Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Methods Enzymol ; 662: 63-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101219

RESUMO

The unique properties of selenocysteine (Sec) have generated an interest in the scientific community to site-specifically incorporate Sec into a protein of choice. Current technologies have rewired the natural Sec-specific translation factor-dependent selenoprotein biosynthesis pathway by harnessing the canonical elongation factor (EF-Tu) to simplify the requirements for Sec incorporation in Escherichia coli. This strategy is versatile and can be applied to Sec incorporation at any position in a protein of interest. However, selenoprotein production is still limited by yield and serine misincorporation. This protocol outlines a method in E. coli to design and optimize tRNA libraries which can be selected and screened for by the use of Sec-specific intein-based reporters. This provides a fast and simple way to engineer tRNAs with enhanced Sec-incorporation ability.


Assuntos
RNA de Transferência Aminoácido-Específico , Selenocisteína , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 752496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867796

RESUMO

Objective: Graves' disease (GD) related hyperthyroidism (HT) has profound effects on metabolic activity and metabolism of macromolecules affecting energy homeostasis. In this study, we aimed to get a comprehensive understanding of the metabolic changes and their clinical relevance in GD children. Methods: We investigated serum substances from 30 newly diagnosed GD children and 30 age- and gender-matched healthy controls. We explored the metabolomics using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) analysis, and then analyzed the metabolomic data via multivariate statistical analysis. Results: By untargeted metabolomic analysis, a total of 730 metabolites were identified in all participants, among which 48 differential metabolites between GD and control groups were filtered out, including amino acids, dipeptides, lipids, purines, etc. Among these metabolites, 33 were detected with higher levels, while 15 with lower levels in GD group compared to controls. Pathway analysis showed that HT had a significant impact on aminoacyl-transfer ribonucleic acid (tRNA) biosynthesis, several amino acids metabolism, purine metabolism, and pyrimidine metabolism. Conclusion: In this study, via untargeted metabolomics analysis, significant variations of serum metabolomic patterns were detected in GD children.


Assuntos
Doença de Graves/metabolismo , Metabolômica , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Biomarcadores , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Feminino , Doença de Graves/genética , Humanos , Masculino , Redes e Vias Metabólicas , Purinas/metabolismo , Pirimidinas/metabolismo , RNA de Transferência Aminoácido-Específico/biossíntese , RNA de Transferência Aminoácido-Específico/genética , Espectrometria de Massas em Tandem
3.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884733

RESUMO

Selenium, a trace element fundamental to human health, is incorporated as the amino acid selenocysteine (Sec) into more than 25 proteins, referred to as selenoproteins. Human mutations in SECISBP2, SEPSECS and TRU-TCA1-1, three genes essential in the selenocysteine incorporation pathway, affect the expression of most if not all selenoproteins. Systemic selenoprotein deficiency results in a complex, multifactorial disorder, reflecting loss of selenoprotein function in specific tissues and/or long-term impaired selenoenzyme-mediated defence against oxidative and endoplasmic reticulum stress. SEPSECS mutations are associated with a predominantly neurological phenotype with progressive cerebello-cerebral atrophy. Selenoprotein deficiency due to SECISBP2 and TRU-TCA1-1 defects are characterized by abnormal circulating thyroid hormones due to lack of Sec-containing deiodinases, low serum selenium levels (low SELENOP, GPX3), with additional features (myopathy due to low SELENON; photosensitivity, hearing loss, increased adipose mass and function due to reduced antioxidant and endoplasmic reticulum stress defence) in SECISBP2 cases. Antioxidant therapy ameliorates oxidative damage in cells and tissues of patients, but its longer term benefits remain undefined. Ongoing surveillance of patients enables ascertainment of additional phenotypes which may provide further insights into the role of selenoproteins in human biological processes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , RNA de Transferência Aminoácido-Específico/genética , Proteínas de Ligação a RNA/genética , Selenoproteínas/deficiência , Humanos , Mutação
4.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681674

RESUMO

The role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis. There is also evidence that selenium supports leptin signaling in the hypothalamus by maintaining proper redox balance. In this study, we generated mice with conditional knockout of the selenocysteine tRNA[Ser]Sec gene (Trsp) in an orexigenic cell population called agouti-related peptide (Agrp)-positive neurons. We found that female TrspAgrpKO mice gain less weight while on a high-fat diet, which occurs due to changes in adipose tissue activity. Female TrspAgrpKO mice also retained hypothalamic sensitivity to leptin administration. Male mice were unaffected, however, highlighting the sexually dimorphic influence of selenium on neurobiology and energy homeostasis. These findings provide novel insight into the role of selenoproteins within a small yet heavily influential population of hypothalamic neurons.


Assuntos
Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Leptina/farmacologia , Neurônios/metabolismo , RNA de Transferência Aminoácido-Específico/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Dióxido de Carbono/metabolismo , Metabolismo Energético , Feminino , Teste de Tolerância a Glucose , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Obesidade/veterinária , RNA de Transferência Aminoácido-Específico/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925673

RESUMO

In bacteria, selenocysteine (Sec) is incorporated into proteins via the recoding of a particular codon, the UGA stop codon in most cases. Sec-tRNASec is delivered to the ribosome by the Sec-dedicated elongation factor SelB that also recognizes a Sec-insertion sequence element following the codon on the mRNA. Since the excess of SelB may lead to sequestration of Sec-tRNASec under selenium deficiency or oxidative stress, the expression levels of SelB and tRNASec should be regulated. In this bioinformatic study, I analyzed the Rhizobiales SelB species because they were annotated to have a non-canonical C-terminal extension. I found that the open reading frame (ORF) of diverse Alphaproteobacteria selB genes includes an entire tRNASec sequence (selC) and overlaps with the start codon of the downstream ORF. A remnant tRNASec sequence was found in the Sinorhizobium melilotiselB genes whose products have a shorter C-terminal extension. Similar overlapping traits were found in Gammaproteobacteria and Nitrospirae. I hypothesized that once the tRNASec moiety is folded and processed, the expression of the full-length SelB may be repressed. This is the first report on a nested tRNA gene inside a protein ORF in bacteria.


Assuntos
Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Selenocisteína/genética , Proteínas de Bactérias/metabolismo , Códon de Terminação/metabolismo , Biologia Computacional/métodos , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência/genética , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Ribossomos/metabolismo , Selenocisteína/metabolismo
6.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435397

RESUMO

Selenoproteins are a class of proteins with the selenium-containing amino acid selenocysteine (Sec) in their primary structure. Sec is incorporated into selenoproteins via recoding of the stop codon UGA, with specific cis and trans factors required during translation to avoid UGA recognition as a stop codon, including a Sec-specific tRNA, tRNA[Ser]Sec, encoded in mice by the gene Trsp. Whole-body deletion of Trsp in mouse is embryonically lethal, while targeted deletion of Trsp in mice has been used to understand the role of selenoproteins in the health and physiology of various tissues. We developed a mouse model with the targeted deletion of Trsp in brown adipocytes (Trspf/f-Ucp1-Cre+/-), a cell type predominant in brown adipose tissue (BAT) controlling energy expenditure via activation of adaptive thermogenesis, mostly using uncoupling protein 1 (Ucp1). At room temperature, Trspf/f-Ucp1-Cre+/- mice maintain oxygen consumption and Ucp1 expression, with male Trspf/f-Ucp1-Cre+/- mice accumulating more triglycerides in BAT than both female Trspf/f-Ucp1-Cre+/- mice or Trspf/f controls. Acute cold exposure neither reduced core body temperature nor changed the expression of selenoprotein iodothyronine deiodinase type II (Dio2), a marker of adaptive thermogenesis, in Trspf/f-Ucp1-Cre+/- mice. Microarray analysis of BAT from Trspf/f-Ucp1-Cre+/- mice revealed glutathione S-transferase alpha 3 (Gsta3) and ELMO domain containing 2 (Elmod2) as the transcripts most affected by the loss of Trsp. Male Trspf/f-Ucp1-Cre+/- mice showed mild hypothyroidism while downregulating thyroid hormone-responsive genes Thrsp and Tshr in their BATs. In summary, modest changes in the BAT of Trspf/f-Ucp1-Cre +/- mice implicate a mild thyroid hormone dysfunction in brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Selenoproteínas/metabolismo , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Vias Biossintéticas , Células Cultivadas , Resposta ao Choque Frio , Metabolismo Energético , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA de Transferência Aminoácido-Específico/genética , Proteína Desacopladora 1/genética
7.
Arch Biochem Biophys ; 690: 108467, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32592804

RESUMO

Increasing evidence demonstrates that tRNA-derived fragments (tRFs) exert important effects and are dysregulated in various human cancer types. However, their roles in gastric cancer (GC) remain unknown. Here we identified the functional effects of tRF-3019a (derived from tRNA-Ala-AGC-1-1) in GC. We demonstrated that tRF-3019a was upregulated in GC tissues and cell lines. Phenotypic studies revealed that tRF-3019a overexpression enhances GC cell proliferation, migration and invasion. Conversely, tRF-3019a knockdown inhibits GC cell malignant activities. Mechanistic investigation implies that tRF-3019a directly regulates tumor suppressor gene FBXO47. Furthermore, tRF-3019a levels may discriminate GC tissues from nontumorous tissues. Taken together, our results reveal that tRF-3019a modulates GC cell proliferation, migration and invasion by targeting FBXO47, and it may serve as a potential diagnostic biomarker for GC.


Assuntos
RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Conformação de Ácido Nucleico , Transfecção
8.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140438, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330624

RESUMO

tRNA synthetases are responsible for decoding the molecular information, from codons to amino acids. Seryl-tRNA synthetase (SerRS), besides the five isoacceptors of tRNASer, recognizes tRNA[Ser]Sec for the incorporation of selenocysteine (Sec, U) into selenoproteins. The selenocysteine synthesis pathway is known and is dependent on several protein-protein and protein-RNA interactions. Those interactions are not fully described, in particular, involving tRNA[Ser]Sec and SerRS. Here we describe the molecular interactions between the Escherichia coli Seryl-tRNA synthetase (EcSerRS) and tRNA[Ser]Sec in order to determine their specificity, selectivity and binding order, leading to tRNA aminoacylation. The dissociation constant of EcSerRS and tRNA[Ser]Sec was determined as (126 ± 20) nM. We also demonstrate that EcSerRS binds initially to tRNA[Ser]Sec in the presence of ATP for further recognition by E. coli selenocysteine synthetase (EcSelA) for Ser to Sec conversion. The proposed studies clarify the mechanism of tRNA[Ser]Sec incorporation in Bacteria as well as of other domains of life.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência de Cisteína/metabolismo , Serina-tRNA Ligase/metabolismo , Transferases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Escherichia coli/genética , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Cisteína/genética , Serina-tRNA Ligase/genética , Termodinâmica , Aminoacilação de RNA de Transferência/genética , Transferases/genética
9.
Cells ; 8(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212706

RESUMO

The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3' UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.


Assuntos
Sistemas CRISPR-Cas/genética , Códon de Terminação/genética , RNA de Transferência Aminoácido-Específico/genética , Ribossomos/metabolismo , Selenocisteína/metabolismo , Vírion/metabolismo , Sequência de Bases , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Mutação INDEL/genética , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência Aminoácido-Específico/química , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
10.
FEBS Lett ; 592(22): 3759-3768, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30317559

RESUMO

Selenocysteine (Sec) lacks a cognate aminoacyl-tRNA synthetase. Instead, seryl-tRNA synthetase (SerRS) produces Ser-tRNASec , which is subsequently converted by selenocysteine synthase to Sec-tRNASec . Escherichia coli SerRS serylates tRNASec poorly; this may hinder efficient production of designer selenoproteins in vivo. Guided by structural modelling and selection for chloramphenicol acetyltransferase activity, we evolved three SerRS variants capable of improved Ser-tRNASec synthesis. They display 10-, 8-, and 4-fold increased kcat /KM values compared to wild-type SerRS using synthetic tRNASec species as substrates. The enzyme variants also facilitate in vivo read-through of a UAG codon in the position of the critical serine146 of chloramphenicol acetyltransferase. These results indicate that the naturally evolved SerRS is capable of further evolution for increased recognition of a specific tRNA isoacceptor.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Serina/genética , Serina-tRNA Ligase/genética , Sequência de Bases , Códon de Terminação/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Domínios Proteicos , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Serina/genética , Serina/metabolismo , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo , Especificidade por Substrato
11.
ACS Chem Biol ; 13(11): 3087-3096, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30260624

RESUMO

Genetic code expansion via stop codon suppression is a powerful technique for engineering proteins in mammalian cells with site-specifically encoded noncanonical amino acids (ncAAs). Current methods rely on very few available tRNA/aminoacyl-tRNA synthetase pairs orthogonal in mammalian cells, the pyrrolysyl tRNA/aminoacyl-tRNA synthetase pair from Methanosarcina mazei ( Mma PylRS/PylT) being the most active and versatile to date. We found a pyrrolysyl tRNA/aminoacyl-tRNA synthetase pair from the human gut archaeon Methanomethylophilus alvus Mx1201 (Mx1201 PylRS/PylT) to be active and orthogonal in mammalian cells. We show that this PylRS enzyme can be engineered to expand its ncAA substrate spectrum. We find that due to the large evolutionary distance of the two pairs, Mx1201 PylRS/PylT is partially orthogonal to Mma PylRS/PylT. Through rational mutation of Mx1201 PylT, we abolish its noncognate interaction with Mma PylRS, creating two mutually orthogonal PylRS/PylT pairs. Combined in the same cell, we show that the two pairs can site-selectively introduce two different ncAAs in response to two distinct stop codons. Our work expands the repertoire of mutually orthogonal tools for genetic code expansion in mammalian cells and provides the basis for advanced in vivo protein engineering applications for cell biology and protein production.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Euryarchaeota/enzimologia , RNA de Transferência Aminoácido-Específico/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Sítios de Ligação , Códon de Terminação/genética , Células HEK293 , Humanos , Lisina/análogos & derivados , Lisina/genética , Mutação , Engenharia de Proteínas/métodos , RNA de Transferência Aminoácido-Específico/genética , Especificidade por Substrato
12.
Methods Mol Biol ; 1661: 43-60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28917036

RESUMO

The selenocysteine (Sec) tRNA[Ser]Sec population consists of two isoforms that differ from each other by a single 2'-O-methylribosyl moiety at position 34 (Um34). These two isoforms, which are encoded in a single gene, Trsp, and modified posttranscriptionally, are involved individually in the synthesis of two subclasses of selenoproteins, designated housekeeping and stress-related selenoproteins. Techniques used in obtaining these isoforms for their characterization include extraction of RNA from mammalian cells and tissues, purifying the tRNA[Ser]Sec population by one or more procedures, and finally resolving the two isoforms from each other. Since some of the older techniques for isolating tRNA[Ser]Sec and resolving the isoforms are used in only a few laboratories, these procedures will be discussed briefly and references provided for more detailed information, while the more recently developed procedures are discussed in detail. In addition, a novel technique that was developed in sequencing tRNA[Ser]Sec for identifying their occurrence in other organisms is also presented.


Assuntos
RNA de Transferência Aminoácido-Específico/genética , Selenoproteínas/genética , Animais , Northern Blotting , Cromatografia de Afinidade , Cromatografia de Fase Reversa , Humanos , Marcação por Isótopo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/química , Radioisótopos de Selênio , Selenoproteínas/química , Selenoproteínas/isolamento & purificação , Análise de Sequência de RNA
13.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 285-294, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29155071

RESUMO

RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.


Assuntos
RNA Polimerase III/metabolismo , RNA de Transferência/biossíntese , Iniciação da Transcrição Genética , Animais , Células Eucarióticas/metabolismo , Humanos , Modelos Genéticos , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas/genética , Subunidades Proteicas , RNA Polimerase III/química , RNA de Transferência/genética , RNA de Transferência Aminoácido-Específico/biossíntese , RNA de Transferência Aminoácido-Específico/genética , Elongação da Transcrição Genética , Fatores de Transcrição/genética
14.
RNA ; 23(11): 1685-1699, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808125

RESUMO

Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNASer) and the noncognate selenocysteine tRNA (tRNASec). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNASer, tRNASec, and 10 mutant and chimeric constructs in which elements of tRNASer were transposed onto tRNASec We show that human SerRS only subtly prefers tRNASer to tRNASec, and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNASec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNASec and tRNASer dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNASec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis.


Assuntos
RNA de Transferência Aminoácido-Específico/metabolismo , RNA de Transferência de Serina/metabolismo , Serina-tRNA Ligase/metabolismo , Sequência de Bases , Sítios de Ligação , Citosol/enzimologia , Humanos , Cinética , Modelos Moleculares , Mutagênese , Conformação de Ácido Nucleico , Dobramento de RNA , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética , Especificidade por Substrato
15.
PLoS Comput Biol ; 13(2): e1005383, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192430

RESUMO

Selenocysteine (Sec) is known as the 21st amino acid, a cysteine analogue with selenium replacing sulphur. Sec is inserted co-translationally in a small fraction of proteins called selenoproteins. In selenoprotein genes, the Sec specific tRNA (tRNASec) drives the recoding of highly specific UGA codons from stop signals to Sec. Although found in organisms from the three domains of life, Sec is not universal. Many species are completely devoid of selenoprotein genes and lack the ability to synthesize Sec. Since tRNASec is a key component in selenoprotein biosynthesis, its efficient identification in genomes is instrumental to characterize the utilization of Sec across lineages. Available tRNA prediction methods fail to accurately predict tRNASec, due to its unusual structural fold. Here, we present Secmarker, a method based on manually curated covariance models capturing the specific tRNASec structure in archaea, bacteria and eukaryotes. We exploited the non-universality of Sec to build a proper benchmark set for tRNASec predictions, which is not possible for the predictions of other tRNAs. We show that Secmarker greatly improves the accuracy of previously existing methods constituting a valuable tool to identify tRNASec genes, and to efficiently determine whether a genome contains selenoproteins. We used Secmarker to analyze a large set of fully sequenced genomes, and the results revealed new insights in the biology of tRNASec, led to the discovery of a novel bacterial selenoprotein family, and shed additional light on the phylogenetic distribution of selenoprotein containing genomes. Secmarker is freely accessible for download, or online analysis through a web server at http://secmarker.crg.cat.


Assuntos
Mapeamento Cromossômico/métodos , Marcadores Genéticos/genética , Genoma/genética , Ensaios de Triagem em Larga Escala/métodos , RNA de Transferência Aminoácido-Específico/genética , Aminoacil-RNA de Transferência/genética , Algoritmos , Componentes Genômicos/genética , Selenocisteína
16.
Methods ; 113: 34-45, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989759

RESUMO

Current biochemical methods available to monitor the activity of aminoacyl-tRNA synthetases (ARS) are ill-suited to high-throughput screening approaches for the identification of small-molecule inhibitors of these enzymes. In an attempt to improve the limitations of current assays we have developed a suite of new methods designed to streamline the discovery of new ARS antagonists. This set of assays includes approaches to monitor ARS activity in vitro, in human cells, and in bacteria. They are applicable to several ARSs from any given organism, can be easily adapted to very high-throughput set-ups, and allow for a multi-factorial selection of drug candidates.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , RNA de Transferência Aminoácido-Específico/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Aminoacilação de RNA de Transferência , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Descoberta de Drogas , Ensaios Enzimáticos , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , RNA de Transferência Aminoácido-Específico/metabolismo
17.
Nucleic Acids Res ; 45(7): 4094-4107, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27956496

RESUMO

Dual-assignment of codons as termination and elongation codons is used to expand the genetic code. In mammals, UGA can be reassigned to selenocysteine during translation of selenoproteins by a mechanism involving a 3΄ untranslated region (UTR) selenocysteine insertion sequence (SECIS) and the SECIS-binding protein Secisbp2. Here, we present data from ribosome profiling, RNA-Seq and mRNA half-life measurements that support distinct roles for Secisbp2 in UGA-redefinition and mRNA stability. Conditional deletions of the Secisbp2 and Trsp (tRNASec) genes in mouse liver were compared to determine if the effects of Secisbp2 loss on selenoprotein synthesis could be attributed entirely to the inability to incorporate Sec. As expected, tRNASec depletion resulted in loss of ribosome density downstream of all UGA-Sec codons. In contrast, the absence of Secisbp2 resulted in variable effects on ribosome density downstream of UGA-Sec codons that demonstrate gene-specific differences in Sec incorporation. For several selenoproteins in which loss of Secisbp2 resulted in greatly diminished mRNA levels, translational activity and Sec incorporation efficiency were shown to be unaffected on the remaining RNA. Collectively, these results demonstrate that Secisbp2 is not strictly required for Sec incorporation and has a distinct role in stabilizing mRNAs that can be separated from its effects on UGA-redefinition.


Assuntos
Códon de Terminação , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA de Transferência Aminoácido-Específico/genética , Proteínas de Ligação a RNA/fisiologia , Selenoproteínas/genética , Animais , Células Cultivadas , Hepatócitos/metabolismo , Masculino , Metilação , Camundongos , Camundongos Knockout , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Selenoproteínas/biossíntese
18.
Methods ; 113: 27-33, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27639882

RESUMO

The fidelity of tRNA aminoacylation is a critical determinant for the ultimate accuracy of protein synthesis. Although aminoacyl-tRNA synthetases are assumed to consistently maintain high tRNA charging fidelity, recent evidence has demonstrated that the fidelity of the aminoacylation reaction can be actively regulated and liable to change. Accordingly, the ability to conveniently assay the fidelity of tRNA charging is becoming increasingly relevant for studying mistranslation. Here we describe a combined radioactivity and microarray based method that can quantitatively elucidate which individual cognate or noncognate tRNA isoacceptors are charged with amino acid. In this technique, in vitro tRNA charging reactions or in vivo pulse-labeling is performed using a radiolabeled amino acid and tRNA microarrays are used to distinguish tRNA isoacceptors in total tRNA. During the tRNA array hybridization, each tRNA will hybridize to its unique probe and subsequent phosphorimaging of the array can determine which tRNAs were aminoacylated with the radiolabeled amino acid. The method can be used to assess the fidelity of tRNA charging in vivo or in vitro and can be applied to any organism with annotated tRNA genes.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Análise em Microsséries/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , RNA de Transferência Aminoácido-Específico/genética , Aminoacilação de RNA de Transferência , Aminoacil-tRNA Sintetases/genética , Radioisótopos de Carbono , Escherichia coli/enzimologia , Escherichia coli/genética , Impressão/métodos , Sondas RNA/síntese química , RNA de Transferência Aminoácido-Específico/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Radioisótopos de Enxofre , Trítio
19.
Methods ; 113: 13-26, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27713080

RESUMO

The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Ensaios Enzimáticos , Edição de RNA , RNA de Transferência Aminoácido-Específico/genética , Aminoacilação de RNA de Transferência , Trifosfato de Adenosina/metabolismo , Aminoacil-tRNA Sintetases/genética , Código Genético , Hidrólise , Cinética , RNA de Transferência Aminoácido-Específico/metabolismo , Especificidade por Substrato
20.
Methods ; 113: 64-71, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794454

RESUMO

Differential scanning fluorimetry (DSF) is a fluorescence-based assay to evaluate protein stability by determining protein melting temperatures. Here, we describe the application of DSF to investigate aminoacyl-tRNA synthetase (AARS) stability and interaction with ligands. Employing three bacterial AARS enzymes as model systems, methods are presented here for the use of DSF to measure the apparent temperatures at which AARSs undergo melting transitions, and the effect of AARS substrates and inhibitors. One important observation is that the extent of temperature stability realized by an AARS in response to a particular bound ligand cannot be predicted a priori. The DSF method thus serves as a rapid and highly quantitative approach to measure AARS stability, and the ability of ligands to influence the temperature at which unfolding transitions occur.


Assuntos
Alanina-tRNA Ligase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Histidina-tRNA Ligase/química , RNA de Transferência Aminoácido-Específico/metabolismo , Treonina-tRNA Ligase/química , Alanina-tRNA Ligase/antagonistas & inibidores , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Benzopiranos/química , Inibidores Enzimáticos/química , Estabilidade Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Fluorometria/métodos , Histidina-tRNA Ligase/antagonistas & inibidores , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Muramidase/química , Muramidase/metabolismo , Transição de Fase , Ligação Proteica , Desdobramento de Proteína , RNA de Transferência Aminoácido-Específico/genética , Especificidade por Substrato , Treonina-tRNA Ligase/antagonistas & inibidores , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA