Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Nucleic Acids Res ; 51(9): 4223-4236, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484109

RESUMO

Rpc31 is a subunit in the TFIIE-related Rpc82/34/31 heterotrimeric subcomplex of Saccharomyces cerevisiae RNA polymerase III (pol III). Structural analyses of pol III have indicated that the N-terminal region of Rpc31 anchors on Rpc82 and further interacts with the polymerase core and stalk subcomplex. However, structural and functional information for the C-terminal region of Rpc31 is sparse. We conducted a mutational analysis on Rpc31, which uncovered a functional peptide adjacent to the highly conserved Asp-Glu-rich acidic C-terminus. This C-terminal peptide region, termed 'pre-acidic', is important for optimal cell growth, tRNA synthesis, and stable association of Rpc31 in the pre-initiation complex (PIC). Our site-directed photo-cross-linking to map protein interactions within the PIC reveal that this pre-acidic region specifically targets Rpc34 during transcription initiation, but also interacts with the DNA entry surface in free pol III. Thus, we have uncovered a switchable Rpc31 C-terminal region that functions in an initiation-specific protein interaction for pol III transcription.


Assuntos
RNA Polimerase III , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Iniciação da Transcrição Genética , Ligação Proteica , Domínios Proteicos , RNA Polimerase III/química , RNA Polimerase III/metabolismo , RNA de Transferência/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
RNA Biol ; 19(1): 246-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35133940

RESUMO

RNA polymerase III (Pol III) is a large multisubunit complex conserved in all eukaryotes that plays an essential role in producing a variety of short non-coding RNAs, such as tRNA, 5S rRNA and U6 snRNA transcripts. Pol III comprises of 17 subunits in both yeast and human with a 10-subunit core and seven peripheral subunits. Because of its size and complexity, Pol III has posed a formidable challenge to structural biologists. The first atomic cryogenic electron microscopy structure of yeast Pol III leading to the canonical view was reported in 2015. Within the last few years, the optimization of endogenous extract and purification procedure and the technical and methodological advances in cryogenic electron microscopy, together allow us to have a first look at the unprecedented details of human Pol III organization. Here, we look back on the structural studies of human Pol III and discuss them in the light of our current understanding of its role in eukaryotic transcription.


Assuntos
Modelos Moleculares , Conformação Proteica , RNA Polimerase III/química , RNA Polimerase III/metabolismo , Archaea/enzimologia , Sequência Conservada , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas , RNA Polimerase III/genética , Relação Estrutura-Atividade , Leveduras/enzimologia
3.
Gene ; 821: 146282, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35149153

RESUMO

RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.


Assuntos
Complexos Multiproteicos/química , RNA Polimerase III/metabolismo , Fatores de Transcrição/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , RNA Polimerase III/química , Fatores de Transcrição/química
4.
Nat Commun ; 12(1): 6992, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848735

RESUMO

Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.


Assuntos
RNA Polimerase III/química , DNA Polimerase Dirigida por RNA/química , Proteínas de Saccharomyces cerevisiae/química , Genes Fúngicos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/metabolismo
5.
Nat Commun ; 12(1): 6135, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675218

RESUMO

Termination of the RNA polymerase III (Pol III)-mediated transcription requires the conversion of an elongation complex (EC) to a pre-termination complex (PTC) on poly-deoxythymidine (dT)-containing non-template strand, a mechanism distinct from Pol I and Pol II. Here, our in vitro transcription elongation assay showed that 5-7 dT-containing DNA template led to transcription termination of Pol III, but not Pol I or Pol II. We assembled human Pol III PTC on a 7 dT-containing DNA template and determined the structure at 3.6 Å resolution. The structure reveals that poly-dT are trapped in a narrow exit tunnel formed by RPC2. A hydrophobic gate of the exit tunnel separates the bases of two connected deoxythymidines and may prevent translocation of the non-template strand. The fork loop 2 stabilizes both template and non-template strands around the transcription fork, and may further prevent strand translocation. Our study shows that the Pol III-specific exit tunnel and FL2 allow for efficient translocation of non-poly-dT sequence during transcription elongation but trap poly-dT to promote DNA retention of Pol III, revealing molecular mechanism of poly-dT-dependent transcription termination of Pol III.


Assuntos
RNA Polimerase III/química , RNA Polimerase III/metabolismo , Timidina/metabolismo , Terminação da Transcrição Genética , Sítios de Ligação , Células HEK293 , Humanos , Conformação Proteica em alfa-Hélice , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , Timidina/química
6.
Nat Struct Mol Biol ; 28(2): 210-219, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558764

RESUMO

RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-electron microscopy structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from Saccharomyces cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulfur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumor suppressor MAF1, which may explain why overexpressed RPC7α enhances tumor transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and may contribute to the development of inhibitors that selectively target Pol III for therapeutic interventions.


Assuntos
Modelos Moleculares , RNA Polimerase III/química , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Conformação Proteica , RNA Polimerase III/ultraestrutura , Transcrição Gênica
7.
Nat Struct Mol Biol ; 28(2): 220-227, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558766

RESUMO

RNA polymerase III (Pol III) synthesizes structured, essential small RNAs, such as transfer RNA, 5S ribosomal RNA and U6 small nuclear RNA. Pol III, the largest nuclear RNA polymerase, is composed of a conserved core region and eight constitutive regulatory subunits, but how these factors jointly regulate Pol III transcription remains unclear. Here, we present cryo-EM structures of human Pol III in both apo and elongating states, which unveil both an orchestrated movement during the apo-to-elongating transition and an unexpected apo state in which the RPC7 subunit tail occupies the DNA-RNA-binding cleft of Pol III, suggesting that RPC7 plays important roles in both autoinhibition and transcription initiation. The structures also reveal a proofreading mechanism for the TFIIS-like subunit RPC10, which stably retains its catalytic position in the secondary channel, explaining the high fidelity of Pol III transcription. Our work provides an integrated picture of the mechanism of Pol III transcription regulation.


Assuntos
Modelos Moleculares , RNA Polimerase III/química , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Conformação Proteica , RNA Polimerase III/ultraestrutura , Transcrição Gênica
8.
Nat Commun ; 11(1): 6409, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335104

RESUMO

In eukaryotes, RNA Polymerase (Pol) III is specialized for the transcription of tRNAs and other short, untranslated RNAs. Pol III is a determinant of cellular growth and lifespan across eukaryotes. Upregulation of Pol III transcription is observed in cancer and causative Pol III mutations have been described in neurodevelopmental disorders and hypersensitivity to viral infection. Here, we report a cryo-EM reconstruction at 4.0 Å of human Pol III, allowing mapping and rationalization of reported genetic mutations. Mutations causing neurodevelopmental defects cluster in hotspots affecting Pol III stability and/or biogenesis, whereas mutations affecting viral sensing are located in proximity to DNA binding regions, suggesting an impairment of Pol III cytosolic viral DNA-sensing. Integrating x-ray crystallography and SAXS, we also describe the structure of the higher eukaryote specific RPC5 C-terminal extension. Surprisingly, experiments in living cells highlight a role for this module in the assembly and stability of human Pol III.


Assuntos
RNA Polimerase III/química , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , Estabilidade Enzimática , Células HeLa , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Subunidades Proteicas , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Nucleic Acids Res ; 48(20): 11215-11226, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747934

RESUMO

The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/metabolismo , Exonucleases/química , RNA de Transferência/genética , Proteínas Ribossômicas/genética , Alinhamento de Sequência/métodos , Fatores de Transcrição/metabolismo , Algoritmos , Animais , Sítios de Ligação , Simulação por Computador , Proteínas de Ligação a DNA/química , Bases de Dados Genéticas , Drosophila/química , Drosophila/genética , Drosophila/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA/métodos , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Sítio de Iniciação de Transcrição
10.
Eur J Hum Genet ; 28(12): 1675-1680, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32555393

RESUMO

Neonatal progeroid syndrome or Wiedemann-Rautenstrauch syndrome (WRS; MIM 264090) is a rare genetic disorder that has clinical symptoms including premature aging, lipodystrophy, and variable mental impairment. Until recently genetic background of the disease was unclear. However, recent studies have indicated that WRS patients have compound heterozygote variations in the POLR3A (RNA polymerase III subunit 3A; MIM 614258) gene that might be responsible for the disease phenotype. In this study we report a WRS patient that has compound heterozygote variations in the POLR3A gene. One of the reported variations in our patient, c.3568C>T, p.(Gln1190Ter), is a novel variation that was not reported before. The other variant, c.3337-11T>C, was previously shown in WRS patients in trans with other variations.


Assuntos
Retardo do Crescimento Fetal/genética , Progéria/genética , RNA Polimerase III/genética , Alelos , Criança , Feminino , Retardo do Crescimento Fetal/patologia , Humanos , Simulação de Dinâmica Molecular , Mutação , Progéria/patologia , RNA Polimerase III/química
11.
Nat Commun ; 11(1): 2828, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504003

RESUMO

The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.


Assuntos
DNA de Cadeia Simples/metabolismo , RNA Polimerase III/metabolismo , Imagem Individual de Molécula/métodos , Fator de Transcrição TFIIIB/metabolismo , Transcrição Gênica , DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Cinética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/ultraestrutura , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Estabilidade Proteica , RNA Polimerase III/química , Proteínas Recombinantes/metabolismo , Proteína de Ligação a TATA-Box/metabolismo
12.
Nat Struct Mol Biol ; 27(3): 229-232, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066962

RESUMO

Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 winged helix 2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the preinitiation complex.


Assuntos
RNA Polimerase III/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Fator de Transcrição TFIIIB/química , Fatores de Transcrição/química , Transcrição Gênica , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Biol Chem ; 295(15): 4782-4795, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32060094

RESUMO

RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.


Assuntos
Cromatina/metabolismo , Nucleossomos/metabolismo , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Cromatina/genética , Replicação do DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase III/química , RNA Polimerase III/genética , Ribossomos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
14.
Protein Expr Purif ; 167: 105541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31756376

RESUMO

Polyhistidine tags (His-tags) are commonly employed in protein purification strategies due to the high affinity and specificity for metal-NTA columns, the relative simplicity of such protocols, and the assumption that His-tags do not affect the native activities of proteins. However, there is a growing body of evidence that such tags can modulate protein structure and function. In this study, we demonstrate that a His-tag impacts DNA complex formation by the C-terminal domain of the α-subunit (αCTD) of Helicobacter pylori RNA polymerase in a metal-dependent fashion. The αCTD was purified with a cleavable His-tag, and complex formation between αCTD, the nickel-responsive metalloregulator HpNikR, and DNA was investigated using electrophoretic mobility shift assays. An interaction between His-tagged αCTD (HisαCTD) and the HpNikR-DNA complex was observed; however, this interaction was not observed upon removal of the His-tag. Further analysis revealed that complex formation between HisαCTD and DNA is non-specific and dependent on the type of metal ions present. Overall, the results indicate that a histidine tag is able to modulate DNA-binding activity and suggests that the impact of metal affinity tags should be considered when analyzing the in vitro biomolecular interactions of metalloproteins.


Assuntos
Proteínas de Ligação a DNA , Etiquetas de Sequências Expressas/química , Helicobacter pylori , RNA Polimerase III/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histidina/genética , Íons/metabolismo , Metaloproteínas/biossíntese , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/isolamento & purificação , Metais/metabolismo , Níquel/metabolismo , RNA Polimerase III/biossíntese , RNA Polimerase III/química , RNA Polimerase III/genética
15.
Eur J Hum Genet ; 28(4): 461-468, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31695177

RESUMO

Neonatal progeroid syndrome, also known as Wiedemann-Rautenstrauch syndrome, is a rare condition characterized by severe growth retardation, apparent macrocephaly with prominent scalp veins, and lipodystrophy. It is caused by biallelic variants in POLR3A, a gene encoding for a subunit of RNA polymerase III. All variants reported in the literature lead to at least a partial loss-of-function (when considering both alleles together). Here, we describe an individual with several clinical features of neonatal progeroid syndrome in whom exome sequencing revealed a homozygous nonsense variant in POLR3GL (NM_032305.2:c.358C>T; p.(Arg120Ter)). POLR3GL also encodes a subunit of RNA polymerase III and has recently been associated with endosteal hyperostosis and oligodontia in three patients with a phenotype distinct from the patient described here. Given the important role of POLR3GL in the same complex as the protein implicated in neonatal progeroid syndrome, the nature of the variant identified, our RNA studies suggesting nonsense-mediated decay, and the clinical overlap, we propose POLR3GL as a gene causing a variant of neonatal progeroid syndrome and therefore expand the phenotype associated with POLR3GL variants.


Assuntos
Códon sem Sentido , Retardo do Crescimento Fetal/genética , Progéria/genética , RNA Polimerase III/genética , Pré-Escolar , Feminino , Retardo do Crescimento Fetal/patologia , Humanos , Fenótipo , Progéria/patologia , Domínios Proteicos , RNA Polimerase III/química
16.
Nucleic Acids Res ; 47(19): 10313-10326, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31529052

RESUMO

In Eukaryotes, tRNAs, 5S RNA and U6 RNA are transcribed by RNA polymerase (Pol) III. Human Pol III is composed of 17 subunits. Three specific Pol III subunits form a stable ternary subcomplex (RPC62-RPC39-RPC32α/ß) being involved in pre-initiation complex formation. No paralogues for subunits of this subcomplex subunits have been found in Pols I or II, but hRPC62 was shown to be structurally related to the general Pol II transcription factor hTFIIEα. Here we show that these structural homologies extend to functional similarities. hRPC62 as well as hTFIIEα possess intrinsic ATP-dependent 3'-5' DNA unwinding activity. The ATPase activities of both proteins are stimulated by single-stranded DNA. Moreover, the eWH domain of hTFIIEα can replace the first eWH (eWH1) domain of hRPC62 in ATPase and DNA unwinding assays. Our results identify intrinsic enzymatic activities in hRPC62 and hTFIIEα.


Assuntos
RNA Polimerase III/química , Fatores de Transcrição TFII/genética , Transcrição Gênica , Trifosfato de Adenosina , DNA Helicases/química , DNA Helicases/genética , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA Polimerase III/genética , Fatores de Transcrição TFII/química
17.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160378

RESUMO

Protein arginine methylation is an important means by which protein function can be regulated. In the budding yeast, this modification is catalyzed by the major protein arginine methyltransferase Hmt1. Here, we provide evidence that the Hmt1-mediated methylation of Rpc31, a subunit of RNA polymerase III, plays context-dependent roles in tRNA gene transcription: under conditions optimal for growth, it positively regulates tRNA gene transcription, and in the setting of stress, it promotes robust transcriptional repression. In the context of stress, methylation of Rpc31 allows for its optimal interaction with RNA polymerase III global repressor Maf1. Interestingly, mammalian Hmt1 homologue is able to methylate one of Rpc31's human homologue, RPC32ß, but not its paralogue, RPC32α. Our data led us to propose an efficient model whereby protein arginine methylation facilitates metabolic economy and coordinates protein-synthetic capacity.


Assuntos
Arginina/metabolismo , RNA de Transferência , Estresse Fisiológico/genética , Transcrição Gênica , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Metilação , Mutação , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Biochem J ; 476(7): 1053-1082, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30885983

RESUMO

Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.


Assuntos
Glicólise , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise/genética , Redes e Vias Metabólicas , Modelos Biológicos , Via de Pentose Fosfato/genética , Mutação Puntual , Proteoma/genética , Proteoma/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética
19.
Nucleic Acids Res ; 47(9): 4586-4596, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30828735

RESUMO

Interest in extrachromosomal circular DNA (eccDNA) molecules has increased recently because of their widespread presence in normal cells across every species ranging from yeast to humans, their increased levels in cancer cells and their overlap with oncogenic and drug-resistant genes. However, the majority of eccDNA (microDNA) in mammalian tissues and cell lines are too small to carry protein coding genes. We have tested functional capabilities of microDNA by creating artificial microDNA molecules mimicking known microDNA sequences and have discovered that they express functional small regulatory RNA including microRNA and novel si-like RNA. MicroDNA are transcribed in vitro and in vivo independent of a canonical promoter sequence. MicroDNA that carry miRNA genes form transcripts that are processed by the endogenous RNA-interference pathway into mature miRNA molecules, which repress a luciferase reporter gene as well as endogenous mRNA targets of the miRNA. Further, microDNA that contain sequences of exons repress the endogenous gene from which the microDNA were derived through the formation of novel si-like RNA. We also show that endogenous microDNA associate with RNA polymerases subunits, POLR2H and POLR3F. Together, these results suggest that microDNA may modulate gene expression through the production of both known and novel regulatory small RNA.


Assuntos
DNA Circular/genética , MicroRNAs/genética , Interferência de RNA , RNA Polimerase III/genética , Animais , Linhagem Celular , Éxons/genética , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Humanos , Regiões Promotoras Genéticas , RNA Polimerase III/química , RNA Mensageiro/genética
20.
Nucleic Acids Res ; 47(4): 1786-1796, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597109

RESUMO

Mouse liver regeneration after partial hepatectomy involves cells in the remaining tissue synchronously entering the cell division cycle. We have used this system and H3K4me3, Pol II and Pol III profiling to characterize adaptations in Pol III transcription. Our results broadly define a class of genes close to H3K4me3 and Pol II peaks, whose Pol III occupancy is high and stable, and another class, distant from Pol II peaks, whose Pol III occupancy strongly increases after partial hepatectomy. Pol III regulation in the liver thus entails both highly expressed housekeeping genes and genes whose expression can adapt to increased demand.


Assuntos
Regeneração Hepática/genética , Fígado/crescimento & desenvolvimento , RNA Polimerase III/genética , Transcrição Gênica , Animais , Ciclo Celular/genética , Divisão Celular/genética , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento/genética , Hepatectomia , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética , Humanos , Fígado/patologia , Fígado/cirurgia , Camundongos , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase III/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA