Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(26): e2215556120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339210

RESUMO

Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.


Assuntos
Anticódon , RNA , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA de Transferência de Lisina/química
2.
J Phys Chem B ; 126(6): 1168-1177, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35119848

RESUMO

The 2-methylthio-modification (ms2-) of N6-threonylcarbonyladenosine (t6A37) at position-37 (ms2t6A37) in tRNAUUULys3 provides the needed stability between the tRNA anticodon and the human insulin mRNA codon AAG during translation, as determined by molecular dynamics simulation. Single-nucleoside polymorphisms of the human gene for the enzyme, Cdkal1 that post-transcriptionally modifies t6A37 to ms2t6A37 in tRNAUUULys3, correlate with type 2 diabetes mellitus. Without the ms2-modification, tRNAUUULys3 is incapable of correctly translating the insulin mRNA AAG codon for lysine at the site of protease cleavage between the A-chain and the C-peptide. By enhancing anticodon/codon cross-strand stacking, the ms2-modification adds stability through van der Waals interactions and dehydration of the ASL loop and cavity of the anticodon/codon minihelix but does not add hydrogen bonding of any consequence. Thus, the modifying enzyme Cdkal1, by adding a crucial ms2-group to tRNAUUULys3-t6A37, facilitates the decoding of the AAG codon and enables human pancreatic islets to correctly translate insulin mRNA.


Assuntos
Diabetes Mellitus Tipo 2 , Nucleosídeos , Anticódon/genética , Físico-Química , Códon/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Lisina/genética , Conformação de Ácido Nucleico , RNA de Transferência/genética , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética , Termodinâmica
3.
Nucleic Acids Res ; 49(20): 11855-11867, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34642752

RESUMO

Retroviral infection requires reverse transcription, and the reverse transcriptase (RT) uses cellular tRNA as its primer. In humans, the TRMT6-TRMT61A methyltransferase complex incorporates N1-methyladenosine modification at tRNA position 58 (m1A58); however, the role of m1A58 as an RT-stop site during retroviral infection has remained questionable. Here, we constructed TRMT6 mutant cells to determine the roles of m1A in HIV-1 infection. We confirmed that tRNA3Lys m1A58 was required for in vitro plus-strand strong-stop by RT. Accordingly, infectivity of VSV-G pseudotyped HIV-1 decreased when the virus contained m1A58-deficient tRNA3Lys instead of m1A58-modified tRNA3Lys. In TRMT6 mutant cells, the global protein synthesis rate was equivalent to that of wild-type cells. However, unexpectedly, plasmid-derived HIV-1 expression showed that TRMT6 mutant cells decreased accumulation of HIV-1 capsid, integrase, Tat, Gag, and GagPol proteins without reduction of HIV-1 RNAs in cells, and fewer viruses were produced. Moreover, the importance of 5,2'-O-dimethyluridine at U54 of tRNA3Lys as a second RT-stop site was supported by conservation of retroviral genome-tRNALys sequence-complementarity, and TRMT6 was required for efficient 5-methylation of U54. These findings illuminate the fundamental importance of tRNA m1A58 modification in both the early and late steps of HIV-1 replication, as well as in the cellular tRNA modification network.


Assuntos
HIV-1/fisiologia , Processamento Pós-Transcricional do RNA , RNA de Transferência de Lisina/metabolismo , Replicação Viral , Animais , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metilação , Camundongos , Mutação , RNA de Transferência de Lisina/química
4.
Nat Commun ; 12(1): 2500, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947853

RESUMO

Reverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC-nevirapine, and RTIC-efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA-tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


Assuntos
Transcriptase Reversa do HIV/química , HIV-1/efeitos dos fármacos , RNA de Transferência de Lisina/química , RNA Viral/química , Inibidores da Transcriptase Reversa/química , Alcinos/química , Alcinos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Domínio Catalítico , Microscopia Crioeletrônica , Ciclopropanos/química , Ciclopropanos/farmacologia , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/metabolismo , Modelos Moleculares , Nevirapina/química , Nevirapina/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA de Transferência de Lisina/genética , RNA Viral/genética , Inibidores da Transcriptase Reversa/farmacologia
5.
RNA ; 27(2): 202-220, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214333

RESUMO

Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.


Assuntos
Adenosina/análogos & derivados , Anticódon/química , Escherichia coli/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência de Lisina/química , RNA de Transferência de Fenilalanina/química , Adenosina/metabolismo , Anticódon/genética , Anticódon/metabolismo , Pareamento de Bases , Sequência de Bases , Escherichia coli/metabolismo , Isopenteniladenosina/química , Isopenteniladenosina/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleosídeos/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo
6.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140554, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068756

RESUMO

Klebsiella pneumoniae is a member of the ESKAPE panel of pathogens that are top priority to tackle AMR. Bacterial peptidyl tRNA hydrolase (Pth), an essential, ubiquitous enzyme, hydrolyzes the peptidyl-tRNAs that accumulate in the cytoplasm because of premature termination of translation. Pth cleaves the ester bond between 2' or 3' hydroxyl of the ribose in the tRNA and C-terminal carboxylate of the peptide, thereby making free tRNA available for repeated cycles of protein synthesis and preventing cell death by alleviating tRNA starvation. Pth structures have been determined in peptide-bound or peptide-free states. In peptide-bound state, highly conserved residues F67, N69 and N115 adopt a conformation that is conducive to their interaction with peptide moiety of the substrate. While, in peptide-free state, these residues move away from the catalytic center, perhaps, in order to facilitate release of hydrolysed peptide. Here, we present a novel X-ray crystal structure of Pth from Klebsiella pneumoniae (KpPth), at 1.89 Å resolution, in which out of the two molecules in the asymmetric unit, one reflects the peptide-bound while the other reflects peptide-free conformation of the conserved catalytic site residues. Each molecule of the protein has canonical structure with seven stranded ß-sheet structure surrounded by six α-helices. MD simulations indicate that both the forms converge over 500 ns simulation to structures with wider opening of the crevice at peptide-binding end. In solution, KpPth is monomeric and its 2D-HSQC spectrum displays a single set of well dispersed peaks. Further, KpPth was demonstrated to be enzymatically active on BODIPY-Lys-tRNALys3.


Assuntos
Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Klebsiella pneumoniae/enzimologia , RNA de Transferência de Lisina/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos de Boro/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Klebsiella pneumoniae/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA de Transferência de Lisina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374603

RESUMO

The reverse transcription of the human immunodeficiency virus 1 (HIV-1) initiates upon annealing of the 3'-18-nt of tRNALys3 onto the primer binding site (PBS) in viral RNA (vRNA). Additional intermolecular interactions between tRNALys3 and vRNA have been reported, but their functions remain unclear. Here, we show that abolishing one potential interaction, the A-rich loop: tRNALys3 anticodon interaction in the HIV-1 MAL strain, led to a decrease in viral infectivity and reduced the synthesis of reverse transcription products in newly infected cells. In vitro biophysical and functional experiments revealed that disruption of the extended interaction resulted in an increased affinity for reverse transcriptase (RT) and enhanced primer extension efficiency. In the absence of deoxyribose nucleoside triphosphates (dNTPs), vRNA was degraded by the RNaseH activity of RT, and the degradation rate was slower in the complex with the extended interaction. Consistently, the loss of vRNA integrity was detected in virions containing A-rich loop mutations. Similar results were observed in the HIV-1 NL4.3 strain, and we show that the nucleocapsid (NC) protein is necessary to promote the extended vRNA: tRNALys3 interactions in vitro. In summary, our data revealed that the additional intermolecular interaction between tRNALys3 and vRNA is likely a conserved mechanism among various HIV-1 strains and protects the vRNA from RNaseH degradation in mature virions.


Assuntos
Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , RNA de Transferência de Lisina/genética , RNA Viral , Regulação Viral da Expressão Gênica , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Humanos , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade de RNA , RNA de Transferência de Lisina/química , RNA Viral/química , RNA Viral/genética , Transcrição Reversa
8.
Nat Commun ; 11(1): 6233, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277478

RESUMO

The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


Assuntos
Proteínas Arqueais/química , Methanocaldococcus/metabolismo , Complexos Multiproteicos/química , RNA de Transferência/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Methanocaldococcus/genética , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(15): 7308-7313, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30902895

RESUMO

The initiation phase of HIV reverse transcription has features that are distinct from its elongation phase. The first structure of a reverse transcription initiation complex (RTIC) that trapped the complex after incorporation of one ddCMP nucleotide was published recently [Larsen KP, et al. (2018) Nature 557:118-122]. Here we report a crystal structure of a catalytically active HIV-1 RT/dsRNA complex that mimics the state of the RTIC before the first nucleotide incorporation. The structure reveals that the dsRNA-bound conformation of RT is closer to that of RT bound to a nonnucleoside RT inhibitor (NNRTI) and dsDNA; a hyperextended thumb conformation helps to accommodate the relatively wide dsRNA duplex. The RNA primer 3' end is positioned 5 Å away from the polymerase site; however, unlike in an NNRTI-bound state in which structural elements of RT restrict the movement of the primer, the primer terminus of dsRNA is not blocked from reaching the active site of RT. The observed structural changes and energetic cost of bringing the primer 3' end to the priming site are hypothesized to explain the slower nucleotide incorporation rate of the RTIC. An unusual crystal lattice interaction of dsRNA with its symmetry mate is reminiscent of the RNA architecture within the extended vRNA-tRNALys3 in the RTIC. This RT/dsRNA complex captures the key structural characteristics and components of the RTIC, including the RT conformational changes and interactions with the dsRNA primer-binding site region, and these features have implications for better understanding of RT initiation.


Assuntos
Transcriptase Reversa do HIV/química , HIV-1/enzimologia , RNA de Cadeia Dupla/química , RNA de Transferência de Lisina/química , RNA Viral/química , Cristalografia por Raios X
10.
Nat Commun ; 9(1): 3966, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262910

RESUMO

Post-transcriptional RNA modifications play a critical role in the pathogenesis of human mitochondrial disorders, but the mechanisms by which specific modifications affect mitochondrial protein synthesis remain poorly understood. Here we used a quantitative RNA sequencing approach to investigate, at nucleotide resolution, the stoichiometry and methyl modifications of the entire mitochondrial tRNA pool, and establish the relevance to human disease. We discovered that a N1-methyladenosine (m1A) modification is missing at position 58 in the mitochondrial tRNALys of patients with the mitochondrial DNA mutation m.8344 A > G associated with MERRF (myoclonus epilepsy, ragged-red fibers). By restoring the modification on the mitochondrial tRNALys, we demonstrated the importance of the m1A58 to translation elongation and the stability of selected nascent chains. Our data indicates regulation of post-transcriptional modifications on mitochondrial tRNAs is finely tuned for the control of mitochondrial gene expression. Collectively, our findings provide novel insight into the regulation of mitochondrial tRNAs and reveal greater complexity to the molecular pathogenesis of MERRF.


Assuntos
Mitocôndrias/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Lisina/metabolismo , Sequência de Bases , Células HEK293 , Humanos , Síndrome MERRF/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência de Lisina/química
11.
J Cell Biochem ; 119(7): 6258-6265, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29663531

RESUMO

Variations in mitochondrial genes have an established link with myoclonic epilepsy. In the present study we evaluated the nucleotide sequence of MT-TK gene of 52 individuals from 12 unrelated families and reported three variations in 2 of the 13 epileptic patients. The DNA sequences coding for MT-TK gene were sequenced and mutations were detected in all participants. The mutations were further analyzed by the in silico analysis and their structural and pathogenic effects were determined. All the investigated patients had symptoms of myoclonus, 61.5% were positive for ataxia, 23.07% were suffering from hearing loss, 15.38% were having mild to severe dementia, 69.23% were males, and 61.53% had cousin marriage in their family history. DNA extracted from saliva was used for the PCR amplification of a 440 bp DNA fragment encompassing complete MT-TK gene. The nucleotide sequence analysis revealed three mutations, m.8306T>C, m.8313G>C, and m.8362T>G that are divergent from available reports. The identified mutations designate the heteroplasmic condition. Furthermore, pathogenicity of the identified variants was predicted by in silico tools viz., PON-mt-tRNA and MitoTIP. Secondary structure of altered MT-TK was predicted by RNAStructure web server. Studies by MitoTIP and PON-mt-tRNA tools have provided strong evidences of pathogenic effects of these mutations. Single nucleotide variations resulted in disruptive secondary structure of mutant MT-TK models, as predicted by RNAStructure. In vivo confirmation of structural and pathogenic effects of identified mutations in the animal models can be prolonged on the basis of these findings.


Assuntos
Simulação por Computador , Epilepsias Mioclônicas/genética , Mitocôndrias/genética , Mutação , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética , Adolescente , Adulto , Sequência de Bases , Criança , Estudos Transversais , Epilepsias Mioclônicas/patologia , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Conformação de Ácido Nucleico , Homologia de Sequência , Adulto Jovem
12.
Nature ; 557(7703): 118-122, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695867

RESUMO

Reverse transcription of the HIV-1 RNA genome into double-stranded DNA is a central step in viral infection 1 and a common target of antiretroviral drugs 2 . The reaction is catalysed by viral reverse transcriptase (RT)3,4 that is packaged in an infectious virion with two copies of viral genomic RNA 5 each bound to host lysine 3 transfer RNA (tRNALys3), which acts as a primer for initiation of reverse transcription6,7. Upon viral entry into cells, initiation is slow and non-processive compared to elongation8,9. Despite extensive efforts, the structural basis of RT function during initiation has remained a mystery. Here we use cryo-electron microscopy to determine a three-dimensional structure of an HIV-1 RT initiation complex. In our structure, RT is in an inactive polymerase conformation with open fingers and thumb and with the nucleic acid primer-template complex shifted away from the active site. The primer binding site (PBS) helix formed between tRNALys3 and HIV-1 RNA lies in the cleft of RT and is extended by additional pairing interactions. The 5' end of the tRNA refolds and stacks on the PBS to create a long helical structure, while the remaining viral RNA forms two helical stems positioned above the RT active site, with a linker that connects these helices to the RNase H region of the PBS. Our results illustrate how RNA structure in the initiation complex alters RT conformation to decrease activity, highlighting a potential target for drug action.


Assuntos
Microscopia Crioeletrônica , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/ultraestrutura , HIV-1/enzimologia , Sequência de Bases , Domínio Catalítico , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Conformação Molecular , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/metabolismo , RNA de Transferência de Lisina/ultraestrutura , Transcrição Reversa , Ribonuclease H/química , Ribonuclease H/metabolismo , Ribonuclease H/ultraestrutura
13.
Nat Commun ; 8: 16056, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685749

RESUMO

Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNALys(UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC.


Assuntos
Proteínas de Transporte/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência de Lisina/genética , Ribossomos/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Bases , Proteínas de Transporte/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , Poliadenilação , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/metabolismo , Ribossomos/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Chem Commun (Camb) ; 53(56): 7945-7948, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28657616

RESUMO

A t6A nucleoside was efficiently and stereospecifically transformed into a hydantoin cyclic form of N6-l-threonylcarbamoyladenosine (ct6A) by the use of polymer bounded carbodiimide (EDC-P) and HOBt. The procedure was successfully applied for a post-synthetic conversion of t6A-containing RNA 17-mers (of the sequences of anticodon stem and loop (ASL) fragments of S. pombe tRNAi and E. coli tRNALys) into the products bearing the ct6A unit.


Assuntos
Adenosina/análogos & derivados , Hidantoínas/síntese química , Oligorribonucleotídeos/síntese química , Adenosina/química , Anticódon , Carbodi-Imidas/química , Ciclização , Escherichia coli , Hidantoínas/química , Concentração de Íons de Hidrogênio , Oligorribonucleotídeos/química , Estabilidade de RNA , RNA de Transferência de Lisina/síntese química , RNA de Transferência de Lisina/química , Schizosaccharomyces
15.
Biochem Biophys Res Commun ; 486(3): 804-810, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351618

RESUMO

Tuberculosis (TB) is a severe disease caused by Mycobacterium tuberculosis (M. tb) and the well-characterized M. tb MazE/F proteins play important roles in stress adaptation. Recently, the MazF-mt9 toxin has been found to display endonuclease activities towards tRNAs but the mechanism is unknown. We hereby present the crystal structure of apo-MazF-mt9. The enzyme recognizes tRNALys with a central UUU motif within the anticodon loop, but is insensitive to the sequence context outside of the loop. Based on our crystallographic and biochemical studies, we identified key residues for catalysis and proposed the potential tRNA-binding site.


Assuntos
Anticódon/química , Apoproteínas/química , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Endorribonucleases/química , Mycobacterium tuberculosis/química , RNA de Transferência de Lisina/química , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
16.
Biochemistry ; 56(3): 500-513, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28005340

RESUMO

DNA polymerase ß (Pol ß) is a key enzyme in mammalian base excision repair (BER), contributing stepwise 5'-deoxyribose phosphate (dRP) lyase and "gap-filling" DNA polymerase activities. The lyase reaction is believed to occur via a ß-elimination reaction following the formation of a Schiff base between the dRP group at the pre-incised apurinic/apyrimidinic site and the ε-amino group of Lys72. To probe the steric constraints on the formation and subsequent resolution of the putative Schiff base intermediate within the lyase catalytic pocket, Lys72 was replaced with each of several nonproteinogenic lysine analogues. The modified Pol ß enzymes were produced by coupled in vitro transcription and translation from a modified DNA template containing a TAG codon at the position corresponding to Lys72. In the presence of a misacylated tRNACUA transcript, suppression of the UAG codon in the transcribed mRNA led to elaboration of full length Pol ß having a lysine analogue at position 72. Replacement of the primary nucleophilic amine with a secondary amine in the form of N-methyllysine (4) affected mainly the stability of the Schiff base intermediate and resulted in relatively moderate inhibition of lyase activity and BER. Elongation of the side chain of the catalytic residue by one methylene group, achieved by introduction of homolysine (6) at position 72, apparently shifted the amino group to a position less favorable for Schiff base formation. Interestingly, this effect was attenuated when the side chain was elongated by replacing one side-chain methylene group with a bridging S atom (thialysine, 2). In comparison, replacement of lysine 72 with an analogue having a guanidine moiety in lieu of an ε-amino group (homoarginine, 5) or a sterically constrained secondary amine (piperidinylalanine, 3) led to almost complete suppression of dRP excision activity and the ability of Pol ß to support BER. These results help to define the tolerance of Pol ß to subtle local structural and functional alterations.


Assuntos
DNA Polimerase beta/química , Reparo do DNA , Lisina/análogos & derivados , Fósforo-Oxigênio Liases/química , RNA de Transferência de Lisina/química , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Códon/genética , Códon/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Lisina/metabolismo , Modelos Moleculares , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Biossíntese de Proteínas , Domínios Proteicos , Estrutura Secundária de Proteína , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bases de Schiff/química , Bases de Schiff/metabolismo , Transcrição Gênica
17.
Methods ; 118-119: 146-162, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27939506

RESUMO

The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes.


Assuntos
Cromatografia em Gel/métodos , Difração de Nêutrons/métodos , RNA de Transferência de Lisina/química , Proteínas de Ligação a RNA/química , Ultracentrifugação/métodos , Difração de Raios X/métodos , 2',5'-Oligoadenilato Sintetase/química , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Hidrodinâmica , Modelos Moleculares , Transferases de Grupo de Um Carbono/química , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espalhamento a Baixo Ângulo , Software , Vírus do Nilo Ocidental/genética , Zea mays/genética , Zea mays/metabolismo
18.
Methods ; 113: 83-90, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27887987

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that function at the first step of translation, catalyzing the conjugation of amino acids to their cognate tRNAs for protein synthesis. While preserving this essential role, higher eukaryotic aaRSs, such as human cytoplasmic aaRSs, have developed other functions during evolution, including angiogenesis, inflammation, development, tumorigenesis, etc. These translational and nontranslational functions of aaRSs are attractive targets for developing antibacterial, antifungal, anticancer agents and for treating other human diseases. Structural characterization of aaRS functions in both categories has deepened our understanding and provided insightful platform for further structure-based drug design. The convergence of the mechanism of action, together with their divergent functions, offers a possible protocol for studying these features of aaRSs in general. To guide this objective in future, we provide here a review on the methods used in structural analysis, which may be applied to study this special group of housekeeping proteins.


Assuntos
Lisina-tRNA Ligase/química , Lisina/química , Processamento de Proteína Pós-Traducional , RNA de Transferência de Lisina/química , Linhagem Celular Tumoral , Clonagem Molecular , Cristalografia por Raios X/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Linfócitos/química , Linfócitos/citologia , Linfócitos/enzimologia , Lisina/metabolismo , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Biochemistry (Mosc) ; 81(10): 1081-1088, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27908233

RESUMO

Mitochondrial genomes of many eukaryotic organisms do not code for the full tRNA set necessary for organellar translation. Missing tRNA species are imported from the cytosol. In particular, one out of two cytosolic lysine tRNAs of the yeast Saccharomyces cerevisiae is partially internalized by mitochondria. The key protein factor of this process is the precursor of mitochondrial lysyl-tRNA synthetase, preMsk1p. In this work, we show that recombinant preMsk1p purified from E. coli in native conditions, when used in an in vitro tRNA import system, demonstrates some properties different from those shown by the renatured protein purified from E. coli in the denatured state. We also discuss the possible mechanistic reasons for this phenomenon.


Assuntos
Lisina-tRNA Ligase , Mitocôndrias , Proteínas Mitocondriais , RNA Fúngico , RNA de Transferência de Lisina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transporte Biológico Ativo , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/isolamento & purificação , Lisina-tRNA Ligase/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Protein Sci ; 25(12): 2243-2255, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27680513

RESUMO

In this paper, we investigate the ability of our computationally-designed peptide, Pept10 (PNWNGNRWLNNCLRG), to recognize the anticodon stem and loop (ASL) domain of the hypermodified tRNALys3 (mcm5 s2 U34 ,ms2 t6 A37 ), a reverse transcription primer of HIV replication. Five other ASLs, the singly modified ASLLys3 (ms2 t6 A37 ), ASLLys3 (s2 U34 ), ASLLys3 (Ψ39 ), ASLLys1,2 (t6 A37 ), and ASLGlu (s2 U34 ), were used as decoys. Explicit-solvent atomistic molecular dynamics simulations were performed to examine the process of binding of Pept10 with the target ASLLys3 (mcm5 s2 U34 ,ms2 t6 A37 ) and the decoy ASLs. Simulation results demonstrated that Pept10 is capable of recognizing the target ASLLys3 (mcm5 s2 U34 ,ms2 t6 A37 ) as well as one of the decoys, ASLLys3 (Ψ39 ), but screens out the other four decoy ASLs. The interchain van der Waals (VDW) and charge-charge (ELE + EGB) energies for the two best complexes were evaluated to shed light on the molecular recognition mechanism between Pept10 and ASLs. The results indicated that Pept10 recognizes and binds to the target ASLLys3 (mcm5 s2 U34 ,ms2 t6 A37 ) through residues W3 and R7 which interact with the nucleotides mcm5 s2 U34 , U35 , and ms2 t6 A37 via the interchain VDW energy. Pept10 also recognizes the decoy ASLLys3 (Ψ39 ) through residue R14 which contacts the nucleotide U36 via the interchain VDW energy. Regardless of the type of ASL, the positively charged arginines on Pept10 are attracted to the negatively charged phosphate linkages on the ASL via the interchain ELE + EGB energy, thereby enhancing the binding affinity.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , RNA de Transferência de Lisina/química , Termodinâmica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA