NPC can affect the proliferation of NPC. Mechanistically, luciferase reporter gene assays suggested that AC008083.2 acts as a ceRNA of miR-142-3p to regulate the content of STRN3. Furthermore, the regulations of STRN3 and the malignant progression of NPC by AC008083.2 depends on miR-142-3p to some extent. Conclusions: Our study reveals an innovative ceRNA regulatory network in NPC, which can be considered a new potential target for diagnosing and treating NPC.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , RNA Endógeno Competitivo , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , RNA Endógeno Competitivo/genética , RNA Endógeno Competitivo/metabolismo
3.
Sci Rep ; 14(1): 18962, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152192

RESUMO

Cadmium, a common metal pollutant, has been demonstrated to induce type 2 diabetes by disrupting pancreatic ß cells function. In this study, transcriptome microarray was utilized to identify differential gene expression in oxidative damage to pancreatic ß cells following cadmium exposure. The results indicated that a series of mRNAs, LncRNAs, and miRNAs were altered. Of the differentially expressed miRNAs, miR-29a-3p exhibited the most pronounced alteration, with an 11.62-fold increase relative to the control group. Following this, the target gene of miR-29a-3p was identified as Col3a1 through three databases (miRDB, miRTarbase and Tarbase), which demonstrated a decrease across the transcriptome microarray. The upstream target gene of miR-29a-3p was identified as NONMMUT036805, with decreased expression observed in the microarray. Finally, the expression trend of NONMMUT036805/miR-29a-3p/Col3a1 was reversed following NAC pretreatment. This was accompanied by a reduction in oxidative damage indicators, MDA/ROS/GSH-Px appeared to be negatively affected to varying degrees. In conclusion, this study has demonstrated that multiple RNAs are altered during cadmium exposure-induced oxidative damage in pancreatic ß cells. The NONMMUT036805/miR-29a-3p/Col3a1 axis has been shown to be involved in this process, which provides a foundation for the identification of potential targets for cadmium toxicity intervention.


Assuntos
Cádmio , Células Secretoras de Insulina , MicroRNAs , Estresse Oxidativo , RNA Endógeno Competitivo , Animais , Camundongos , Cádmio/toxicidade , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , RNA Endógeno Competitivo/genética , RNA Endógeno Competitivo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
4.
PeerJ ; 12: e17213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161963

RESUMO

Background: Ulcerative colitis (UC) is a common chronic disease associated with inflammation and oxidative stress. This study aimed to construct a long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network based on bioinformatics analysis and to explore oxidative stress-related genes underlying the pathogenesis of UC. Methods: The GSE75214, GSE48959, and GSE114603 datasets were downloaded from the Gene Expression Omnibus database. Following differentially expressed (DE) analysis, the regulatory relationships among these DERNAs were identified through miRDB, miRTarBase, and TargetScan; then, the lncRNA-miRNA-mRNA network was established. The Molecular Signatures Database (MSigDB) was used to search oxidative stress-related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for functional annotation and enrichment analyses. Based on the drug gene interaction database DGIdb, drugs that interact with oxidative stress-associated genes were explored. A dextran sulfate sodium (DSS)-induced UC mouse model was used for experimental validation. Results: A total of 30 DE-lncRNAs, 3 DE-miRNAs, and 19 DE-mRNAs were used to construct a lncRNA-miRNA-mRNA network. By comparing these 19 DE-mRNAs with oxidative stress-related genes in MSigDB, three oxidative stress-related genes (CAV1, SLC7A11, and SLC7A5) were found in the 19 DEM sets, which were all negatively associated with miR-194. GO and KEGG analyses showed that CAV1, SLC7A11, and SLC7A5 were associated with immune inflammation and steroid hormone synthesis. In animal experiments, the results showed that dexamethasone, a well-known glucocorticoid drug, could significantly decrease the expression of CAV1, SLC7A11, and SLC7A5 as well as improve UC histology, restore antioxidant activities, inhibit inflammation, and decrease myeloperoxidase activity. Conclusion: SLC7A5 was identified as a representative gene associated with glucocorticoid therapy resistance and thus may be a new therapeutic target for the treatment of UC in the clinic.


Assuntos
Colite Ulcerativa , Redes Reguladoras de Genes , MicroRNAs , Estresse Oxidativo , RNA Endógeno Competitivo , RNA Longo não Codificante , RNA Mensageiro , Animais , Humanos , Camundongos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Biologia Computacional , Bases de Dados Genéticas , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Endógeno Competitivo/genética , RNA Endógeno Competitivo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Respir Res ; 25(1): 270, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987833

RESUMO

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS: In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS: Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFßR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFßR1 induced similar effects to H19 deficiency. CONCLUSIONS: In summary, our findings demonstrate that the H19/let-7 g/TGFßR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.


Assuntos
Transição Epitelial-Mesenquimal , Hipertensão Pulmonar , MicroRNAs , RNA Endógeno Competitivo , RNA Longo não Codificante , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Feminino , Humanos , Masculino , Ratos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Transição Epitelial-Mesenquimal/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , RNA Endógeno Competitivo/genética , RNA Endógeno Competitivo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339157

RESUMO

YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), an m6A reader, has a role in the development and progression of breast cancer as well as the immunological microenvironment. The networks of competing endogenous RNA in cancer have received much attention in research. In tumor gene therapy, the regulatory networks of m6A and competing endogenous RNA are increasingly emerging as a new route. We evaluated the relationship between the YTHDF1 expression, overall survival, and clinicopathology of breast cancer using TCGA, PrognoScan, and other datasets. We used Western blot to demonstrate that YTHDF1 is substantially expressed in breast cancer tissues. Furthermore, we explored YTHDF1's functions in the tumor mutational burden, microsatellite instability, and tumor microenvironment. Our findings indicate that YTHDF1 is a critical component of the m6A regulatory proteins in breast cancer and may have a particular function in the immunological microenvironment. Crucially, we investigated the relationship between YTHDF1 and the associated competitive endogenous RNA regulatory networks, innovatively creating three such networks (Dehydrogenase/Reductase 4-Antisense RNA 1-miR-378g-YTHDF1, HLA Complex Group 9-miR-378g-YTHDF1, Taurine Up-regulated 1-miR-378g-YTHDF1). Furthermore, we showed that miR-378g could inhibit the expression of YTHDF1, and that miR-378g/YTHDF1 could impact MDA-MB-231 proliferation. We speculate that YTHDF1 may serve as a biomarker for poor prognosis and differential diagnosis, impact the growth of breast cancer cells via the ceRNA network axis, and be a target for immunotherapy against breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Proteínas de Ligação a RNA , Humanos , Western Blotting , MicroRNAs/genética , Neoplasias , RNA Antissenso , RNA Endógeno Competitivo/genética , RNA Endógeno Competitivo/metabolismo , Proteínas de Ligação a RNA/genética , Microambiente Tumoral/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA