Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.067
Filtrar
1.
Biochemistry ; 63(16): 2075-2088, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39099399

RESUMO

Yeast phenylalanine tRNA (tRNAphe) is a paradigmatic model in structural biology. In this work, we combine molecular dynamics simulations and spectroscopy modeling to establish a direct link between its structure, conformational dynamics, and infrared (IR) spectra. Employing recently developed vibrational frequency maps and coupling models, we apply a mixed quantum/classical treatment of the line shape theory to simulate the IR spectra of tRNAphe in the 1600-1800 cm-1 region across its folded and unfolded conformations and under varying concentrations of Mg2+ ions. The predicted IR spectra of folded and unfolded tRNAphe are in good agreement with experimental measurements, validating our theoretical framework. We then elucidate how the characteristic L-shaped tertiary structure of the tRNA and its modulation in response to diverse chemical environments give rise to distinct IR absorption peaks and line shapes. These calculations effectively bridge IR spectroscopy experiments and atomistic molecular simulations, unraveling the molecular origins of the observed IR spectra of tRNAphe. This work presents a robust theoretical protocol for modeling the IR spectroscopy of nucleic acids, which will facilitate its application as a sensitive probe for detecting the fluctuating secondary and tertiary structures of these essential biological macromolecules.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA de Transferência de Fenilalanina , Espectrofotometria Infravermelho , Espectrofotometria Infravermelho/métodos , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo
2.
Nucleic Acids Res ; 52(17): 10630-10644, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38994562

RESUMO

Ribosomal RNAs are processed in a complex pathway. We profiled rRNA processing intermediates in yeast at single-molecule and single-nucleotide levels with circularization, targeted amplification and deep sequencing (CircTA-seq), gaining significant mechanistic insights into rRNA processing and surveillance. The long form of the 5' end of 5.8S rRNA is converted to the short form and represents an intermediate of a unified processing pathway. The initial 3' end processing of 5.8S rRNA involves trimming by Rex1 and Rex2 and Trf4-mediated polyadenylation. The 3' end of 25S rRNA is formed by sequential digestion by four Rex proteins. Intermediates with an extended A1 site are generated during 5' degradation of aberrant 18S rRNA precursors. We determined precise polyadenylation profiles for pre-rRNAs and show that the degradation efficiency of polyadenylated 20S pre-rRNA critically depends on poly(A) lengths and degradation intermediates released from the exosome are often extensively re-polyadenylated.


Assuntos
Precursores de RNA , Processamento Pós-Transcricional do RNA , RNA Ribossômico 5,8S , RNA Ribossômico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/química , RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Precursores de RNA/metabolismo , Precursores de RNA/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 18S/genética , Poliadenilação , RNA Fúngico/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Sequenciamento de Nucleotídeos em Larga Escala , Estabilidade de RNA
3.
RNA ; 30(10): 1306-1314, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013577

RESUMO

Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO4 and 5'-PO4 RNA ends to form a 2'-PO4,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO4 RNA terminus to form an RNA-adenylate intermediate (A5'pp5'RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO4 to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of Chaetomium thermophilum LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO4 Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA2'p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO4 end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.


Assuntos
Chaetomium , RNA Ligase (ATP) , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/genética , Cinética , Chaetomium/enzimologia , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Fosfatos/metabolismo , Fosfatos/química , Modelos Moleculares , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , RNA Fúngico/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , Especificidade por Substrato , Splicing de RNA
4.
Nucleic Acids Res ; 52(16): 9821-9837, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38864374

RESUMO

Long terminal repeat (LTR)-retrotransposons are significant contributors to the evolution and diversity of eukaryotic genomes. Their RNA genomes (gRNA) serve as a template for protein synthesis and reverse transcription to a DNA copy, which can integrate into the host genome. Here, we used the SHAPE-MaP strategy to explore Ty3 retrotransposon gRNA structure in yeast and under cell-free conditions. Our study reveals the structural dynamics of Ty3 gRNA and the well-folded core, formed independently of the cellular environment. Based on the detailed map of Ty3 gRNA structure, we characterized the structural context of cis-acting sequences involved in reverse transcription and frameshifting. We also identified a novel functional sequence as a potential initiator for Ty3 gRNA dimerization. Our data indicate that the dimer is maintained by direct interaction between short palindromic sequences at the 5' ends of the two Ty3 gRNAs, resembling the model characteristic for other retroelements like HIV-1 and Ty1. This work points out a range of cell-dependent and -independent Ty3 gRNA structural changes that provide a solid background for studies on RNA structure-function relationships important for retroelement biology.


Assuntos
Conformação de Ácido Nucleico , Retroelementos , Saccharomyces cerevisiae , Retroelementos/genética , Saccharomyces cerevisiae/genética , Genoma Fúngico , RNA Fúngico/química , RNA Fúngico/genética , Sequências Repetidas Terminais/genética , Transcrição Reversa , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dimerização
5.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
6.
Anal Chim Acta ; 1273: 341528, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423662

RESUMO

Efficient DNA sample preparation from fungi with the rigid cell walls is still critical for successful polymerase chain reaction (PCR), one of the basic platforms in molecular diagnostics of fungi, especially in medical mycology. Common methods that involve different chaotropes to yield DNA samples have found a limited application for fungi. Here we describe a novel procedure for efficient production of permeable fungal cell envelopes with DNA inside as suitable templates for PCR. This procedure is facile, relies on boiling of fungal cells in aqueous solutions of selected chaotropic agents and additives and enables to remove RNA and proteins from PCR template samples. The use of chaotropic solutions containing 7 M urea, 1% sodium dodecyl sulfate (SDS), up to100 mM ammonia and/or 25 mM sodium citrate was the best option to yield highly purified DNA-containing cell envelopes from all fungal strains under study, including clinical Candida and Cryptococcusisolates. After treatment with the selected chaotropic mixtures, the fungal cell walls had undergone loosening and were no longer a barrier to release DNA in PCR as evident from electron microscopy examinations and successful target gene amplifications. Overall, the developed simple, fast, and low-cost approach to produce PCR-suitable templates in the form of DNA encased by permeable cell walls can find application in molecular diagnostics.


Assuntos
Parede Celular , Reação em Cadeia da Polimerase , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , Parede Celular/química
7.
Elife ; 112022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484778

RESUMO

RNA interference is an ancient mechanism with many regulatory roles in eukaryotic genomes, with small RNAs acting as their functional element. While there is a wide array of classes of small-RNA-producing loci, those resulting from stem-loop structures (hairpins) have received profuse attention. Such is the case of microRNAs (miRNAs), which have distinct roles in plants and animals. Fungi also produce small RNAs, and several publications have identified miRNAs and miRNA-like (mi/milRNA) hairpin RNAs in diverse fungal species using deep sequencing technologies. Despite this relevant source of information, relatively little is known about mi/milRNA features in fungi, mostly due to a lack of established criteria for their annotation. To systematically assess mi/milRNA characteristics and annotation confidence, we searched for publications describing mi/milRNA loci and re-assessed the annotations for 41 fungal species. We extracted and normalized the annotation data for 1727 reported mi/milRNA loci and determined their abundance profiles, concluding that less than half of the reported loci passed basic standards used for hairpin RNA discovery. We found that fungal mi/milRNA are generally more similar in size to animal miRNAs and were frequently associated with protein-coding genes. The compiled genomic analyses identified 25 mi/milRNA loci conserved in multiple species. Our pipeline allowed us to build a general hierarchy of locus quality, identifying more than 150 loci with high-quality annotations. We provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi which will serve as a resource for future research and advance in understanding the characteristics and functions of mi/milRNAs in fungal organisms.


Assuntos
MicroRNAs , RNA Fúngico , Animais , RNA Fúngico/genética , RNA Fúngico/química , Regulação Fúngica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Fungos/genética
8.
Methods Mol Biol ; 2533: 149-166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796987

RESUMO

Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.


Assuntos
RNA Ribossômico , Saccharomyces cerevisiae , Acetilação , Humanos , Metilação , Pseudouridina/química , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Science ; 375(6584): 1000-1005, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239377

RESUMO

Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.


Assuntos
Genoma Fúngico , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Transcriptoma , Regiões 3' não Traduzidas , Sequência de Bases , Rearranjo Gênico , Variação Genética , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA-Seq , Análise de Sequência de RNA
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058356

RESUMO

Pseudouridine (Ψ) is a ubiquitous RNA modification incorporated by pseudouridine synthase (Pus) enzymes into hundreds of noncoding and protein-coding RNA substrates. Here, we determined the contributions of substrate structure and protein sequence to binding and catalysis by pseudouridine synthase 7 (Pus7), one of the principal messenger RNA (mRNA) modifying enzymes. Pus7 is distinct among the eukaryotic Pus proteins because it modifies a wider variety of substrates and shares limited homology with other Pus family members. We solved the crystal structure of Saccharomyces cerevisiae Pus7, detailing the architecture of the eukaryotic-specific insertions thought to be responsible for the expanded substrate scope of Pus7. Additionally, we identified an insertion domain in the protein that fine-tunes Pus7 activity both in vitro and in cells. These data demonstrate that Pus7 preferentially binds substrates possessing the previously identified UGUAR (R = purine) consensus sequence and that RNA secondary structure is not a strong requirement for Pus7-binding. In contrast, the rate constants and extent of Ψ incorporation are more influenced by RNA structure, with Pus7 modifying UGUAR sequences in less-structured contexts more efficiently both in vitro and in cells. Although less-structured substrates were preferred, Pus7 fully modified every transfer RNA, mRNA, and nonnatural RNA containing the consensus recognition sequence that we tested. Our findings suggest that Pus7 is a promiscuous enzyme and lead us to propose that factors beyond inherent enzyme properties (e.g., enzyme localization, RNA structure, and competition with other RNA-binding proteins) largely dictate Pus7 substrate selection.


Assuntos
Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínio Catalítico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/química , RNA Fúngico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Estresse Fisiológico , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , Termodinâmica
11.
ACS Chem Biol ; 17(1): 77-84, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846122

RESUMO

5-Formylcytidine (f5C) is one type of post-transcriptional RNA modification, which is known at the wobble position of tRNA in mitochondria and essential for mitochondrial protein synthesis. Here, we show a method to detect f5C modifications in RNA and a transcriptome-wide f5C mapping technique, named f5C-seq. It is developed based on the treatment of pyridine borane, which can reduce f5C to 5,6-dihydrouracil, thus inducing C-to-T transition in f5C sites during PCR to achieve single-base resolution detection. More than 1000 f5C sites were identified after mapping in Saccharomyces cerevisiae by f5C-seq. Moreover, codon composition demonstrated a preference for f5C within wobble sites in mRNA, suggesting the potential role in regulation of translation. These findings expand the scope of the understanding of cytosine modifications in mRNA.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase/química , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Sequência de Bases , Citidina/análogos & derivados , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Humanos , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
12.
STAR Protoc ; 2(4): 100929, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34766032

RESUMO

In vivo characterization of RNA-protein interactions is the key for understanding RNA regulatory mechanisms. Herein, we describe a protocol for detection of proteins interacting with polyadenylated RNAs in the yeast Saccharomyces cerevisiae. Proteins are crosslinked to nucleic acids in vivo by ultraviolet (UV) irradiation of cells, and poly(A)-containing RNAs with bound proteins are isolated from cell lysates using oligo[dT]25 beads. RBPs can be detected by immunoblot analysis or with mass spectrometry to define the mRNA-binding proteome (mRBPome) and its changes under stress. For complete details on the use and execution of this protocol, please refer to Matia-González et al. (2021, 2015).


Assuntos
Espectrometria de Massas/métodos , RNA Fúngico , RNA Mensageiro , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Mapeamento de Interação de Proteínas , Proteoma , Proteômica , RNA Fúngico/análise , RNA Fúngico/química , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/química , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nat Commun ; 12(1): 4451, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294712

RESUMO

Identifying how R-loops are generated is crucial to know how transcription compromises genome integrity. We show by genome-wide analysis of conditional yeast mutants that the THO transcription complex, prevents R-loop formation in G1 and S-phase, whereas the Sen1 DNA-RNA helicase prevents them only in S-phase. Interestingly, damage accumulates asymmetrically downstream of the replication fork in sen1 cells but symmetrically in the hpr1 THO mutant. Our results indicate that: R-loops form co-transcriptionally independently of DNA replication; that THO is a general and cell-cycle independent safeguard against R-loops, and that Sen1, in contrast to previously believed, is an S-phase-specific R-loop resolvase. These conclusions have important implications for the mechanism of R-loop formation and the role of other factors reported to affect on R-loop homeostasis.


Assuntos
DNA Fúngico/química , Estruturas R-Loop , RNA Fúngico/química , Ciclo Celular/genética , Ciclo Celular/fisiologia , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genes Fúngicos , Instabilidade Genômica , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estruturas R-Loop/genética , Estruturas R-Loop/fisiologia , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
RNA ; 27(9): 1046-1067, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162742

RESUMO

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.


Assuntos
Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Mutação de Sentido Incorreto , RNA Fúngico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Nanismo/enzimologia , Nanismo/genética , Nanismo/patologia , Exorribonucleases/química , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Fácies , Expressão Gênica , Glicina/química , Glicina/metabolismo , Perda Auditiva/enzimologia , Perda Auditiva/genética , Perda Auditiva/patologia , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , RNA Fúngico/química , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Síndrome
15.
Sci Rep ; 11(1): 13467, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188131

RESUMO

By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , RNA Fúngico/química , RNA Mensageiro/química , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Mutação , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Nucleic Acids Res ; 49(11): 6128-6143, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086938

RESUMO

Many non-coding RNAs with known functions are structurally conserved: their intramolecular secondary and tertiary interactions are maintained across evolutionary time. Consequently, the presence of conserved structure in multiple sequence alignments can be used to identify candidate functional non-coding RNAs. Here, we present a bioinformatics method that couples iterative homology search with covariation analysis to assess whether a genomic region has evidence of conserved RNA structure. We used this method to examine all unannotated regions of five well-studied fungal genomes (Saccharomyces cerevisiae, Candida albicans, Neurospora crassa, Aspergillus fumigatus, and Schizosaccharomyces pombe). We identified 17 novel structurally conserved non-coding RNA candidates, which include four H/ACA box small nucleolar RNAs, four intergenic RNAs and nine RNA structures located within the introns and untranslated regions (UTRs) of mRNAs. For the two structures in the 3' UTRs of the metabolic genes GLY1 and MET13, we performed experiments that provide evidence against them being eukaryotic riboswitches.


Assuntos
RNA Fúngico/química , RNA não Traduzido/química , Regiões 3' não Traduzidas , Biologia Computacional/métodos , Genoma Fúngico , Íntrons , Lisina-tRNA Ligase/genética , Cadeias de Markov , Conformação de Ácido Nucleico , RNA Nucleolar Pequeno/química , Proteínas Ribossômicas/genética , Riboswitch , Alinhamento de Sequência , Tiorredoxinas/genética
17.
Methods Mol Biol ; 2300: 11-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33792867

RESUMO

Precipitation is a critical step to recover RNA of high purity. This chapter describes the principles of alcoholic precipitation as well as a standard, basic protocol with key advices to observe, but numerous variations on the theme are discussed. Indeed, several important parameters, such as the choice of salt, alcohol, or carrier, have to be considered to improve the efficiency of precipitation and the yield of RNA recovery.


Assuntos
RNA de Transferência/química , RNA de Transferência/isolamento & purificação , Leveduras/genética , Álcoois/química , Precipitação Química , RNA Fúngico/química , Sais/química
18.
Methods Mol Biol ; 2300: 251-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33792884

RESUMO

Many RNA architectures were discovered to be involved in a wide range of essential biological processes in all organisms from carrying genetic information to gene expression regulation. The remarkable ability of RNAs to adopt various architectures depending on their environment enables the achievement of their myriads of biological functions. Nuclear Magnetic Resonance (NMR) is a powerful technique to investigate both their structure and dynamics. NMR is also a key tool for studying interactions between RNAs and their numerous partners such as small molecules, ions, proteins, or other nucleic acids.In this chapter, to illustrate the use of NMR for 3D structure determination of small noncoding RNA, we describe detailed methods that we used for the yeast C/D box small nucleolar RNA U14 from sample preparation to 3D structure calculation.


Assuntos
Pequeno RNA não Traduzido/química , Saccharomyces cerevisiae/genética , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , RNA Fúngico/química , RNA Fúngico/metabolismo , Pequeno RNA não Traduzido/metabolismo
19.
Protein Sci ; 30(6): 1210-1220, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33884665

RESUMO

Dicer is a member of the ribonuclease III enzyme family and processes double-stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non-canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double-stranded RNA-binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA-binding surface. The second dsRNA binding domain at C-terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem-loop structure of the RNA substrate, suggesting the possibility that stem-loop RNA-guided gene silencing pathway exists in budding yeast.


Assuntos
Proteínas Fúngicas/química , Conformação de Ácido Nucleico , Multimerização Proteica , RNA Fúngico/química , Ribonuclease III/química , Saccharomycetales/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , RNA Fúngico/genética , RNA Fúngico/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomycetales/genética , Relação Estrutura-Atividade
20.
Mol Cell ; 81(7): 1439-1452.e9, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33705709

RESUMO

The ATPase Prp16 governs equilibrium between the branching (B∗/C) and exon ligation (C∗/P) conformations of the spliceosome. Here, we present the electron cryomicroscopy reconstruction of the Saccharomyces cerevisiae C-complex spliceosome at 2.8 Å resolution and identify a novel C-complex intermediate (Ci) that elucidates the molecular basis for this equilibrium. The exon-ligation factors Prp18 and Slu7 bind to Ci before ATP hydrolysis by Prp16 can destabilize the branching conformation. Biochemical assays suggest that these pre-bound factors prime the C complex for conversion to C∗ by Prp16. A complete model of the Prp19 complex (NTC) reveals how the branching factors Yju2 and Isy1 are recruited by the NTC before branching. Prp16 remodels Yju2 binding after branching, allowing Yju2 to remain tethered to the NTC in the C∗ complex to promote exon ligation. Our results explain how Prp16 action modulates the dynamic binding of step-specific factors to alternatively stabilize the C or C∗ conformation and establish equilibrium of the catalytic spliceosome.


Assuntos
Modelos Químicos , Splicing de RNA , RNA Fúngico/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Spliceossomos/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA