Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
BMC Bioinformatics ; 25(1): 286, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223476

RESUMO

BACKGROUND: SmithRNAs (Small MITochondrial Highly-transcribed RNAs) are a novel class of small RNA molecules that are encoded in the mitochondrial genome and regulate the expression of nuclear transcripts. Initial evidence for their existence came from the Manila clam Ruditapes philippinarum, where they have been described and whose activity has been biologically validated through RNA injection experiments. Current evidence on the existence of these RNAs in other species is based only on small RNA sequencing. As a preliminary step to characterize smithRNAs across different metazoan lineages, a dedicated, unified, analytical workflow is needed. RESULTS: We propose a novel workflow specifically designed for smithRNAs. Sequence data (from small RNA sequencing) uniquely mapping to the mitochondrial genome are clustered into putative smithRNAs and prefiltered based on their abundance, presence in replicate libraries and 5' and 3' transcription boundary conservation. The surviving sequences are subsequently compared to the untranslated regions of nuclear transcripts based on seed pairing, overall match and thermodynamic stability to identify possible targets. Ample collateral information and graphics are produced to help characterize these molecules in the species of choice and guide the operator through the analysis. The workflow was tested on the original Manila clam data. Under basic settings, the results of the original study are largely replicated. The effect of additional parameter customization (clustering threshold, stringency, minimum number of replicates, seed matching) was further evaluated. CONCLUSIONS: The study of smithRNAs is still in its infancy and no dedicated analytical workflow is currently available. At its core, the SmithHunter workflow builds over the bioinformatic procedure originally applied to identify candidate smithRNAs in the Manila clam. In fact, this is currently the only evidence for smithRNAs that has been biologically validated and, therefore, the elective starting point for characterizing smithRNAs in other species. The original analysis was readapted using current software implementations and some minor issues were solved. Moreover, the workflow was improved by allowing the customization of different analytical parameters, mostly focusing on stringency and the possibility of accounting for a minimal level of genetic differentiation among samples.


Assuntos
Bivalves , Análise de Sequência de RNA , Fluxo de Trabalho , Animais , Bivalves/genética , Análise de Sequência de RNA/métodos , Software , Genoma Mitocondrial/genética , RNA/genética , RNA Mitocondrial/genética
2.
Commun Biol ; 7(1): 1116, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261587

RESUMO

Metabolic syndrome is a growing concern in developed societies and due to its polygenic nature, the genetic component is only slowly being elucidated. Common mitochondrial DNA sequence variants have been associated with symptoms of metabolic syndrome and may, therefore, be relevant players in the genetics of metabolic syndrome. We investigate the effect of mitochondrial sequence variation on the metabolic phenotype in conplastic rat strains with identical nuclear but unique mitochondrial genomes, challenged by high-fat diet. We find that the variation in mitochondrial rRNA sequence represents risk factor in the insulin resistance development, which is associated with diacylglycerols accumulation, induced by tissue-specific reduction of the oxidative capacity. These metabolic perturbations stem from the 12S rRNA sequence variation affecting mitochondrial ribosome assembly and translation. Our work demonstrates that physiological variation in mitochondrial rRNA might represent a relevant underlying factor in the progression of metabolic syndrome.


Assuntos
Haplótipos , Síndrome Metabólica , RNA Ribossômico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Animais , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ratos , Masculino , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Predisposição Genética para Doença , Resistência à Insulina/genética , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Mitocôndrias/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
3.
Nat Commun ; 15(1): 7378, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191740

RESUMO

The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence. Moreover, senescent cells are hypersensitized to mt-dsRNA-driven inflammation due to their reduced levels of PNPT1 and ADAR1, two proteins critical for mitigating the accumulation of mt-dsRNA and the inflammatory potency of dsRNA, respectively. We find that mitofusin MFN1, but not MFN2, is important for the activation of the mt-dsRNA/MAVS/SASP axis and, accordingly, genetic or pharmacologic MFN1 inhibition attenuates the SASP. Finally, we report that senescent cells within fibrotic and aged tissues present dsRNA foci, and inhibition of mitochondrial RNA polymerase reduces systemic inflammation associated to senescence. In conclusion, we uncover the mt-dsRNA/MAVS/MFN1 axis as a key driver of the SASP and we identify novel therapeutic strategies for senescence-associated diseases.


Assuntos
Senescência Celular , Citosol , Inflamação , Mitocôndrias , RNA de Cadeia Dupla , RNA de Cadeia Dupla/metabolismo , Humanos , Citosol/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Animais , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Fenótipo Secretor Associado à Senescência , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais
4.
Nat Commun ; 15(1): 6914, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134548

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.


Assuntos
Ciclo-Oxigenase 1 , Complexo IV da Cadeia de Transporte de Elétrons , Inflamação , Fígado , Fosforilação Oxidativa , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
5.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39209534

RESUMO

Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.


Assuntos
Ciclo Celular , Proliferação de Células , Homeostase , Mitocôndrias , RNA de Cadeia Dupla , RNA Mitocondrial , Humanos , Homeostase/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Ciclo Celular/genética , Proliferação de Células/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Linhagem Celular Tumoral , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Transcrição Gênica
6.
J Transl Med ; 22(1): 780, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175050

RESUMO

BACKGROUND: Mitochondrial tRNA (mt-tRNA) variants have been found to cause disease. Post-transcriptional queuosine (Q) modifications of mt-tRNA can promote efficient mitochondrial mRNA translation. Q modifications of mt-tRNAAsn have recently been identified. Here, the therapeutic effectiveness of queuine was investigated in cells from patients with mt-tRNAAsn variants. METHODS: Six patients (from four families) carrying mt-tRNAAsn variants were included in the study. Queuine levels were quantified by mass spectrometry. Clinical, genetic, histochemical, biochemical, and molecular analysis was performed on muscle tissues and lymphoblastoid cell lines (LCLs) from patients to investigate the pathogenicity of the novel m.5708 C > T variant. The use of queuine in mitigating mitochondrial dysfunction resulting from the mt-tRNAAsn variants was evaluated. RESULTS: The variants included the m.5701 delA, m.5708 C > T, m.5709 C > T, and m.5698 G > A variants in mt-tRNAAsn. The pathogenicity of the novel m.5708 C > T variant was confirmed, as demonstrated by a decreased steady-state level of mt-tRNAAsn, mtDNA-encoded protein levels, oxygen consumption rate (OCR), and the respiratory complex activity. Notably, the serum queuine level was significantly reduced in these patients and in vitro queuine supplementation was found to restore the reductions in mitochondrial protein activities, mitochondrial membrane potential, OCR, and increases in reactive oxygen species. CONCLUSIONS: The study not only confirmed the pathogenicity of the m.5708 C > T variant but also explored the therapeutic potential of queuine in individuals with mt-tRNAAsn variants. The recognition of the novel m.5708 C > T variant's pathogenic nature contributes to our comprehension of mitochondrial disorders. Furthermore, the results emphasize queuine supplementation as a promising approach to enhance the stability of mt-tRNAAsn and rescue mitochondrial dysfunction caused by mt-tRNAAsn variants, indicating potential implications for the development of targeted therapies for patients with mt-tRNAAsn variants.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , DNA Mitocondrial/genética , Variação Genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nucleosídeo Q/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo
7.
Mol Cell ; 84(15): 2935-2948.e7, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39019044

RESUMO

Mitochondria are essential regulators of innate immunity. They generate long mitochondrial double-stranded RNAs (mt-dsRNAs) and release them into the cytosol to trigger an immune response under pathological stress conditions. Yet the regulation of these self-immunogenic RNAs remains largely unknown. Here, we employ CRISPR screening on mitochondrial RNA (mtRNA)-binding proteins and identify NOP2/Sun RNA methyltransferase 4 (NSUN4) as a key regulator of mt-dsRNA expression in human cells. We find that NSUN4 induces 5-methylcytosine (m5C) modification on mtRNAs, especially on the termini of light-strand long noncoding RNAs. These m5C-modified RNAs are recognized by complement C1q-binding protein (C1QBP), which recruits polyribonucleotide nucleotidyltransferase to facilitate RNA turnover. Suppression of NSUN4 or C1QBP results in increased mt-dsRNA expression, while C1QBP deficiency also leads to increased cytosolic mt-dsRNAs and subsequent immune activation. Collectively, our study unveils the mechanism underlying the selective degradation of light-strand mtRNAs and establishes a molecular mark for mtRNA decay and cytosolic release.


Assuntos
5-Metilcitosina , Citosol , Mitocôndrias , Estabilidade de RNA , RNA de Cadeia Dupla , RNA Mitocondrial , Humanos , Citosol/metabolismo , 5-Metilcitosina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Células HEK293 , Células HeLa , Metiltransferases/metabolismo , Metiltransferases/genética , Imunidade Inata , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Sistemas CRISPR-Cas
8.
Nucleic Acids Res ; 52(17): 10575-10594, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989621

RESUMO

tRNA genes exist in multiple copies in the genome of all organisms across the three domains of life. Besides the sequence differences across tRNA copies, extensive post-transcriptional modification adds a further layer to tRNA diversification. Whilst the crucial role of tRNAs as adapter molecules in protein translation is well established, whether all tRNAs are actually expressed, and whether the differences across isodecoders play any regulatory role is only recently being uncovered. Here we built upon recent developments in the use of NGS-based methods for RNA modification detection and developed tRAM-seq, an experimental protocol and in silico analysis pipeline to investigate tRNA expression and modification. Using tRAM-seq, we analysed the full ensemble of nucleo-cytoplasmic and mitochondrial tRNAs during embryonic development of the model vertebrate zebrafish. We show that the repertoire of tRNAs changes during development, with an apparent major switch in tRNA isodecoder expression and modification profile taking place around the start of gastrulation. Taken together, our findings suggest the existence of a general reprogramming of the expressed tRNA pool, possibly gearing the translational machinery for distinct stages of the delicate and crucial process of embryo development.


Assuntos
Desenvolvimento Embrionário , RNA de Transferência , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , RNA de Transferência/metabolismo , RNA de Transferência/genética , Desenvolvimento Embrionário/genética , Processamento Pós-Transcricional do RNA , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
9.
Cell Metab ; 36(7): 1433-1435, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959859

RESUMO

Small peptides have previously been reported to be encoded in mitochondrial rRNA and translated by cytosolic ribosomes. In this issue of Cell Metabolism, Hu et al. use mass spectrometry to identify a cytosolically translated protein, encoded instead in mitochondrial mRNA, that is surprisingly targeted back into the mitochondrial matrix.


Assuntos
Mitocôndrias , RNA Mensageiro , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Biossíntese de Proteínas , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Humanos , Citosol/metabolismo , Espectrometria de Massas
10.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955468

RESUMO

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Assuntos
Citosol , Mitocôndrias , Proibitinas , RNA de Cadeia Dupla , RNA Mitocondrial , Humanos , Citosol/metabolismo , Mitocôndrias/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Linhagem Celular Tumoral , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transporte de RNA , Exorribonucleases/metabolismo , Exorribonucleases/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Mitocondriais
11.
Science ; 385(6706): eadm9238, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39024447

RESUMO

The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC's role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.


Assuntos
Regulação da Expressão Gênica , Genoma Mitocondrial , Proteínas Mitocondriais , Proteínas de Neoplasias , Dobramento de RNA , RNA Mensageiro , RNA Mitocondrial , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mitocondrial/química , RNA Mitocondrial/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala
12.
Mol Biol Rep ; 51(1): 876, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083182

RESUMO

BACKGROUND: Mitochondria, essential for cellular energy production through oxidative phosphorylation (OXPHOS), integrate mt-DNA and nuclear-encoded genes. This cooperation extends to the mitochondrial translation machinery, involving crucial mtDNA-encoded RNAs: 22 tRNAs (mt-tRNAs) as adapters and two rRNAs (mt-rRNAs) for ribosomal assembly, enabling mitochondrial-encoded mRNA translation. Disruptions in mitochondrial gene expression can strongly impact energy generation and overall animal health. Our study investigates the tissue-specific expression patterns of mt-tRNAs and mt-rRNAs in buffalo. MATERIAL AND METHODS: To investigate the expression patterns of mt-tRNAs and mt-rRNAs in different tissues and gain a better understanding of tissue-specific variations, RNA-seq was performed on various tissues, such as the kidney, heart, brain, and ovary, from post-pubertal female buffaloes. Subsequently, we identified transcripts that were differentially expressed in various tissue comparisons. RESULTS: The findings reveal distinct expression patterns among specific mt-tRNA and mt-rRNA genes across various tissues, with some exhibiting significant upregulation and others demonstrating marked downregulation in specific tissue contexts. These identified variations reflect tissue-specific physiological roles, underscoring their significance in meeting the unique energy demands of each tissue. Notably, the brain exhibits the highest mtDNA copy numbers and an abundance of mitochondrial mRNAs of our earlier findings, potentially linked to the significant upregulation of mt-tRNAs in brain. This suggests a plausible association between mtDNA replication and the regulation of mtDNA gene expression. CONCLUSION: Overall, our study unveils the tissue-specific expression of mitochondrial-encoded non-coding RNAs in buffalo. As we proceed, our further investigations into tissue-specific mitochondrial proteomics and microRNA studies aim to elucidate the intricate mechanisms within mitochondria, contributing to tissue-specific mitochondrial attributes. This research holds promise to elucidate the critical role of mitochondria in animal health and disease.


Assuntos
Búfalos , Perfilação da Expressão Gênica , Genoma Mitocondrial , Mitocôndrias , Especificidade de Órgãos , RNA Ribossômico , RNA de Transferência , Transcriptoma , Animais , Búfalos/genética , Búfalos/metabolismo , RNA de Transferência/genética , Especificidade de Órgãos/genética , Perfilação da Expressão Gênica/métodos , Genoma Mitocondrial/genética , Feminino , Transcriptoma/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Ribossômico/genética , DNA Mitocondrial/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Fosforilação Oxidativa , Regulação da Expressão Gênica/genética
14.
Nature ; 630(8017): 720-727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839949

RESUMO

Spermatozoa harbour a complex and environment-sensitive pool of small non-coding RNAs (sncRNAs)1, which influences offspring development and adult phenotypes1-7. Whether spermatozoa in the epididymis are directly susceptible to environmental cues is not fully understood8. Here we used two distinct paradigms of preconception acute high-fat diet to dissect epididymal versus testicular contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) as sperm-borne factors. In humans, mt-tsRNAs in spermatozoa correlate with body mass index, and paternal overweight at conception doubles offspring obesity risk and compromises metabolic health. Sperm sncRNA sequencing of mice mutant for genes involved in mitochondrial function, and metabolic phenotyping of their wild-type offspring, suggest that the upregulation of mt-tsRNAs is downstream of mitochondrial dysfunction. Single-embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tRNAs at fertilization and suggested their involvement in the control of early-embryo transcription. Our study supports the importance of paternal health at conception for offspring metabolism, shows that mt-tRNAs are diet-induced and sperm-borne and demonstrates, in a physiological setting, father-to-offspring transfer of sperm mitochondrial RNAs at fertilization.


Assuntos
Dieta Hiperlipídica , Epigênese Genética , Mitocôndrias , RNA Mitocondrial , Espermatozoides , Animais , Feminino , Humanos , Masculino , Camundongos , Índice de Massa Corporal , Dieta Hiperlipídica/efeitos adversos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Epididimo/citologia , Epigênese Genética/genética , Fertilização/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/etiologia , Oócitos/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Herança Paterna/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Espermatozoides/metabolismo , Testículo/citologia , Transcrição Gênica
15.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824131

RESUMO

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Assuntos
Mitocôndrias , RNA de Transferência , Ribonuclease P , tRNA Metiltransferases , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Mitocôndrias/metabolismo , Ribonuclease P/metabolismo , Ribonuclease P/genética , Ribonuclease P/química , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/química , Processamento Pós-Transcricional do RNA , Microscopia Crioeletrônica , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/química , Metilação , Conformação de Ácido Nucleico , Modelos Moleculares , Precursores de RNA/metabolismo , Precursores de RNA/genética
16.
Sci Rep ; 14(1): 12602, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824202

RESUMO

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Processamento Pós-Transcricional do RNA , Gradação de Tumores , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Multiômica
17.
Nat Commun ; 15(1): 4814, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862469

RESUMO

A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.


Assuntos
Antígenos CD36 , Ácidos Nucleicos Livres , DNA Mitocondrial , Voo Espacial , Ausência de Peso , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Humanos , Ácidos Nucleicos Livres/sangue , Animais , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Masculino , Astronautas , RNA/metabolismo , RNA/genética , Biópsia Líquida/métodos , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Feminino , Pessoa de Meia-Idade , Adulto
18.
Mitochondrion ; 77: 101907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777221

RESUMO

Mitochondrial mutations have been linked to changes in phenotypes such as fertility or longevity, however, these changes have been often inconsistent across populations for unknown reasons. A hypothesis that could explain this inconsistency is that some still uncharacterized mitochondrial products are mediating the phenotypic changes across populations. It has been hypothesized that one such product could be the small RNAs encoded in the mitochondrial genome, thus this work will provide new evidence for their existence and function. By using data from the 1000 genome project and knowledge from previously characterized nuclear small RNAs, this study found that 10 small RNAs encoded in tRNA fragments are consistently expressed in 450 individuals from five different populations. Furthermore, this study demonstrated that the expression of some small mitochondrial RNAs is different in individuals of African ancestry, similar to what was observed before in nuclear and mitochondria mRNAs. Lastly, we investigate the causes behind these differences in expression, showing that at least one of the mt-tRFs might be regulated by TRMT10B. The analyses presented in this work further support the small mitochondrial RNAs as functional molecules, and their population-specific expression supports the hypothesis that they act as a mediator between the nucleus and mitochondria differently across populations.


Assuntos
Linfócitos , RNA Mitocondrial , Humanos , RNA Mitocondrial/genética , Linfócitos/metabolismo , Transcrição Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo
19.
Mol Metab ; 84: 101955, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704026

RESUMO

OBJECTIVE: The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-LeuTAA) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-LeuTAA, on mitochondrial metabolism and pancreatic islet functions. METHODS: We used antisense oligonucleotides to reduce mt-tRF-LeuTAA levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-LeuTAA inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-LeuTAA silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. RESULTS: Our study unveils a modulation of mt-tRF-LeuTAA levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-LeuTAA interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-LeuTAA in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-LeuTAA impairs insulin secretion of rat and human pancreatic ß-cells. CONCLUSIONS: Our findings indicate that mt-tRF-LeuTAA interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina , Mitocôndrias , Animais , Ratos , Humanos , Mitocôndrias/metabolismo , Células Secretoras de Insulina/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Masculino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Camundongos , Ratos Wistar , Transporte de Elétrons
20.
Hum Mol Genet ; 33(R1): R19-R25, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779769

RESUMO

Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.


Assuntos
DNA Mitocondrial , Mitocôndrias , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Transcrição Gênica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA