Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.338
Filtrar
1.
Clin Respir J ; 18(5): e13765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721812

RESUMO

LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Regulação para Cima , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Movimento Celular/genética , Masculino
2.
Int J Biol Sci ; 20(7): 2388-2402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725844

RESUMO

Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of ß-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of ß-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.


Assuntos
Neoplasias Colorretais , Exossomos , RNA Longo não Codificante , beta Catenina , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , beta Catenina/metabolismo , Exossomos/metabolismo , Linhagem Celular Tumoral , Estabilidade de RNA/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Animais , Camundongos , Proliferação de Células/genética , Camundongos Nus
3.
Int J Biol Sci ; 20(7): 2698-2726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725864

RESUMO

Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/ß-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/ß-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , RNA Longo não Codificante , Via de Sinalização Wnt , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Autofagia/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais
4.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725030

RESUMO

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Progressão da Doença , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Camundongos Nus , Apoptose
5.
Cells ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38727314

RESUMO

During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.


Assuntos
Decídua , Endométrio , Fibroblastos , RNA Longo não Codificante , Células Estromais , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Decídua/metabolismo , Decídua/citologia , Endométrio/citologia , Endométrio/metabolismo , Células Estromais/metabolismo , Células Estromais/citologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Gravidez , Adulto , Diferenciação Celular/genética
6.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38733316

RESUMO

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Assuntos
Apoptose , Mediadores da Inflamação , Infarto do Miocárdio , Miócitos Cardíacos , Estresse Oxidativo , RNA Longo não Codificante , RNA Longo não Codificante/sangue , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Infarto do Miocárdio/diagnóstico , Masculino , Pessoa de Meia-Idade , Feminino , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/sangue , Linhagem Celular , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/genética , Ratos , Citocinas/metabolismo , Citocinas/sangue , Transdução de Sinais , Estudos de Casos e Controles , Idoso , Regulação para Cima
7.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732061

RESUMO

Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical applications. Traditional methods involve "Yamanaka" transcription (OSKM) to derive these cells from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to find significant genes connected to this derivation path, to construct PPI networks, using enrichment analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining, and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog is one of the most crucial differentially expressed genes during SSC conversion, collaborating with critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates future research and clinical applications.


Assuntos
Proteína Homeobox Nanog , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Animais , Masculino , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Diferenciação Celular , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Simulação por Computador , Redes Reguladoras de Genes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Humanos
8.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38716769

RESUMO

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Assuntos
Adenosina , Síndrome de Exfoliação , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Síndrome de Exfoliação/genética , Síndrome de Exfoliação/metabolismo , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Idoso , Humor Aquoso/metabolismo , Redes Reguladoras de Genes , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação de DNA , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo
9.
Nucleus ; 15(1): 2350178, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38717150

RESUMO

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Assuntos
Viroses , Humanos , Viroses/metabolismo , Viroses/genética , Viroses/virologia , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
10.
J Biomed Sci ; 31(1): 52, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745221

RESUMO

Recent advances in uncovering the mysteries of the human genome suggest that long non-coding RNAs (lncRNAs) are important regulatory components. Although lncRNAs are known to affect gene transcription, their mechanisms and biological implications are still unclear. Experimental research has shown that lncRNA synthesis, subcellular localization, and interactions with macromolecules like DNA, other RNAs, or proteins can all have an impact on gene expression in various biological processes. In this review, we highlight and discuss the major mechanisms through which lncRNAs function as master regulators of the human genome. Specifically, the objective of our review is to examine how lncRNAs regulate different processes like cell division, cell cycle, and immune responses, and unravel their roles in maintaining genomic architecture and integrity.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Genoma Humano , Ciclo Celular , Instabilidade Genômica
11.
Cell Mol Biol Lett ; 29(1): 72, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745296

RESUMO

BACKGROUND: Aberrant mitochondrial fission, a critical pathological event underlying myocardial ischemia/reperfusion (MI/R) injury, has emerged as a potential therapeutic target. The long non-coding RNA (lncRNA) Oip5-as1 is increasingly recognized for its regulatory roles, particularly in MI/R injury. However, its precise mechanistic role in modulating mitochondrial dynamics remains elusive. This study aims to elucidate the mechanistic role of Oip5-as1 in regulating mitochondrial fission and evaluate its therapeutic potential against MI/R injury. METHODS: To simulate in vitro MI/R injury, HL-1 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R). Lentiviral vectors were employed to achieve overexpression or knockdown of Oip5-as1 in HL-1 cells by expressing Oip5-as1 or shRNA targeting Oip5-as1, respectively. The impact of Oip5-as1 on mitochondrial dynamics in HL-1 cells was assessed using CCK-8 assay, flow cytometry, immunofluorescence staining, and biochemical assays. MI/R injury was induced in mice by ligating the left anterior descending coronary artery. Conditional knockout mice for Oip5-as1 were generated using the CRISPR/Cas9 genome editing technology, while overexpression of Oip5-as1 in mice was achieved via intramyocardial administration of AAV9 vectors. In mice, the role of Oip5-as1 was evaluated through echocardiographic assessment, histopathological staining, and transmission electron microscopy. Furthermore, Western blotting, RNA pull-down, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate Oip5-as1's underlying mechanisms. RESULTS: The expression levels of Oip5-as1 are significantly decreased in MI/R-injured HL-1 cells and myocardium. In HL-1 cells undergoing H/R injury, overexpression of Oip5-as1 attenuated excessive mitochondrial fission, preserved mitochondrial functionality, and reduced cellular apoptosis, while knockdown of Oip5-as1 exhibited the opposite effects. Furthermore, in a mouse model of MI/R injury, overexpression of Oip5-as1 diminished mitochondrial fission, myocardial infarct size and improved cardiac function. However, knockout of Oip5-as1 exacerbated myocardial injury and cardiac dysfunction, which were significantly reversed by treatment with a mitochondrial division inhibitor-1 (Mdivi-1). Mechanistically, Oip5-as1 selectively interacts with AKAP1 and CaN proteins, inhibiting CaN activation and subsequent DRP1 dephosphorylation at Ser637, thereby constraining DRP1's translocation to the mitochondria and its involvement in mitochondrial fission. CONCLUSIONS: Our study underscores the pivotal role of Oip5-as1 in mitigating excessive mitochondrial fission during MI/R injury. The findings not only enhance our comprehension of the molecular mechanisms underlying MI/R injury but also identify Oip5-as1 as a potential therapeutic target for ameliorating MI/R injury.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Dinâmica Mitocondrial/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Dinaminas/metabolismo , Dinaminas/genética , Camundongos , Fosforilação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Linhagem Celular , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL
12.
J Ovarian Res ; 17(1): 102, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745302

RESUMO

Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.


Assuntos
Cisplatino , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Neoplasias Ovarianas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Proteínas de Ligação a RNA , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
13.
Biol Direct ; 19(1): 34, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698487

RESUMO

BACKGROUND: LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS: TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS: PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION: PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.


Assuntos
Transição Epitelial-Mesenquimal , MAP Quinase Quinase Quinases , Camundongos Nus , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Animais , Camundongos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Movimento Celular , Metástase Neoplásica
14.
Nucleus ; 15(1): 2350182, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738760

RESUMO

Long noncoding RNAs (LncRNAs) are key regulators of gene expression and can mediate their effects in both the nucleus and cytoplasm. Some of the best-characterized lncRNAs are localized within the nucleus, where they modulate the nuclear architecture and influence gene expression. In this review, we discuss the role of lncRNAs in nuclear architecture in the context of their gene regulatory functions in innate immunity. Here, we discuss various approaches to functionally characterize nuclear-localized lncRNAs and the challenges faced in the field.


Assuntos
Núcleo Celular , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Animais , Imunidade Inata , Regulação da Expressão Gênica
15.
Cell Biol Toxicol ; 40(1): 30, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740637

RESUMO

In pancreatic ductal adenocarcinomas (PDAC), profound hypoxia plays key roles in regulating cancer cell behavior, including proliferation, migration, and resistance to therapies. The initial part of this research highlights the important role played by long noncoding RNA (lncRNA) MKLN1-AS, which is controlled by hypoxia-inducible factor-1 alpha (HIF-1α), in the progression of PDAC. Human samples of PDAC showed a notable increase in MKLN1-AS expression, which was linked to a worse outcome. Forced expression of MKLN1-AS greatly reduced the inhibitory impact on the growth and spread of PDAC cells caused by HIF-1α depletion. Experiments on mechanisms showed that HIF-1α influences the expression of MKLN1-AS by directly attaching to a hypoxia response element in the promoter region of MKLN1-AS.MKLN1-AS acts as a competitive endogenous RNA (ceRNA) by binding to miR-185-5p, resulting in the regulation of TEAD1 expression and promoting cell proliferation, migration, and tumor growth. TEAD1 subsequently enhances the development of PDAC. Our study results suggest that MKLN1-AS could serve as a promising target for treatment and a valuable indicator for predicting outcomes in PDAC. PDAC is associated with low oxygen levels, and the long non-coding RNA MKLN1-AS interacts with TEAD1 in this context.


Assuntos
Carcinoma Ductal Pancreático , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Animais , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais/genética , Camundongos Nus , Camundongos
16.
Cell Death Dis ; 15(5): 330, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740827

RESUMO

The long non-coding RNA X-inactive specific transcript (lncRNA XIST) and MUC1 gene are dysregulated in chronic inflammation and cancer; however, there is no known interaction of their functions. The present studies demonstrate that MUC1-C regulates XIST lncRNA levels by suppressing the RBM15/B, WTAP and METTL3/14 components of the m6A methylation complex that associate with XIST A repeats. MUC1-C also suppresses the YTHDF2-CNOT1 deadenylase complex that recognizes m6A sites and contributes to XIST decay with increases in XIST stability and expression. In support of an auto-regulatory pathway, we show that XIST regulates MUC1-C expression by promoting NF-κB-mediated activation of the MUC1 gene. Of significance, MUC1-C and XIST regulate common genes associated with inflammation and stemness, including (i) miR-21 which is upregulated across pan-cancers, and (ii) TDP-43 which associates with the XIST E repeats. Our results further demonstrate that the MUC1-C/XIST pathway (i) is regulated by TDP-43, (ii) drives stemness-associated genes, and (iii) is necessary for self-renewal capacity. These findings indicate that the MUC1-C/XIST auto-regulatory axis is of importance in cancer progression.


Assuntos
Progressão da Doença , Mucina-1 , RNA Longo não Codificante , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Mucina-1/metabolismo , Mucina-1/genética , Animais , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos , Linhagem Celular Tumoral , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , NF-kappa B/metabolismo
17.
Anal Cell Pathol (Amst) ; 2024: 8972022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715918

RESUMO

Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.


Assuntos
Regulação para Baixo , Fenótipo , Pré-Eclâmpsia , RNA Longo não Codificante , Fatores de Transcrição da Família Snail , Trofoblastos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Trofoblastos/metabolismo , Trofoblastos/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Regulação para Baixo/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Proliferação de Células/genética , Movimento Celular/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Adulto
19.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715092

RESUMO

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Assuntos
Angiostrongylus cantonensis , Encéfalo , Camundongos Endogâmicos BALB C , RNA Longo não Codificante , Infecções por Strongylida , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Angiostrongylus cantonensis/genética , Infecções por Strongylida/parasitologia , Infecções por Strongylida/genética , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Larva/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Vet Res ; 55(1): 56, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715098

RESUMO

The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.


Assuntos
Histonas , Interleucina-8 , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Animais , Suínos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Interleucina-8/metabolismo , Interleucina-8/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Histonas/metabolismo , Histonas/genética , Macrófagos Alveolares/virologia , Macrófagos Alveolares/metabolismo , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA