Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ren Fail ; 45(1): 2147083, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748746

RESUMO

BACKGROUND: Tacrolimus is a potent immunosuppressant, but has various side effects, with nephrotoxicity being the most common. Renal fibrosis is an important process of tacrolimus nephrotoxicity. Therefore, it is important to identify the factors that contribute to renal fibrosis after tacrolimus nephrotoxicity, and control its development. METHODS: The present study aims to determine whether tacrolimus may speed up the course of renal fibrosis by upregulating noncoding RNA activated by DNA damage (NORAD) to compete with miR-136-5p, and activating the TGF-ß1/Smad3 pathway. Furthermore, in vivo rat models and in vitro cell models were established. Then, the expression levels of NORAD and miR-136-5p were determined by RT-qPCR, while the expression of the TGF-ß1/Smad3 pathway was determined by western blot and RT-qPCR. In order to investigate the interaction between NORAD and miR-136-5p, as well as miR-136-5p and SYK, two luciferase reporters were employed. The renal fibrosis of mice was observed using Masson and PAS staining. The expression of inflammatory factors IL-1, IL-6, MCP-1 and TNF-α was detected by ELISA. RESULTS: In the in vitro experiments, NORAD was upregulated, while miR-136-5p was downregulated after tacrolimus induction. The expression of the TGF-ß1/Smad3 pathway correspondingly changed after the induction by tacrolimus. In the in vivo experiments, the expression of NORAD and miR-136-5p, and the trend for renal fibrosis were consistent with the results in the in vitro experiments. Furthermore, the inflammatory factors correspondingly changed with the severity of renal fibrosis. Moreover, the expression trend of the TGF-ß1/Smad3 pathway in tacrolimus-induced rats was consistent with that in the in vitro experiments. CONCLUSION: Through in vitro and in vivo experiments, the present study was able to successfully prove that tacrolimus upregulates NORAD to compete with miR-136-5p, resulting in a decrease in miR-136-5p expression, which in turn activates the TGF-ß1/smad3 pathway, and finally induces the aggravation of renal fibrosis.


Assuntos
Nefropatias , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Ratos , Dano ao DNA , Fibrose , Nefropatias/induzido quimicamente , Nefropatias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido/farmacologia , Transdução de Sinais , Tacrolimo/toxicidade , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/genética
2.
J Nutr Biochem ; 112: 109207, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36402249

RESUMO

Squalene is a key minor component of virgin olive oil, the main source of fat in the Mediterranean diet, and had shown to improve the liver metabolism in rabbits and mice. The present research was carried out to find out whether this effect was conserved in a porcine model of hepatic steatohepatitis and to search for the lipidomic changes involved. The current study revealed that a 0.5% squalene supplementation to a steatotic diet for a month led to hepatic accumulation of squalene and decreased triglyceride content as well as area of hepatic lipid droplets without influencing cholesterol content or fiber areas. However, ballooning score was increased and associated with the hepatic squalene content. Of forty hepatic transcripts related to lipid metabolism and hepatic steatosis, only citrate synthase and a non-coding RNA showed decreased expressions. The hepatic lipidome, assessed by liquid chromatography-mass spectrometry in a platform able to analyze 467 lipids, revealed that squalene supplementation increased ceramide, Cer(36:2), and phosphatidylcholine (PC[32:0], PC[33:0] and PC[34:0]) species and decreased cardiolipin, CL(69:5), and triglyceride (TG[54:2], TG[55:0] and TG[55:2]) species. Plasma levels of interleukin 12p40 increased in pigs receiving the squalene diet. The latter also modified plasma lipidome by increasing TG(58:12) and decreasing non-esterified fatty acid (FA 14:0, FA 16:1 and FA 18:0) species without changes in total NEFA levels. Together this shows that squalene-induced changes in hepatic and plasma lipidomic profiles, non-coding RNA and anti-inflammatory interleukin are suggestive of an alleviation of the disease despite the increase in the ballooning score.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Esqualeno , Suínos , Camundongos , Animais , Coelhos , Esqualeno/metabolismo , Esqualeno/farmacologia , Lipidômica , Triglicerídeos/metabolismo , Fosfolipídeos/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Suplementos Nutricionais , RNA não Traduzido/metabolismo , RNA não Traduzido/farmacologia
3.
Platelets ; 34(1): 2157382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36550091

RESUMO

Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).


What is the context? Platelets are produced from progenitor cells named megakaryocytes (MKs) differentiated from bone marrow-derived hematopoietic stem cells (HSCs).Thrombopoiesis refers to the process by which platelet-producing MKs release platelet granules into peripheral blood under the shear force of blood flow for further development and maturation.The process of megakaryocytopoiesis and thrombopoiesis is affected by multiple factors, wherein some ncRNAs also exert a significant regulatory role.miRNAs/lncRNAs play a promising role in t primary immune thrombocytopenia (ITP).What is new? This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis.This article also reviewed the roles of ncRNAs in ITP.What is the impact?Changes in ncRNA expression are associated with changes in the production of MKs, thrombopoiesis, and platelet function, which allows a new understanding of the pathogenesis of many congenital or acquired platelet-related diseases.


Assuntos
MicroRNAs , Trombopoese , Humanos , Trombopoese/genética , Plaquetas/metabolismo , Megacariócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido/metabolismo , RNA não Traduzido/farmacologia
4.
Genome Med ; 14(1): 144, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539881

RESUMO

BACKGROUND: The respiratory pathogen Streptococcus pneumoniae (the pneumococcus) is a genetically diverse bacterium associated with over 101 immunologically distinct polysaccharide capsules (serotypes). Polysaccharide conjugate vaccines (PCVs) have successfully eliminated multiple targeted serotypes, yet the mucoid serotype 3 has persisted despite its inclusion in PCV13. This capsule type is predominantly associated with a single globally disseminated strain, GPSC12 (clonal complex 180). METHODS: A genomic epidemiology study combined previous surveillance datasets of serotype 3 pneumococci to analyse the population structure, dynamics, and differences in rates of diversification within GPSC12 during the period of PCV introductions. Transcriptomic analyses, whole genome sequencing, mutagenesis, and electron microscopy were used to characterise the phenotypic impact of loci hypothesised to affect this strain's evolution. RESULTS: GPSC12 was split into clades by a genomic analysis. Clade I, the most common, rarely underwent transformation, but was typically infected with the prophage ϕOXC141. Prior to the introduction of PCV13, this clade's composition shifted towards a ϕOXC141-negative subpopulation in a systematically sampled UK collection. In the post-PCV13 era, more rapidly recombining non-Clade I isolates, also ϕOXC141-negative, have risen in prevalence. The low in vitro transformation efficiency of a Clade I isolate could not be fully explained by the ~100-fold reduction attributable to the serotype 3 capsule. Accordingly, prophage ϕOXC141 was found to modify csRNA3, a non-coding RNA that inhibits the induction of transformation. This alteration was identified in ~30% of all pneumococci and was particularly common in the unusually clonal serotype 1 GPSC2 strain. RNA-seq and quantitative reverse transcriptase PCR experiments using a genetically tractable pneumococcus demonstrated the altered csRNA3 was more effective at inhibiting production of the competence-stimulating peptide pheromone. This resulted in a reduction in the induction of competence for transformation. CONCLUSION: This interference with the quorum sensing needed to induce competence reduces the risk of the prophage being deleted by homologous recombination. Hence the selfish prophage-driven alteration of a regulatory RNA limits cell-cell communication and horizontal gene transfer, complicating the interpretation of post-vaccine population dynamics.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Sorogrupo , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Prófagos/genética , Vacinas Pneumocócicas , Vacinas Conjugadas , RNA não Traduzido/genética , RNA não Traduzido/farmacologia
5.
Adv Drug Deliv Rev ; 182: 114113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063535

RESUMO

Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas/química , Neoplasias/tratamento farmacológico , Interferência de RNA/fisiologia , Terapêutica com RNAi/métodos , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , RNA não Traduzido/administração & dosagem , RNA não Traduzido/farmacologia
6.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768777

RESUMO

Clinical outcomes after pathologic infection are variable in infected individuals, ranging from no symptoms, moderate symptoms, hospitalization, and even death [...].


Assuntos
Interações Hospedeiro-Patógeno/genética , RNA não Traduzido/genética , Humanos , Imunidade Inata/imunologia , MicroRNAs/genética , RNA não Traduzido/farmacologia
7.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430186

RESUMO

The ability to establish, maintain, and reactivate from latency in sensory neurons within trigeminal ganglia (TG) is crucial for bovine herpesvirus 1 (BoHV-1) transmission. In contrast to lytic infection, the only viral gene abundantly expressed during latency is the latency-related (LR) gene. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency, in part because the glucocorticoid receptor (GR) transactivates viral promoters that drive expression of key viral transcriptional regulator proteins (bICP0 and bICP4). Within hours after dexamethasone treatment of latently infected calves, LR gene products and ß-catenin are not readily detected in TG neurons. Hence, we hypothesized that LR gene products and/or ß-catenin restrict GR-mediated transcriptional activation. A plasmid expressing LR RNA sequences that span open reading frame 2 (ORF2-Stop) inhibited GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) and mouse mammary tumor virus (MMTV) promoter activity in mouse neuroblastoma cells (Neuro-2A). ORF2-Stop also reduced productive infection and GR steady-state protein levels in transfected Neuro-2A cells. Additional studies revealed that the constitutively active ß-catenin mutant reduced the transactivation of the IEtu1 promoter by GR and dexamethasone. Collectively, these studies suggest ORF2 RNA sequences and Wnt/ß-catenin signaling pathway actively promote maintenance of latency, in part, by impairing GR-mediated gene expression.


Assuntos
Infecções por Herpesviridae/genética , RNA não Traduzido/genética , Proteínas Virais/genética , beta Catenina/genética , Animais , Bovinos , Dexametasona/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/patogenicidade , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Neuroblastoma/genética , Neuroblastoma/virologia , Regiões Promotoras Genéticas/genética , RNA não Traduzido/farmacologia , Receptores de Glucocorticoides/genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Fatores de Transcrição/genética , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/virologia , Latência Viral/genética , Via de Sinalização Wnt/efeitos dos fármacos
8.
Med Chem ; 15(3): 216-230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30484409

RESUMO

BACKGROUND: Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs. OBJECTIVE: The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA's roles in cellular processes and drugs design, briefly. METHOD: In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases. RESULTS: The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs. CONCLUSION: ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.


Assuntos
RNA não Traduzido , Algoritmos , Simulação por Computador , Bases de Dados Factuais , Desenho de Fármacos , RNA não Traduzido/química , RNA não Traduzido/farmacologia , RNA não Traduzido/fisiologia
9.
Curr Neurovasc Res ; 15(1): 81-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29557749

RESUMO

BACKGROUND: With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS: Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS: Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION: Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.


Assuntos
Relógios Circadianos/fisiologia , Fatores de Transcrição Forkhead/uso terapêutico , Terapia Genética/tendências , Doenças Neurodegenerativas/terapia , RNA não Traduzido/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Relógios Circadianos/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/farmacologia , Terapia Genética/métodos , Humanos , Doenças Neurodegenerativas/genética , RNA não Traduzido/genética , RNA não Traduzido/farmacologia
10.
Tissue Eng Part B Rev ; 23(2): 142-158, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27763207

RESUMO

In vitro culture of ovarian follicles is a promising bioengineering technique for preserving fecundity in reproductive-aged female by providing fertilizable oocytes. Successful clinical application should be preceded by developing the protocols that can efficiently overcome follicular cell apoptosis since the apoptosis is a critical phenomenon in in vivo folliculogenesis and in in vitro follicular maturation. Numerous prosurvival and antiapoptotic molecules, including follicular developmental regulators, have been reported to be involved in the intraovarian apoptosis. The authors searched literature and analyzed the current knowledge of these proteins and noncoding RNAs, and their antiapoptotic roles in the dynamics of follicular development in vivo and in vitro. Two-dimensional (2D) culture method has widely been used, however, with recent emergence of various biomaterials, three-dimensional (3D) culture is also considered a proper environment for maintenance of solid structure of ovarian follicles. The identification of candidate paracrine and endocrine intracellular effectors that are responsible for the coordination occurring between oocyte, granulosa, and theca cells during follicular development was explored in this review, to assess the possibility of their use as antiapoptotic factors in establishing more efficacious 2D or 3D in vitro follicular microenvironment. The retrieved information will provide an inventory and the insight for defining more sophisticated culture conditions that are essential for functional artificial ovarian bioengineering.


Assuntos
Proteínas Reguladoras de Apoptose/farmacologia , Bioengenharia/métodos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/fisiologia , RNA não Traduzido/farmacologia , Animais , Feminino , Humanos
11.
Bioengineered ; 7(6): 411-417, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27415469

RESUMO

Non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are important players in the control of gene regulation and represent novel promising therapeutic targets or agents for the treatment of various diseases. While synthetic ncRNAs are predominately utilized, the effects of excessive artificial modifications on higher-order structures, activities and toxicities of ncRNAs remain uncertain. Inspired by recombinant protein technology allowing large-scale bioengineering of proteins for research and therapy, efforts have been made to develop practical and effective means to bioengineer ncRNA agents. The fermentation-based approaches shall offer biological ncRNA agents with natural modifications and proper folding critical for ncRNA structure, function and safety. In this article, we will summarize current recombinant RNA platforms to the production of ncRNA agents including siRNAs and miRNAs. The applications of bioengineered ncRNA agents for basic research and potential therapeutics are also discussed.


Assuntos
Bioengenharia/métodos , RNA não Traduzido/genética , Animais , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/farmacologia , Engenharia de Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA não Traduzido/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
12.
Circ Res ; 113(5): 588-602, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23948584

RESUMO

Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.


Assuntos
Doenças Cardiovasculares/terapia , Terapia Genética/métodos , Terapia de Alvo Molecular/métodos , Interferência de RNA , RNA não Traduzido/uso terapêutico , Animais , Doenças Cardiovasculares/genética , Dependovirus/genética , Dependovirus/imunologia , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Previsões , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/uso terapêutico , Estudo de Associação Genômica Ampla , Humanos , MicroRNAs/efeitos adversos , MicroRNAs/imunologia , MicroRNAs/fisiologia , MicroRNAs/uso terapêutico , Terapia de Alvo Molecular/efeitos adversos , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/fisiologia , RNA Interferente Pequeno/uso terapêutico , RNA não Traduzido/efeitos adversos , RNA não Traduzido/classificação , RNA não Traduzido/imunologia , RNA não Traduzido/farmacologia , RNA não Traduzido/fisiologia , Especificidade por Substrato , Transcriptoma , Pesquisa Translacional Biomédica
13.
Nat Commun ; 3: 1073, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23011127

RESUMO

Food and other environmental factors affect gene expression and behaviour of animals. Differences in bacterial food affect the behaviour and longevity of Caenorhabditis elegans. However, no research has been carried out to investigate whether bacteria could utilize endogenous RNAs to affect C. elegans physiology. Here we show that two Escherichia coli endogenous noncoding RNAs, OxyS and DsrA, impact on the physiology of C. elegans. OxyS downregulates che-2, leading to impairment in C. elegans chemosensory behaviour and DsrA suppresses diacylglycerol lipase gene F42G9.6, leading to a decrease in longevity. We also examine some genes in the C. elegans RNA interference pathway for their possible involvement in the effects of OxyS and DsrA. Other bacteria, such as Bacillus mycoides, may also utilize its noncoding RNAs to interfere with gene expression in C. elegans. Our results demonstrate that E. coli noncoding RNAs can regulate gene expression and physiological conditions of C. elegans and indicate that noncoding RNAs might have interspecies ecological roles.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Escherichia coli/genética , RNA Bacteriano/farmacologia , RNA não Traduzido/farmacologia , Animais , Caenorhabditis elegans/fisiologia
14.
Neurobiol Dis ; 41(2): 308-17, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20888417

RESUMO

Alternative splicing is a central component of human brain complexity; nonetheless, its regulatory mechanisms are still largely unclear. In this work, we describe a novel non-coding (nc) RNA (named 17A) RNA polymerase (pol) III-dependent embedded in the human G-protein-coupled receptor 51 gene (GPR51, GABA B2 receptor). The stable expression of 17A in SHSY5Y neuroblastoma cells induces the synthesis of an alternative splicing isoform that abolish GABA B2 intracellular signaling (i.e., inhibition of cAMP accumulation and activation of K(+) channels). Indeed, 17A is expressed in human brain, and we report that it is upregulated in cerebral tissues derived from Alzheimer disease patients. We demonstrate that 17A expression in neuroblastoma cells enhances the secretion of amyloid ß peptide (Aß) and the Aß x-42/Αß x-40 peptide ratio and that its synthesis is induced in response to inflammatory stimuli. These data correlate, for the first time, the activity of a novel pol III-dependent ncRNA to alternative splicing events and, possibly, to neurodegeneration induced by abnormal GABA B function. We anticipate that further analysis of pol III-dependent regulation of alternative splicing will disclose novel regulatory pathways associated to brain physiology and/or pathology.


Assuntos
Processamento Alternativo/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Mediadores da Inflamação/fisiologia , RNA não Traduzido/genética , Receptores de GABA-A/genética , Transdução de Sinais/genética , Doença de Alzheimer/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Células HeLa , Humanos , Mediadores da Inflamação/metabolismo , Dados de Sequência Molecular , RNA Polimerase III/genética , RNA Polimerase III/fisiologia , RNA Longo não Codificante , RNA não Traduzido/farmacologia , RNA não Traduzido/fisiologia , Receptores de GABA-A/química , Receptores de GABA-A/fisiologia , Regulação para Cima/genética
15.
Antiviral Res ; 87(1): 9-15, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20382185

RESUMO

The current treatments used against RNA viruses have a limited efficacy and are often hampered by the induction of side-effects. The specific delivery of antiviral proteins in infected cells should increase their efficiency and reduce their impact on healthy cells. Here, we describe the development of a new approach which takes advantage of the viral replication machinery to specifically target the antiviral protein expression to the infected cells. The strategy is based on the delivery of a non-coding (-)RNA carrying the structures required for the binding of the viral replication complex and the complementary sequence of an antiviral gene. The viral replication complex replicates the (-)RNA similarly to the viral genome to give a coding (+)RNA from which the antiviral protein will be expressed. As non-infected cells do not express the replication complex, this specific machinery can be used to target virus-infected cells without affecting healthy cells. We show that this approach can be successfully applied to the hepatitis C virus. In both replicon-harboring cells (genotype 1b) and JFH-1 infected cells (genotype 2a), nrRNAs induced a strong decrease in genomic RNA and viral protein NS5A. These effects were correlated with a strong activation of several interferon-stimulating genes.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , RNA não Traduzido/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Hepatócitos/virologia , Humanos , RNA Viral/biossíntese , Proteínas não Estruturais Virais/biossíntese
16.
J Biomed Sci ; 16: 81, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19728883

RESUMO

The Mexican axolotl, Ambystoma mexicanum, carries the naturally-occurring recessive mutant gene 'c' that results in a failure of homozygous (c/c) embryos to form hearts that beat because of an absence of organized myofibrils. Our previous studies have shown that a noncoding RNA, Myofibril-Inducing RNA (MIR), is capable of promoting myofibrillogenesis and heart beating in the mutant (c/c) axolotls. The present study demonstrates that the MIR gene is essential for tropomyosin (TM) expression in axolotl hearts during development. Gene expression studies show that mRNA expression of various tropomyosin isoforms in untreated mutant hearts and in normal hearts knocked down with double-stranded MIR (dsMIR) are similar to untreated normal. However, at the protein level, selected tropomyosin isoforms are significantly reduced in mutant and dsMIR treated normal hearts. These results suggest that MIR is involved in controlling the translation or post-translation of various TM isoforms and subsequently of regulating cardiac contractility.


Assuntos
Ambystoma mexicanum/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Miofibrilas/metabolismo , RNA não Traduzido/fisiologia , Tropomiosina/biossíntese , Ambystoma mexicanum/embriologia , Animais , Sequência de Bases , DNA Complementar/genética , Endoderma/fisiologia , Éxons/genética , Técnicas de Silenciamento de Genes , Genes Recessivos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Contração Miocárdica/fisiologia , Miofibrilas/ultraestrutura , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , RNA Antissenso/farmacologia , RNA de Cadeia Dupla/farmacologia , RNA não Traduzido/genética , RNA não Traduzido/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tropomiosina/genética
17.
Nucleic Acids Res ; 35(17): 5683-93, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17715143

RESUMO

RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin constructs.


Assuntos
Fármacos Anti-HIV/química , HIV-1/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/química , RNA não Traduzido/química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Genes Reporter , HIV-1/genética , Humanos , Interferon beta/biossíntese , RNA Interferente Pequeno/farmacologia , RNA não Traduzido/metabolismo , RNA não Traduzido/farmacologia
18.
Chem Biol ; 12(7): 757-67, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16039523

RESUMO

Small nontranslated RNAs (sRNAs) regulate a variety of biological processes. DsrA and OxyS are two E. coli sRNAs that regulate the translation of rpoS, which encodes a protein sigma factor. Due to their structural complexity, the functional dissection of sRNAs solely by designing and assaying mutants can be challenging. Here, we present a complementary approach to the study of functional RNAs, in which highly diversified RNA libraries are generated by nonhomologous random recombination (NRR) and processed efficiently by in vivo selections that link RNA activities to cell survival. When applied to DsrA and OxyS, this approach rapidly identified essential and nonessential regions of both sRNAs. Resulting hypotheses about DsrA and OxyS structure-function relationships were tested and further refined experimentally. Our findings demonstrate an efficient, unbiased approach to the functional dissection of nucleic acids.


Assuntos
Escherichia coli/genética , Modificação Traducional de Proteínas , RNA não Traduzido/farmacologia , Recombinação Genética , Sequência de Bases , Sítios de Ligação , Escherichia coli/metabolismo , Dados de Sequência Molecular , Pequeno RNA não Traduzido , RNA não Traduzido/química , Fator sigma/química , Fator sigma/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA