Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Biomol Struct Dyn ; 40(18): 8538-8559, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33896406

RESUMO

Aminoacylation reaction is the first step of protein biosynthesis. Transfer RNA (tRNA) is charged with an amino acid in this reaction and the reaction is catalyzed by aminoacyl tRNA synthetase enzyme (aaRS). In the present work, we use classical molecular dynamics simulation to show that the tRNA bound Mg2+ ions significantly influence the charging step of class I TtGluRS: Glu-AMP: tRNAGlu and class II dimeric TtSerRS: Ser-AMP: tRNASer. The CCA end of the acceptor terminal is disordered in the absence of coordinated Mg2+ ions and the CCA end can freely explore beyond the specific conformational space of the tRNA in its precharging state. A balance between the conformational disorder of the tRNA and the restriction imposed on the CCA terminal via coordination with the Mg2+ ions is needed for the placement of the CCA terminal in a precharging state organization. This result provides a molecular-level explanation of the experimental observation that the presence of Mg2+ ions is a necessary condition for a successful aminoacylation reaction.Communicated by Ramaswamy H. Sarma.


Assuntos
Aminoacil-tRNA Sintetases , Serina-tRNA Ligase , Monofosfato de Adenosina/metabolismo , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Íons , Ligases/metabolismo , Magnésio , RNA de Transferência/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Serina/metabolismo , Serina-tRNA Ligase/química
2.
FASEB J ; 33(12): 13228-13240, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560576

RESUMO

tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.


Assuntos
Neoplasias da Mama/metabolismo , Fosfoproteínas/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Western Blotting , Neoplasias da Mama/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Fosfoproteínas/genética , RNA de Transferência de Ácido Glutâmico/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nucleolina
3.
RNA Biol ; 15(9): 1167-1173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30249152

RESUMO

The MnmE-MnmG complex of Escherichia coli uses either ammonium or glycine as a substrate to incorporate the 5-aminomethyl or 5-carboxymethylaminomethyl group into the wobble uridine of certain tRNAs. Both modifications can be converted into a 5-methylaminomethyl group by the independent oxidoreductase and methyltransferase activities of MnmC, which respectively reside in the MnmC(o) and MnmC(m) domains of this bifunctional enzyme. MnmE and MnmG, but not MnmC, are evolutionarily conserved. Bacillus subtilis lacks genes encoding MnmC(o) and/or MnmC(m) homologs. The glycine pathway has been considered predominant in this typical gram-positive species because only the 5-carboxymethylaminomethyl group has been detected in tRNALysUUU and bulk tRNA to date. Here, we show that the 5-methylaminomethyl modification is prevalent in B. subtilis tRNAGlnUUG and tRNAGluUUC. Our data indicate that B. subtilis has evolved MnmC(o)- and MnmC(m)-like activities that reside in non MnmC homologous protein(s), which suggests that both activities provide some sort of biological advantage.


Assuntos
RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Uridina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , Processamento Pós-Transcricional do RNA
4.
Nucleic Acids Res ; 46(17): 9081-9093, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29893896

RESUMO

We have previously shown that 5' halves from tRNAGlyGCC and tRNAGluCUC are the most enriched small RNAs in the extracellular space of human cell lines, and especially in the non-vesicular fraction. Extracellular RNAs are believed to require protection by either encapsulation in vesicles or ribonucleoprotein complex formation. However, deproteinization of non-vesicular tRNA halves does not affect their retention in size-exclusion chromatography. Thus, we considered alternative explanations for their extracellular stability. In-silico analysis of the sequence of these tRNA-derived fragments showed that tRNAGly 5' halves can form homodimers or heterodimers with tRNAGlu 5' halves. This capacity is virtually unique to glycine tRNAs. By analyzing synthetic oligonucleotides by size exclusion chromatography, we provide evidence that dimerization is possible in vitro. tRNA halves with single point substitutions preventing dimerization are degraded faster both in controlled nuclease digestion assays and after transfection in cells, showing that dimerization can stabilize tRNA halves against the action of cellular nucleases. Finally, we give evidence supporting dimerization of endogenous tRNAGlyGCC 5' halves inside cells. Considering recent reports have shown that 5' tRNA halves from Ala and Cys can form tetramers, our results highlight RNA intermolecular structures as a new layer of complexity in the biology of tRNA-derived fragments.


Assuntos
Dimerização , Estabilidade de RNA , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Glicina/metabolismo , Ribonucleases/metabolismo , Região 5'-Flanqueadora , Sequência de Bases , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Humanos , Células MCF-7 , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Glicina/química
5.
Photosynth Res ; 137(3): 443-452, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29785497

RESUMO

In higher plants, the tetrapyrrole biosynthesis pathway starts from the reaction catalyzed by the rate-limiting enzyme, glutamyl-tRNAGlu reductase (GTR). In Arabidopsis thaliana, GTR is controlled by post-transcriptional regulators such as GTR binding protein (GBP), which stimulates AtGTR activity. The NADPH-binding domain of AtGTR undergoes a substantial movement upon GBP binding. Here, we report the crystal structure of AtGTR-NADPH-GBP ternary complex. NADPH binding causes slight structural changes compared with the AtGTR-GBP binary complex, and possibly take a part of the space needed by the substrate glutamyl-tRNAGlu. The highly reactive sulfhydryl group of the active-site residue Cys144 shows an obvious rotation, which may facilitate the hydride transfer from NADPH to the thioester intermediate to form glutamate-1-semialdehyde. Furthermore, Lys271, Lys274, Ser275, Asn278, and Gln282 of GBP participate in the interaction between AtGTR and GBP, and the stimulating effect of GBP decreased when all of these residues were mutated to Ala. When the Cys144 of AtGTR was mutated to Ser, AtGTR activity could not be detected even in the presence of GBP.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Transporte/química , Modelos Estruturais , Complexos Multienzimáticos/metabolismo , Oxirredutases/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Catálise , Domínio Catalítico , Cristalização , Glutamatos/metabolismo , Cinética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Mutação , NADP , Oxirredutases/genética , Oxirredutases/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Tetrapirróis/metabolismo
6.
Nucleic Acids Res ; 45(22): 12601-12610, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29155943

RESUMO

A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA's D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.


Assuntos
Aminoácidos/genética , DNA Recombinante/genética , Aminoacil-RNA de Transferência/genética , RNA de Transferência/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo
7.
J Biol Chem ; 291(40): 21029-21041, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27519417

RESUMO

Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu.


Assuntos
Surdez , Diabetes Mellitus , Mutação Puntual , Pseudouridina , RNA de Transferência de Ácido Glutâmico , RNA , Povo Asiático , Pareamento de Bases , Linhagem Celular , China , Surdez/genética , Surdez/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Humanos , Masculino , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Biossíntese de Proteínas/genética , Pseudouridina/genética , Pseudouridina/metabolismo , RNA/genética , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo
8.
PLoS One ; 10(4): e0121043, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860020

RESUMO

For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of -TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3'-OH oxygen of the 3'-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Adenosina/análogos & derivados , Adenosina/química , Glutamato-tRNA Ligase/metabolismo , Glutamatos/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoacilação , Sítios de Ligação , Calorimetria , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/antagonistas & inibidores , Glutamatos/química , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Temperatura , Termodinâmica
9.
Nature ; 517(7535): 509-12, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25363770

RESUMO

Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNA(Glu) to activate Ser/Thr residues. In addition, the 2.9-Å crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Bactérias/classificação , Bacteriocinas/biossíntese , Cristalografia por Raios X , Escherichia coli/genética , Ácido Glutâmico/metabolismo , Hidroliases/classificação , Lactococcus lactis/genética , Proteínas de Membrana/classificação , Modelos Moleculares , Nisina/biossíntese , Nisina/metabolismo , Filogenia , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/genética , Serina/metabolismo , Treonina/metabolismo
10.
Mol Biol Cell ; 26(2): 270-82, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392298

RESUMO

Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGlu(UUC), tGln(UUG), and tLys(UUU) in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.


Assuntos
Resposta ao Choque Térmico/genética , Biossíntese de Proteínas/genética , RNA Fúngico/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Northern Blotting , Western Blotting , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Modelos Genéticos , Mutação , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Compostos de Sulfidrila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Tunicamicina/farmacologia
11.
Int J Mol Sci ; 15(12): 23011-23, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25514408

RESUMO

Glutamyl-tRNA (Glu-tRNA(Glu)) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNA(Glu) can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNA(Glu). Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNA(Glu) distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions.


Assuntos
Heme/biossíntese , Peróxido de Hidrogênio/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Acidithiobacillus/efeitos dos fármacos , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glutamato-tRNA Ligase/antagonistas & inibidores , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Aminoacilação de RNA de Transferência/efeitos dos fármacos
12.
Nucleic Acids Res ; 42(10): 6487-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24711368

RESUMO

Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Geobacter/enzimologia , RNA de Transferência de Ácido Glutâmico/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Humanos , Metilação , Camundongos , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Ácido Glutâmico/química , Especificidade por Substrato
13.
RNA ; 20(1): 9-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24249223

RESUMO

Protein synthesis must rapidly and repeatedly discriminate between a single correct and many incorrect aminoacyl-tRNAs. We have attempted to measure the frequencies of all possible missense errors by tRNA , tRNA and tRNA . The most frequent errors involve three types of mismatched nucleotide pairs, U•U, U•C, or U•G, all of which can form a noncanonical base pair with geometry similar to that of the canonical U•A or C•G Watson-Crick pairs. Our system is sensitive enough to measure errors at other potential mismatches that occur at frequencies as low as 1 in 500,000 codons. The ribosome appears to discriminate this efficiently against any pair with non-Watson-Crick geometry. This extreme accuracy may be necessary to allow discrimination against the errors involving near Watson-Crick pairing.


Assuntos
Pareamento Incorreto de Bases/fisiologia , Mutação de Sentido Incorreto , Biossíntese de Proteínas/fisiologia , Ribossomos/fisiologia , Substituição de Aminoácidos , Pareamento de Bases/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese/fisiologia , Mutação de Sentido Incorreto/fisiologia , Conformação de Ácido Nucleico , Organismos Geneticamente Modificados , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Tirosina/metabolismo , beta-Galactosidase/química , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
14.
Nucleic Acids Res ; 42(1): 328-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24062157

RESUMO

Double-stranded DNA breaks (DSB) cause bacteria to augment expression of DNA repair and various stress response proteins. A puzzling exception educes the anticodon nuclease (ACNase) RloC, which resembles the DSB responder Rad50 and the antiviral, translation-disabling ACNase PrrC. While PrrC's ACNase is regulated by a DNA restriction-modification (R-M) protein and a phage anti-DNA restriction peptide, RloC has an internal ACNase switch comprising a putative DSB sensor and coupled ATPase. Further exploration of RloC's controls revealed, first, that its ACNase is stabilized by the activating DNA and hydrolysed nucleotide. Second, DSB inducers activated RloC's ACNase in heterologous contexts as well as in a natural host, even when R-M deficient. Third, the DSB-induced activation of the indigenous RloC led to partial and temporary disruption of tRNA(Glu) and tRNA(Gln). Lastly, accumulation of CRISPR-derived RNA that occurred in parallel raises the possibility that the adaptive immunity and RloC provide the genotoxicated host with complementary protection from impending infections.


Assuntos
Acinetobacter/enzimologia , Quebras de DNA de Cadeia Dupla , Ribonucleases/metabolismo , Acinetobacter/imunologia , Imunidade Adaptativa , Difosfato de Adenosina/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Geobacillus/enzimologia , Clivagem do RNA , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo
15.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24095282

RESUMO

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Assuntos
Tolerância a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoacilação , Antibacterianos/farmacologia , Sítios de Ligação/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutação , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
16.
J Biol Chem ; 288(45): 32539-32552, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24072705

RESUMO

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.


Assuntos
Apicoplastos/enzimologia , Glutamato-tRNA Ligase/metabolismo , Plasmodium berghei/enzimologia , Plasmodium falciparum/enzimologia , Biossíntese de Proteínas/fisiologia , Proteínas de Protozoários/metabolismo , Aminoacilação de RNA de Transferência/fisiologia , Apicoplastos/genética , Glutamato-tRNA Ligase/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(31): 12756-61, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858450

RESUMO

T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.


Assuntos
Anticódon/metabolismo , Clostridium acetobutylicum/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência de Asparagina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Riboswitch/fisiologia , Anticódon/química , Anticódon/genética , Asparagina/biossíntese , Asparagina/genética , Clostridium acetobutylicum/química , Clostridium acetobutylicum/genética , Ácido Glutâmico/biossíntese , Ácido Glutâmico/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Transferência de Asparagina/química , RNA de Transferência de Asparagina/genética , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética
18.
Nucleic Acids Res ; 41(18): 8615-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877245

RESUMO

Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in tRNA(Asp(GUC)) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified tRNA(Glu(CUC/UUC)) and tRNA(Gly(GCC)) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.


Assuntos
Dictyostelium/enzimologia , Proteínas de Protozoários/metabolismo , tRNA Metiltransferases/metabolismo , Ciclo Celular , Resposta ao Choque Frio , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Regulação da Expressão Gênica , Humanos , Metilação , Proteínas de Protozoários/genética , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Glicina/metabolismo , Transcrição Gênica , tRNA Metiltransferases/genética
19.
Nucleic Acids Res ; 41(1): 667-76, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23161686

RESUMO

In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.


Assuntos
Glutamato-tRNA Ligase/química , Metionina tRNA Ligase/química , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Metionina/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Ensaio de Desvio de Mobilidade Eletroforética , Glutamato-tRNA Ligase/metabolismo , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Metionina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Nucleic Acids Res ; 40(22): 11648-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23074192

RESUMO

The fission yeast Schizosaccharomyces pombe carries a cytosine 5-methyltransferase homolog of the Dnmt2 family (termed pombe methyltransferase 1, Pmt1), but contains no detectable DNA methylation. Here, we found that Pmt1, like other Dnmt2 homologs, has in vitro methylation activity on cytosine 38 of tRNA(Asp) and, to a lesser extent, of tRNA(Glu), despite the fact that it contains a non-consensus residue in catalytic motif IV as compared with its homologs. In vivo tRNA methylation also required Pmt1. Unexpectedly, however, its in vivo activity showed a strong dependence on the nutritional status of the cell because Pmt1-dependent tRNA methylation was induced in cells grown in the presence of peptone or with glutamate as a nitrogen source. Furthermore, this induction required the serine/threonine kinase Sck2, but not the kinases Sck1, Pka1 or Tor1 and was independent of glucose signaling. Taken together, this work reveals a novel connection between nutrient signaling and tRNA methylation that thus may link tRNA methylation to processes downstream of nutrient signaling like ribosome biogenesis and translation initiation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , RNA de Transferência/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , tRNA Metiltransferases/metabolismo , Citosina/metabolismo , Metilação , Nitrogênio/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA