Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.977
Filtrar
1.
PLoS One ; 19(5): e0296547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753661

RESUMO

Endophytic bacteria, recognized as eco-friendly biofertilizers, have demonstrated the potential to enhance crop growth and yield. While the plant growth-promoting effects of endophytic bacteria have been extensively studied, the impact of weed endophytes remains less explored. In this study, we aimed to isolate endophytic bacteria from native weeds and assess their plant growth-promoting abilities in rice under varying chemical fertilization. The evaluation encompassed measurements of mineral phosphate and potash solubilization, as well as indole-3-acetic acid (IAA) production activity by the selected isolates. Two promising strains, tentatively identified as Alcaligenes faecalis (BTCP01) from Eleusine indica (Goose grass) and Metabacillus indicus (BTDR03) from Cynodon dactylon (Bermuda grass) based on 16S rRNA gene phylogeny, exhibited noteworthy phosphate and potassium solubilization activity, respectively. BTCP01 demonstrated superior phosphate solubilizing activity, while BTDR03 exhibited the highest potassium (K) solubilizing activity. Both isolates synthesized IAA in the presence of L-tryptophan, with the detection of nifH and ipdC genes in their genomes. Application of isolates BTCP01 and BTDR03 through root dipping and spraying at the flowering stage significantly enhanced the agronomic performance of rice variety CV. BRRI dhan29. Notably, combining both strains with 50% of recommended N, P, and K fertilizer doses led to a substantial increase in rice grain yields compared to control plants receiving 100% of recommended doses. Taken together, our results indicate that weed endophytic bacterial strains BTCP01 and BTDR03 hold promise as biofertilizers, potentially reducing the dependency on chemical fertilizers by up to 50%, thereby fostering sustainable rice production.


Assuntos
Alcaligenes faecalis , Endófitos , Fertilizantes , Oryza , Fosfatos , Plantas Daninhas , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Endófitos/metabolismo , Alcaligenes faecalis/metabolismo , Alcaligenes faecalis/crescimento & desenvolvimento , Plantas Daninhas/microbiologia , Plantas Daninhas/crescimento & desenvolvimento , Fosfatos/metabolismo , Ácidos Indolacéticos/metabolismo , RNA Ribossômico 16S/genética , Filogenia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Eleusine/microbiologia , Eleusine/crescimento & desenvolvimento , Cynodon/microbiologia , Cynodon/crescimento & desenvolvimento , Potássio/metabolismo
2.
ScientificWorldJournal ; 2024: 3350591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756480

RESUMO

The challenge in polystyrene disposal has caused researchers to look for urgent innovative and ecofriendly solutions for plastic degradation. Some insects have been reported to use polystyrene as their sole carbon source, and this has been linked to the presence of microbes in their guts that aid in plastic digestion. Thus, this study focuses on the molecular detection and phylogenetic analysis of the alkane-1-monooxygenase (alkB) gene in Klebsiella oxytoca strains isolated from the gut of Tenebrio molitor. The alkB gene encodes for alkane-1-monooxygenase, an enzyme involved in the oxidation of inactivated alkanes. This gene can be used as a marker to assess bacteria's ability to biodegrade polystyrene. Three bacterial strains were isolated from the guts of T. molitor mealworms and were confirmed using polymerase chain reaction (PCR) of the 16S ribosomal RNA gene. The primers used in the amplification of the 16S ribosomal RNA region were designed using NCBI, a bioinformatics tool. To detect the presence of the alkB gene in the isolated bacterial strains, a set of primers used in the amplification of this gene was manually designed from the conserved regions of the alkB nucleotide sequences of eleven bacterial species from GenBank. TCOFFE online tool was used to align the alkB sequences of the bacteria, while Jalview and ConSurf were used to view the alignment. The amplified alkB gene was then sequenced using the Sanger sequencing technique, blasted on NCBI to look for similar sequences, and a phylogenetic tree was constructed. Based on the 16S ribosomal RNA gene sequences, the isolated bacterial strains were confirmed to be Klebsiella oxytoca NBRC 102593, Klebsiella oxytoca JCM 1665, and Klebsiella oxytoca ATCC 13182. The alkB gene sequence identical to fourteen alkB gene sequences derived from Actinobacteria whole genome was detected in Klebsiella oxytoca for the first time to the best of our knowledge. The novel nucleotide sequence was published in the NCBI database under accession number OP959069. This gene sequence was found to be for the enzyme alkane-1-monooxygenase and may be one of the enzymes responsible for polystyrene degradation by the putative Klebsiella oxytoca ATCC 13182 in T. molitor.


Assuntos
Klebsiella oxytoca , Filogenia , RNA Ribossômico 16S , Tenebrio , Tenebrio/microbiologia , Tenebrio/genética , Animais , Klebsiella oxytoca/genética , Klebsiella oxytoca/isolamento & purificação , Klebsiella oxytoca/classificação , RNA Ribossômico 16S/genética , Proteínas de Bactérias/genética , Citocromo P-450 CYP4A/genética
3.
Environ Microbiol ; 26(5): e16640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775217

RESUMO

Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of Terriglobia, a common but elusive group within the Acidobacteriota phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete Acidobacteriota genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish Acidobacteriota strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with Edaphobacter lichenicola. We conclude that this cluster represents a new genus, which we have named Tunturibacter. We describe four new species: Tunturibacter lichenicola comb. nov., Tunturibacter empetritectus sp. nov., Tunturibacter gelidoferens sp. nov., and Tunturibacter psychrotolerans sp. nov. By uncovering new species and strains within the Terriglobia and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.


Assuntos
Genoma Bacteriano , Filogenia , Microbiologia do Solo , Tundra , Acidobacteria/genética , Acidobacteria/classificação , Acidobacteria/isolamento & purificação , RNA Ribossômico 16S/genética , Regiões Árticas
4.
Curr Microbiol ; 81(7): 186, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775831

RESUMO

The Exiguobacterium genus comprises Gram-stain-positive and facultatively anaerobic bacteria. Some Exiguobacterium species have previously shown significant high 16S rRNA gene sequence similarities with each other. This study evaluates the taxonomic classification of those Exiguobacterium species through comprehensive genome analysis. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were determined for various Exiguobacterium species pairs. The ANI and dDDH values between Exiguobacterium enclense and Exiguobacterium indicum, Exiguobacterium aquaticum and Exiguobacterium mexicanum, Exiguobacterium soli and Exiguobacterium antarcticum, and Exiguobacterium sibiricum and Exiguobacterium artemiae were above the cut-off level (95-96% for ANI and 70% for dDDH) for species delineation. Based on the findings, we propose to reclassify Exiguobacterium enclense as a later heterotypic synonym of Exiguobacterium indicum, Exiguobacterium aquaticum as a later heterotypic synonym of Exiguobacterium mexicanum, Exiguobacterium soli as a later heterotypic synonym of Exiguobacterium antarcticum and Exiguobacterium sibiricum as a later heterotypic synonym of Exiguobacterium artemiae.


Assuntos
DNA Bacteriano , Exiguobacterium , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Exiguobacterium/genética , Exiguobacterium/classificação , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana
5.
Environ Monit Assess ; 196(6): 566, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775858

RESUMO

Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.


Assuntos
Monitoramento Ambiental , Microbiota , Rios , Poluentes Químicos da Água , Rios/microbiologia , Rios/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Argentina , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Recuperação e Remediação Ambiental/métodos
6.
Microb Ecol ; 87(1): 75, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775958

RESUMO

The gut microbiome is a highly intricate ecosystem that exerts a pivotal influence on the host's physiology. Characterizing fish microbiomes is critical to understanding fish physiology and health, but little is known about the ecology and colonization dynamics of microorganisms inhabiting fish species. In this study, we investigated the bacterial communities of two small-bodied fish species, Cyprinella lutrensis (red shiner) and Notropis stramineus (sand shiner), two fish species where gut microbiomes have not been investigated previously and surrounding waters, collected from rivers in Nebraska, USA. Our study focused on evaluating microbial diversity in small-bodied fish and identifying autochthonous microbes present within these species irrespective of location to better understand bacterial community composition and possible roles of such bacterial species. Our results revealed that both red shiner and sand shiner exhibited gut bacterial communities dominated by typical bacterial phyla found in freshwater fish. The phylum Bacteroidota was minimally abundant in both species and significantly lower in relative abundance compared to the surrounding water microbial community. Furthermore, we found that the gut microbiomes of red shiner and sand shiner differed from the microbial community in the surrounding water, suggesting that these fish species contain host-associated bacterial species that may provide benefits to the host such as nutrient digestion and colonization resistance of environmental pathogens. The fish gut bacterial communities were sensitive to environmental conditions such as turbidity, dissolved oxygen, temperature, and total nitrogen. Our findings also show bacterial community differences between fish species; although they shared notable similarities in bacterial taxa at phyla level composition, ASV level analysis of bacterial taxa displayed compositional differences. These findings contribute to a better understanding of the gut bacterial composition of wild, freshwater, small-bodied fish and highlight the influence of intrinsic (host) and environmental factors on shaping the bacterial composition.


Assuntos
Bactérias , Cyprinidae , Microbioma Gastrointestinal , Rios , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Cyprinidae/microbiologia , Rios/microbiologia , RNA Ribossômico 16S/genética , Nebraska
7.
Sci Rep ; 14(1): 11584, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773245

RESUMO

Climate change and disease threaten shrimp farming. Here, we studied the beneficial properties of a phytogenic formulation, Shrimp Best (SB), in whiteleg shrimp. Functional studies showed that SB dose-dependently increased shrimp body weight and decreased feed conversion ratio. We found that SB protected against Vibrio parahaemolyticus as evidenced by survival rate, bacterial load, and hepatopancreatic pathology in shrimp. Finally, we explored the likely mechanism by which SB affects growth performance and vibriosis in shrimp. The 16S rRNA sequencing data showed that SB increased 6 probiotic genera and decreased 6 genera of pathogenic bacteria in shrimp. Among these, SB increased the proportion of Lactobacillus johnsonii and decreased that of V. parahaemolyticus in shrimp guts. To dissect the relationship among SB, Lactobacillus and Vibrio, we investigated the in vitro regulation of Lactobacillus and Vibrio by SB. SB at ≥ 0.25 µg/mL promoted L. johnsonii growth. Additionally, L. johnsonii and its supernatant could inhibit V. parahaemolyticus. Furthermore, SB could up-regulate five anti-Vibrio metabolites of L. johnsonii, which caused bacterial membrane destruction. In parallel, we identified 3 fatty acids as active compounds from SB. Overall, this work demonstrated that SB improved growth performance and vibriosis protection in shrimp via the regulation of gut microbiota.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Penaeidae/microbiologia , Penaeidae/crescimento & desenvolvimento , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/patogenicidade , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrioses/microbiologia , Lactobacillus/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Vibrio/efeitos dos fármacos , Vibrio/patogenicidade , Probióticos
8.
Sci Rep ; 14(1): 11532, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773342

RESUMO

The presence of dysbiotic cervicovaginal microbiota has been observed to be linked to the persistent development of cervical carcinogenesis mediated by the human papillomavirus (HPV). Nevertheless, the characteristics of the cervical microbiome in individuals diagnosed with cervical cancer (CC) are still not well understood. Comprehensive analysis was conducted by re-analyzing the cervical 16S rRNA sequencing datasets of a total of 507 samples from six previously published studies. We observed significant alpha and beta diversity differences in between CC, cervical intraepithelial neoplasia (CIN) and normal controls (NC), but not between HPV and NC in the combined dataset. Meta-analysis revealed that opportunistic pernicious microbes Streptococcus, Fusobacterium, Pseudomonas and Anaerococcus were enriched in CC, while Lactobacillus was depleted compared to NC. Members of Gardnerella, Sneathia, Pseudomonas, and Fannyhessea have significantly increased relative abundance compared to other bacteria in the CIN group. Five newly identified bacterial genera were found to differentiate CC from NC, with an area under the curve (AUC) of 0.8947. Moreover, co-occurrence network analysis showed that the most commonly encountered Lactobacillus was strongly negatively correlated with Prevotella. Overall, our study identified a set of potential biomarkers for CC from samples across different geographic regions. Our meta-analysis provided significant insights into the characteristics of dysbiotic cervicovaginal microbiota undergoing CC, which may lead to the development of noninvasive CC diagnostic tools and therapeutic interventions.


Assuntos
Disbiose , Microbiota , RNA Ribossômico 16S , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/virologia , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Carcinogênese , Displasia do Colo do Útero/microbiologia , Displasia do Colo do Útero/virologia , Vagina/microbiologia , Colo do Útero/microbiologia , Colo do Útero/patologia
9.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697936

RESUMO

In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.


Assuntos
Bactérias , Carbono , Microbiota , Nitrogênio , Nutrientes , Microbiologia do Solo , Solo , Regiões Antárticas , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Nutrientes/metabolismo , Solo/química , Carbono/metabolismo , Biodiversidade , RNA Ribossômico 16S/genética
10.
Food Res Int ; 187: 114308, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763625

RESUMO

Antimicrobial resistance (AMR) is a significant public health threat, with the food production chain, and, specifically, fermented products, as a potential vehicle for dissemination. However, information about dairy products, especially raw ewe milk cheeses, is limited. The present study analysed, for the first time, the occurrence of AMRs related to lactic acid bacteria (LAB) along a raw ewe milk cheese production chain for the most common antimicrobial agents used on farms (dihydrostreptomycin, benzylpenicillin, amoxicillin and polymyxin B). More than 200 LAB isolates were obtained and identified by Sanger sequencing (V1-V3 16S rRNA regions); these isolates included 8 LAB genera and 21 species. Significant differences in LAB composition were observed throughout the production chain (P ≤ 0.001), with Enterococcus (e.g., E. hirae and E. faecalis) and Bacillus (e.g., B. thuringiensis and B. cereus) predominating in ovine faeces and raw ewe milk, respectively, along with Lactococcus (L. lactis) in whey and fresh cheeses, while Lactobacillus and Lacticaseibacillus species (e.g., Lactobacillus sp. and L. paracasei) prevailed in ripened cheeses. Phenotypically, by broth microdilution, Lactococcus, Enterococcus and Bacillus species presented the greatest resistance rates (on average, 78.2 %, 56.8 % and 53.4 %, respectively), specifically against polymyxin B, and were more susceptible to dihydrostreptomycin. Conversely, Lacticaseibacillus and Lactobacillus were more susceptible to all antimicrobials tested (31.4 % and 39.1 %, respectively). Thus, resistance patterns and multidrug resistance were reduced along the production chain (P ≤ 0.05). Genotypically, through HT-qPCR, 31 antimicrobial resistance genes (ARGs) and 6 mobile genetic elements (MGEs) were detected, predominating Str, StrB and aadA-01, related to aminoglycoside resistance, and the transposons tnpA-02 and tnpA-01. In general, a significant reduction in ARGs and MGEs abundances was also observed throughout the production chain (P ≤ 0.001). The current findings indicate that LAB dynamics throughout the raw ewe milk cheese production chain facilitated a reduction in AMRs, which has not been reported to date.


Assuntos
Antibacterianos , Queijo , Farmacorresistência Bacteriana , Lactobacillales , Leite , Animais , Queijo/microbiologia , Leite/microbiologia , Ovinos , Lactobacillales/genética , Lactobacillales/efeitos dos fármacos , Lactobacillales/isolamento & purificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fenótipo , Microbiologia de Alimentos , Genótipo , RNA Ribossômico 16S/genética , Testes de Sensibilidade Microbiana , Fezes/microbiologia , Feminino
11.
Comp Immunol Microbiol Infect Dis ; 109: 102187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703540

RESUMO

Hemotropic mycoplasmas are bacteria that attaches to erythrocytes surface, which some species presents zoonotic concerns. In the suborder Pinnipedia, genera Otaria and Arctocephalus are prominent in Brazil. This study investigated the occurrence of hemoplasmas in Arctocephalus sp. and Otaria flavescens found dead along the coast of a Southern Brazilian State. DNA from 135 spleen samples were extracted and subjected to conventional PCR protocols, targeting the 16 S rRNA and 23 S rRNA gene. Three (2.22 %) Arctocephalus australis were positive in the 16 S rRNA gene, and no samples amplified in the 23 S rRNA gene. Samples from this study clustered with Zalophus californianus and Arctocephalus tropicalis mycoplasmas on a Bayesian phylogenetic analysis. Genetic diversity analysis suggested distinct genotypes, indicating A. australis as a new host for hemoplasma, and also a potential putative novel hemoplasma genotype. These findings raises future awareness for pinnipeds conservation, and adds Mycoplasma spp. to be taken into consideration when clinically evaluating rescued animals.


Assuntos
DNA Bacteriano , Otárias , Infecções por Mycoplasma , Mycoplasma , Filogenia , RNA Ribossômico 16S , Baço , Animais , Brasil/epidemiologia , Mycoplasma/genética , Mycoplasma/isolamento & purificação , Mycoplasma/classificação , Otárias/microbiologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/epidemiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Baço/microbiologia , RNA Ribossômico 23S/genética , Variação Genética , Genótipo , Teorema de Bayes , Autopsia/veterinária , Reação em Cadeia da Polimerase
12.
J Environ Manage ; 359: 121107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728984

RESUMO

Microbial induced concrete corrosion (MICC) is the primary deterioration affecting global sewers. Disentangling ecological mechanisms in the sewer system is meaningful for implementing policies to protect sewer pipes using trenchless technology. It is necessary to understand microbial compositions, interaction networks, functions, alongside assembly processes in sewer microbial communities. In this study, sewer wastewater samples and microbial samples from the upper part (UP), middle part (MP) and bottom part (BP) of different pipes were collected for 16S rRNA gene amplicon analysis. It was found that BP harbored distinct microbial communities and the largest proportion of unique species (1141) compared to UP and MP. The community in BP tended to be more clustered. Furthermore, significant differences in microbial functions existed in different spatial locations, including the carbon cycle, nitrogen cycle and sulfur cycle. Active microbial sulfur cycling indicated the corrosion risk of MICC. Among the environmental factors, the oxidation‒reduction potential drove changes in BP, while sulfate managed changes in UP and BP. Stochasticity dominated community assembly in the sewer system. Additionally, the sewer microbial community exhibited numerous positive links. BP possessed a more complex, modular network with higher modularity. These deep insights into microbial ecology in the sewer system may guide engineering safety and disaster prevention in sewer infrastructure.


Assuntos
Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia , Ecologia , Corrosão , Microbiota
13.
Microbiome ; 12(1): 80, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715137

RESUMO

BACKGROUND: Antibiotic exposure can occur in medical settings and from environmental sources. Long-term effects of brief antibiotic exposure in early life are largely unknown. RESULTS: Post a short-term treatment by ceftriaxone to C57BL/6 mice in early life, a 14-month observation was performed using 16S rRNA gene-sequencing technique, metabolomics analysis, and metagenomics analysis on the effects of ceftriaxone exposure. Firstly, the results showed that antibiotic pre-treatment significantly disturbed gut microbial α and ß diversities (P < 0.05). Both Chao1 indices and Shannon indices manifested recovery trends over time, but they didn't entirely recover to the baseline of control throughout the experiment. Secondly, antibiotic pre-treatment reduced the complexity of gut molecular ecological networks (MENs). Various network parameters were affected and manifested recovery trends over time with different degrees, such as nodes (P < 0.001, R2 = 0.6563), links (P < 0.01, R2 = 0.4543), number of modules (P = 0.0672, R2 = 0.2523), relative modularity (P = 0.6714, R2 = 0.0155), number of keystones (P = 0.1003, R2 = 0.2090), robustness_random (P = 0.79, R2 = 0.0063), and vulnerability (P = 0.0528, R2 = 0.28). The network parameters didn't entirely recover. Antibiotic exposure obviously reduced the number of key species in gut MENs. Interestingly, new keystones appeared during the recovery process of network complexity. Changes in network stability might be caused by variations in network complexity, which supports the ecological theory that complexity begets stability. Besides, the metabolism profiles of the antibiotic group and control were significantly different. Correlation analysis showed that antibiotic-induced differences in gut microbial metabolism were related to MEN changes. Antibiotic exposure also caused long-term effects on gut microbial functional networks in mice. CONCLUSIONS: These results suggest that short-term antibiotic exposure in early life will cause long-term negative impacts on gut microbial diversity, MENs, and microbial metabolism. Therefore, great concern should be raised about children's brief exposure to antibiotics if the results observed in mice are applicable to humans. Video Abstract.


Assuntos
Antibacterianos , Bactérias , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/efeitos adversos , Camundongos , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Ceftriaxona/farmacologia , Metagenômica/métodos , Masculino , Metabolômica , Fezes/microbiologia
14.
Acta Biochim Pol ; 71: 12020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721310

RESUMO

Objective: To explore the difference in intestinal microecology between patients with preeclampsia and pregnant women at different stages of pregnancy. Methods: From January 2020 to January 2022, clinical data, including blood routine, lipid profile, and renal function indicators, were gathered from a cohort consisting of 5 cases of preeclampsia and 34 cases of non-preeclampsia. The non-preeclampsia group was further categorized into 6 cases in the First trimester, 13 cases in the Second trimester, and 15 cases in the Third trimester. The data collection took place at the Obstetrics Department of the Maternal and Child Health Hospital of Hubei Province. Additionally, fecal samples were obtained from each subject for 16S rDNA gene sequencing and subsequent analysis. The clinical data and composition characteristics of the gut microbiota in each group were analyzed, and the correlation between gut microbiota and clinical data was analyzed by the Spearman correlation analysis method. Results: In comparison to pregnant women without preeclampsia, preeclampsia patients exhibited a statistically significant elevation in blood routine parameters (WBC, N, L, and PLT count), a rise in lipid-related indicators (TC, TG, and LDL-C levels), a reduction in HDL-C levels, and an increase in renal function-related indicators (Cr, BUN, UA and Pro levels). Compared with non-preeclampsia pregnant women, preeclampsia women exhibited an augmented diversity of gut microbiota. Differences in gut microbiota composition between the two groups were observed at the gate and genus levels. Moreover, there are significant differences in the composition of gut microbiota between the preeclampsia group and the third-trimester group in terms of genus and species, and this difference is mainly caused by Prevotella and s_ Bacteroides_ Uniformis and Ruminococcus_ bromii. In addition, actinobacteria, bifidobacterium at the genus level, and Ruminococcus_bromii at the species level are positively correlated with clinically relevant indicators (excluding HDL-C). Conclusion: There are significant differences in gut microbiota between preeclampsia pregnant women and late pregnancy pregnant without preeclampsia, including Prevotella and Bacteroides_ Uniformis, and Ruminococcus_ bromii. In addition, these differential bacteria are correlated with most clinical indicators. However, additional comprehensive analysis is required to ascertain the functional correlation between these bacteria and clinical indicators.


Assuntos
Microbioma Gastrointestinal , Pré-Eclâmpsia , Humanos , Gravidez , Pré-Eclâmpsia/microbiologia , Feminino , Adulto , Fezes/microbiologia , RNA Ribossômico 16S/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-38722758

RESUMO

Strain TC023T, a Gram-positive, long, rod-shaped, spore-forming anaerobe, was isolated from the faeces of a heart failure mouse model. The strain formed greyish-white coloured colonies with a convex elevation on brain-heart infusion medium supplemented with 0.1 % sodium taurocholate, incubated at 37 °C for 2 days. Taxonomic analysis based on the 16S rRNA gene sequence showed that TC023T belonged to the genus Turicibacter, and was closely related to Turicibacter bilis MMM721T (97.6 %) and Turicibacter sanguinis MOL361T (97.4 %). The whole genome of the strain has a G+C content of 37.3 mol%. The average nucleotide identity and genome-to-genome distance between TC023T and Turicibacter bilis MMM721T were 77.6 % and 24.3 %, respectively, and those with Turicibacter sanguinis MOL361T were 75.4 % and 24.3 %, respectively. These genotypic, phenotypic, and biochemical analyses indicated that the isolate represents a novel species in the genus Turicibacter, and the name Turicibacter faecis sp. nov. is proposed. The type strain is TC023T (RIMD 2002001T=TSD 372T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Modelos Animais de Doenças , Fezes , Insuficiência Cardíaca , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , RNA Ribossômico 16S/genética , Fezes/microbiologia , Camundongos , DNA Bacteriano/genética , Insuficiência Cardíaca/microbiologia , Genoma Bacteriano , Masculino , Ácidos Graxos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38722771

RESUMO

Obligately anaerobic, Gram-stain-negative, wavy rods, strains 17YCFAHCo10, 18YCFAH0.3Co2 and 19YCFAH0.3Co2, were isolated from faecal samples of healthy Japanese people. The three isolates showed the highest 16S rRNA gene sequence similarity to Waltera intestinalis WCA3-601-WT-6HT (99.2-100 %) and Brotolimicola acetigignens f_CXYT (99.2-99.7 %). The 16S rRNA gene sequence analysis showed that the three isolates formed a cluster with W. intestinalis WCA3-601-WT-6HT. Strain 19YCFAH0.3Co2 formed a subcluster with the type strain of W. intestinalis and did not form a cluster with the other two isolates. B. acetigignens f_CXYT also formed a cluster with W. intestinalis WCA3-601-WT-6HT and three isolates. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain 19YCFAH0.3Co2 and W. intestinalis WCA3-601-WT-6HT were higher (72 % dDDH and 97 % ANI) than the cut-off values for species delimitation, indicating that strain 19YCFAH0.3Co2 is W. intestinalis. On the other hand, the dDDH and ANI values between strains 17YCFAHCo10 and 18YCFAH0.3Co2 and the type strain of W. intestinalis were lower (<34 % dDDH and <87 % ANI) than the cut-off values for species delimitation, indicating that these two isolates are different species from W. intestinalis. The percentage of conserved proteins and the average amino acid identity values support the assignment of the isolates to the genus Waltera. Strains 17YCFAHCo10 and 18YCFAH0.3Co2 could be distinguished from W. intestinalis by their inability to ferment melibiose and ribose and lack of activity for ß-glucuronidase. In addition, the dDDH and ANI values between two strains (17YCFAHCo10 and 18YCFAH0.3Co2) and B. acetigignens f_CXYT were higher (>78 % dDDH and >97 % ANI), indicating these two strains and B. acetigignens are the same species. As the genus Waltera has priority, B. acetigignens is transferred to the genus Waltera as Waltera acetigignens comb. nov. The type strain of W. acetigignens is f_CXYT (=JCM 34988T=DSM 107528T).


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Fezes , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Fezes/microbiologia , DNA Bacteriano/genética , Japão , Humanos , Ácidos Graxos/química , Composição de Bases
17.
Artigo em Inglês | MEDLINE | ID: mdl-38722773

RESUMO

A yellow pigmented, Gram-stain-positive, motile, facultatively anaerobic and irregular rod-shaped bacteria (strain M0-14T) was isolated from a till sample collected from the foreland of a high Arctic glacier near the settlement of Ny-Ålesund in the Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that M0-14T formed a lineage within the family Cellulomonadaceae, suborder Micrococcineae. M0-14T represented a novel member of the genus Pengzhenrongella and had highest 16S rRNA gene sequence similarity to Pengzhenrongella sicca LRZ-2T (97.3 %). Growth occurred at 4-25 °C (optimum 4-18 °C), at pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0-5 % (w/v) NaCl. The predominant menaquinone was MK-9(H4) and the major fatty acids were anteiso-C15 : 0, C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol, one undefined phospholipid and five undefined phosphoglycolipids. The cell-wall diamino acid was l-ornithine whereas rhamnose and mannose were the cell-wall sugars. Polyphosphate particles were found inside the cells of M0-14T. Polyphosphate kinase and polyphosphate-dependent glucokinase genes were detected during genomic sequencing of M0-14. In addition, the complete pstSCAB gene cluster and phnCDE synthesis genes, which are important for the uptake and transport of phosphorus in cells, were annotated in the genomic data. According to the genomic data, M0-14T has a metabolic pathway related to phosphorus accumulation. The DNA G+C content of the genomic DNA was 70.8 %. On the basis of its phylogenetic relationship, phenotypic properties and chemotaxonomic distinctiveness, strain M0-14T represents a novel species of the genus Pengzhenrongella, for which the name Pengzhenrongella phosphoraccumulans sp. nov. is proposed. The type strain is M0-14T (= CCTCC AB 2012967T = NRRL B-59105T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Camada de Gelo , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , RNA Ribossômico 16S/genética , Regiões Árticas , Ácidos Graxos/química , Vitamina K 2/análogos & derivados , DNA Bacteriano/genética , Camada de Gelo/microbiologia , Fosfolipídeos , Svalbard
18.
Parasit Vectors ; 17(1): 217, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734668

RESUMO

BACKGROUND: Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS: In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS: A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS: The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Comportamento Animal , Comportamento Alimentar , Tephritidae/microbiologia , Tephritidae/fisiologia
19.
Nat Commun ; 15(1): 3988, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734682

RESUMO

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Assuntos
Anaplasma , Animais Selvagens , Ehrlichia , Filogenia , Floresta Úmida , Carrapatos , Anaplasma/genética , Anaplasma/isolamento & purificação , Anaplasma/patogenicidade , Anaplasma/classificação , Ehrlichia/genética , Ehrlichia/isolamento & purificação , Ehrlichia/classificação , Humanos , Animais , Carrapatos/microbiologia , Animais Selvagens/microbiologia , Anaplasmose/microbiologia , Anaplasmose/epidemiologia , Anaplasmose/transmissão , Guiana Francesa , Ehrlichiose/microbiologia , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Ehrlichiose/transmissão , Metagenômica/métodos , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética
20.
Sci Rep ; 14(1): 10814, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734695

RESUMO

Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.


Assuntos
Aedes , Vírus Chikungunya , Microbioma Gastrointestinal , Mosquitos Vetores , Animais , Feminino , Aedes/microbiologia , Aedes/virologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/fisiologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , RNA Ribossômico 16S/genética , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA