Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.632
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
BMC Med Educ ; 24(1): 479, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693517

RESUMO

BACKGROUND: Modern medicine becomes more dependent on radiologic imaging techniques. Over the past decade, radiology has also gained more attention in the medical curricula. However, little is known with regard to students' perspectives on this subject. Therefore, this study aims to gain insight into the thoughts and ideas of medical students and junior doctors on radiology education in medical curricula. METHODS: A qualitative, descriptive study was carried out at one medical university in the Netherlands. Participants were recruited on social media and were interviewed following a predefined topic list. The constant comparative method was applied in order to include new questions when unexpected topics arose during the interviews. All interviews were transcribed verbatim and coded. Codes were organized into categories and themes by discussion between researchers. RESULTS: Fifteen participants (nine junior doctors and six students) agreed to join. From the coded interviews, four themes derived from fifteen categories arose: (1) The added value of radiology education in medical curricula, (2) Indispensable knowledge on radiology, (3) Organization of radiology education and (4) Promising educational innovations for the radiology curriculum. CONCLUSION: This study suggests that medical students and junior doctors value radiology education. It provides insights in educational topics and forms for educational improvement for radiology educators.


Assuntos
Currículo , Pesquisa Qualitativa , Radiologia , Estudantes de Medicina , Humanos , Países Baixos , Radiologia/educação , Estudantes de Medicina/psicologia , Masculino , Feminino , Corpo Clínico Hospitalar/educação , Atitude do Pessoal de Saúde , Educação de Graduação em Medicina , Entrevistas como Assunto , Adulto , Faculdades de Medicina
2.
BMC Med Ethics ; 25(1): 52, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734602

RESUMO

BACKGROUND: The integration of artificial intelligence (AI) in radiography presents transformative opportunities for diagnostic imaging and introduces complex ethical considerations. The aim of this cross-sectional study was to explore radiographers' perspectives on the ethical implications of AI in their field and identify key concerns and potential strategies for addressing them. METHODS: A structured questionnaire was distributed to a diverse group of radiographers in Saudi Arabia. The questionnaire included items on ethical concerns related to AI, the perceived impact on clinical practice, and suggestions for ethical AI integration in radiography. The data were analyzed using quantitative and qualitative methods to capture a broad range of perspectives. RESULTS: Three hundred eighty-eight radiographers responded and had varying levels of experience and specializations. Most (44.8%) participants were unfamiliar with the integration of AI into radiography. Approximately 32.9% of radiographers expressed uncertainty regarding the importance of transparency and explanatory capabilities in the AI systems used in radiology. Many (36.9%) participants indicated that they believed that AI systems used in radiology should be transparent and provide justifications for their decision-making procedures. A significant preponderance (44%) of respondents agreed that implementing AI in radiology may increase ethical dilemmas. However, 27.8%expressed uncertainty in recognizing and understanding the potential ethical issues that could arise from integrating AI in radiology. Of the respondents, 41.5% stated that the use of AI in radiology required establishing specific ethical guidelines. However, a significant percentage (28.9%) expressed the opposite opinion, arguing that utilizing AI in radiology does not require adherence to ethical standards. In contrast to the 46.6% of respondents voicing concerns about patient privacy over AI implementation, 41.5% of respondents did not have any such apprehensions. CONCLUSIONS: This study revealed a complex ethical landscape in the integration of AI in radiography, characterized by enthusiasm and apprehension among professionals. It underscores the necessity for ethical frameworks, education, and policy development to guide the implementation of AI in radiography. These findings contribute to the ongoing discourse on AI in medical imaging and provide insights that can inform policymakers, educators, and practitioners in navigating the ethical challenges of AI adoption in healthcare.


Assuntos
Inteligência Artificial , Atitude do Pessoal de Saúde , Radiografia , Humanos , Estudos Transversais , Inteligência Artificial/ética , Masculino , Adulto , Feminino , Inquéritos e Questionários , Radiografia/ética , Arábia Saudita , Pessoa de Meia-Idade , Radiologia/ética
4.
Eur Radiol Exp ; 8(1): 72, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740707

RESUMO

Overall quality of radiomics research has been reported as low in literature, which constitutes a major challenge to improve. Consistent, transparent, and accurate reporting is critical, which can be accomplished with systematic use of reporting guidelines. The CheckList for EvaluAtion of Radiomics research (CLEAR) was previously developed to assist authors in reporting their radiomic research and to assist reviewers in their evaluation. To take full advantage of CLEAR, further explanation and elaboration of each item, as well as literature examples, may be useful. The main goal of this work, Explanation and Elaboration with Examples for CLEAR (CLEAR-E3), is to improve CLEAR's usability and dissemination. In this international collaborative effort, members of the European Society of Medical Imaging Informatics-Radiomics Auditing Group searched radiomics literature to identify representative reporting examples for each CLEAR item. At least two examples, demonstrating optimal reporting, were presented for each item. All examples were selected from open-access articles, allowing users to easily consult the corresponding full-text articles. In addition to these, each CLEAR item's explanation was further expanded and elaborated. For easier access, the resulting document is available at https://radiomic.github.io/CLEAR-E3/ . As a complementary effort to CLEAR, we anticipate that this initiative will assist authors in reporting their radiomics research with greater ease and transparency, as well as editors and reviewers in reviewing manuscripts.Relevance statement Along with the original CLEAR checklist, CLEAR-E3 is expected to provide a more in-depth understanding of the CLEAR items, as well as concrete examples for reporting and evaluating radiomic research.Key points• As a complementary effort to CLEAR, this international collaborative effort aims to assist authors in reporting their radiomics research, as well as editors and reviewers in reviewing radiomics manuscripts.• Based on positive examples from the literature selected by the EuSoMII Radiomics Auditing Group, each CLEAR item explanation was further elaborated in CLEAR-E3.• The resulting explanation and elaboration document with examples can be accessed at  https://radiomic.github.io/CLEAR-E3/ .


Assuntos
Lista de Checagem , Humanos , Europa (Continente) , Radiologia/normas , Diagnóstico por Imagem/normas , Radiômica
5.
Radiol Technol ; 95(5): 327-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719560

RESUMO

PURPOSE: To provide an overview of the reflective learning cycle, as well as common reflective learning models, as a means of informing future implementation of reflective learning assignments in medical imaging curriculum. METHODS: Journal articles were searched for in Google Scholar, ScienceDirect, and ResearchGate, as well as the university's library databases using the keywords reflective learning, Kolb's model of learning, reflective learning practices in health care, and reflective learning in radiography. Out of 19 articles found, 12 articles were selected based on inclusion and exclusion criteria. RESULTS: The literature search yielded results in health care education, nursing, medicine, medical imaging and radiography, pharmacy, physical therapy, and occupational therapy. DISCUSSION: Studies have shown that reflection is an integral aspect of learning and has substantial implications for learners' clinical practice. Reflection is a cognitive process that facilitates learning, assists in the understanding and application of knowledge to clinical situations, and develops new clinical knowledge in student radiographers. When reflective activities, such as journaling, portfolios, and problem-based learning, are scaffolded throughout the curriculum, students develop critical reflection skills that positively affect their clinical practice. CONCLUSION: Reflective learning practices can positively affect student learning, clinical decision-making skills, and patient outcomes. When reflective learning activities are incorporated throughout the curriculum, students are more effectively able to bridge the gap between theoretical knowledge and clinical practice. In addition, the reflective learning process allows learners to examine their clinical experiences while providing context for application and future clinical practice and continued learning.


Assuntos
Currículo , Humanos , Tecnologia Radiológica/educação , Radiologia/educação , Competência Clínica , Diagnóstico por Imagem
6.
JMIR Med Educ ; 10: e52953, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722205

RESUMO

Background: In recent years, virtual reality (VR) has gained significant importance in medical education. Radiology education also has seen the induction of VR technology. However, there is no comprehensive review in this specific area. This review aims to fill this knowledge gap. Objective: This systematic literature review aims to explore the scope of VR use in radiology education. Methods: A literature search was carried out using PubMed, Scopus, ScienceDirect, and Google Scholar for articles relating to the use of VR in radiology education, published from database inception to September 1, 2023. The identified articles were then subjected to a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-defined study selection process. Results: The database search identified 2503 nonduplicate articles. After PRISMA screening, 17 were included in the review for analysis, of which 3 (18%) were randomized controlled trials, 7 (41%) were randomized experimental trials, and 7 (41%) were cross-sectional studies. Of the 10 randomized trials, 3 (30%) had a low risk of bias, 5 (50%) showed some concerns, and 2 (20%) had a high risk of bias. Among the 7 cross-sectional studies, 2 (29%) scored "good" in the overall quality and the remaining 5 (71%) scored "fair." VR was found to be significantly more effective than traditional methods of teaching in improving the radiographic and radiologic skills of students. The use of VR systems was found to improve the students' skills in overall proficiency, patient positioning, equipment knowledge, equipment handling, and radiographic techniques. Student feedback was also reported in the included studies. The students generally provided positive feedback about the utility, ease of use, and satisfaction of VR systems, as well as their perceived positive impact on skill and knowledge acquisition. Conclusions: The evidence from this review shows that the use of VR had significant benefit for students in various aspects of radiology education. However, the variable nature of the studies included in the review reduces the scope for a comprehensive recommendation of VR use in radiology education.


Assuntos
Radiologia , Realidade Virtual , Radiologia/educação , Humanos , Treinamento por Simulação/métodos
8.
Acad Radiol ; 31(5): 1968-1975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724131

RESUMO

RATIONALE AND OBJECTIVES: Radiology is a rapidly evolving field that benefits from continuous innovation and research participation among trainees. Traditional methods for involving residents in research are often inefficient and limited, usually due to the absence of a standardized approach to identifying available research projects. A centralized online platform can enhance networking and offer equal opportunities for all residents. MATERIALS AND METHODS: Research Connect is an online platform built with PHP, SQL, and JavaScript. Features include project and collaboration listing as well as advertisement of project openings to medical/undergraduate students, residents, and fellows. The automated system maintains project data and sends notifications for new research opportunities when they meet user preference criteria. Both pre- and post-launch surveys were used to assess the platform's efficacy. RESULTS: Before the introduction of Research Connect, 69% of respondents used informal conversations as their primary method of discovering research opportunities. One year after its launch, Research Connect had 141 active users, comprising 63 residents and 41 faculty members, along with 85 projects encompassing various radiology subspecialties. The platform received a median satisfaction rating of 4 on a 1-5 scale, with 54% of users successfully locating projects of interest through the platform. CONCLUSION: Research Connect addresses the need for a standardized method and centralized platform with active research projects and is designed for scalability. Feedback suggests it has increased the visibility and accessibility of radiology research, promoting greater trainee involvement and academic collaboration.


Assuntos
Internet , Radiologia , Humanos , Radiologia/educação , Comportamento Cooperativo , Pesquisa Biomédica , Internato e Residência , Inquéritos e Questionários
10.
J Med Internet Res ; 26: e54948, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691404

RESUMO

This study demonstrates that GPT-4V outperforms GPT-4 across radiology subspecialties in analyzing 207 cases with 1312 images from the Radiological Society of North America Case Collection.


Assuntos
Radiologia , Radiologia/métodos , Radiologia/estatística & dados numéricos , Humanos , Processamento de Imagem Assistida por Computador/métodos
12.
AJR Am J Roentgenol ; 222(4): e2431110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656812
13.
Radiol Cardiothorac Imaging ; 6(2): e240020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602468

RESUMO

Radiology: Cardiothoracic Imaging publishes novel research and technical developments in cardiac, thoracic, and vascular imaging. The journal published many innovative studies during 2023 and achieved an impact factor for the first time since its inaugural issue in 2019, with an impact factor of 7.0. The current review article, led by the Radiology: Cardiothoracic Imaging trainee editorial board, highlights the most impactful articles published in the journal between November 2022 and October 2023. The review encompasses various aspects of coronary CT, photon-counting detector CT, PET/MRI, cardiac MRI, congenital heart disease, vascular imaging, thoracic imaging, artificial intelligence, and health services research. Key highlights include the potential for photon-counting detector CT to reduce contrast media volumes, utility of combined PET/MRI in the evaluation of cardiac sarcoidosis, the prognostic value of left atrial late gadolinium enhancement at MRI in predicting incident atrial fibrillation, the utility of an artificial intelligence tool to optimize detection of incidental pulmonary embolism, and standardization of medical terminology for cardiac CT. Ongoing research and future directions include evaluation of novel PET tracers for assessment of myocardial fibrosis, deployment of AI tools in clinical cardiovascular imaging workflows, and growing awareness of the need to improve environmental sustainability in imaging. Keywords: Coronary CT, Photon-counting Detector CT, PET/MRI, Cardiac MRI, Congenital Heart Disease, Vascular Imaging, Thoracic Imaging, Artificial Intelligence, Health Services Research © RSNA, 2024.


Assuntos
Apêndice Atrial , Cardiopatias Congênitas , Radiologia , Humanos , Meios de Contraste , Inteligência Artificial , Gadolínio , Tomografia Computadorizada por Raios X
15.
Radiology ; 311(1): e240219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652030

RESUMO

Climate change adversely affects the well-being of humans and the entire planet. A planetary health framework recognizes that sustaining a healthy planet is essential to achieving individual, community, and global health. Radiology contributes to the climate crisis by generating greenhouse gas (GHG) emissions during the production and use of medical imaging equipment and supplies. To promote planetary health, strategies that mitigate and adapt to climate change in radiology are needed. Mitigation strategies to reduce GHG emissions include switching to renewable energy sources, refurbishing rather than replacing imaging scanners, and powering down unused scanners. Radiology departments must also build resiliency to the now unavoidable impacts of the climate crisis. Adaptation strategies include education, upgrading building infrastructure, and developing departmental sustainability dashboards to track progress in achieving sustainability goals. Shifting practices to catalyze these necessary changes in radiology requires a coordinated approach. This includes partnering with key stakeholders, providing effective communication, and prioritizing high-impact interventions. This article reviews the intersection of planetary health and radiology. Its goals are to emphasize why we should care about sustainability, showcase actions we can take to mitigate our impact, and prepare us to adapt to the effects of climate change. © RSNA, 2024 Supplemental material is available for this article. See also the article by Ibrahim et al in this issue. See also the article by Lenkinski and Rofsky in this issue.


Assuntos
Mudança Climática , Saúde Global , Humanos , Gases de Efeito Estufa , Radiologia , Serviço Hospitalar de Radiologia/organização & administração
16.
BMC Med Imaging ; 24(1): 87, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609843

RESUMO

BACKGROUND: Fibrosis has important pathoetiological and prognostic roles in chronic liver disease. This study evaluates the role of radiomics in staging liver fibrosis. METHOD: After literature search in electronic databases (Embase, Ovid, Science Direct, Springer, and Web of Science), studies were selected by following precise eligibility criteria. The quality of included studies was assessed, and meta-analyses were performed to achieve pooled estimates of area under receiver-operator curve (AUROC), accuracy, sensitivity, and specificity of radiomics in staging liver fibrosis compared to histopathology. RESULTS: Fifteen studies (3718 patients; age 47 years [95% confidence interval (CI): 42, 53]; 69% [95% CI: 65, 73] males) were included. AUROC values of radiomics for detecting significant fibrosis (F2-4), advanced fibrosis (F3-4), and cirrhosis (F4) were 0.91 [95%CI: 0.89, 0.94], 0.92 [95%CI: 0.90, 0.95], and 0.94 [95%CI: 0.93, 0.96] in training cohorts and 0.89 [95%CI: 0.83, 0.91], 0.89 [95%CI: 0.83, 0.94], and 0.93 [95%CI: 0.91, 0.95] in validation cohorts, respectively. For diagnosing significant fibrosis, advanced fibrosis, and cirrhosis the sensitivity of radiomics was 84.0% [95%CI: 76.1, 91.9], 86.9% [95%CI: 76.8, 97.0], and 92.7% [95%CI: 89.7, 95.7] in training cohorts, and 75.6% [95%CI: 67.7, 83.5], 80.0% [95%CI: 70.7, 89.3], and 92.0% [95%CI: 87.8, 96.1] in validation cohorts, respectively. Respective specificity was 88.6% [95% CI: 83.0, 94.2], 88.4% [95% CI: 81.9, 94.8], and 91.1% [95% CI: 86.8, 95.5] in training cohorts, and 86.8% [95% CI: 83.3, 90.3], 94.0% [95% CI: 89.5, 98.4], and 88.3% [95% CI: 84.4, 92.2] in validation cohorts. Limitations included use of several methods for feature selection and classification, less availability of studies evaluating a particular radiological modality, lack of a direct comparison between radiology and radiomics, and lack of external validation. CONCLUSION: Although radiomics offers good diagnostic accuracy in detecting liver fibrosis, its role in clinical practice is not as clear at present due to comparability and validation constraints.


Assuntos
Radiologia , Radiômica , Masculino , Humanos , Pessoa de Meia-Idade , Cirrose Hepática/diagnóstico por imagem , Área Sob a Curva , Bases de Dados Factuais
18.
Rofo ; 196(5): 499-501, 2024 May.
Artigo em Alemão | MEDLINE | ID: mdl-38663384
19.
Rofo ; 196(5): 497, 2024 May.
Artigo em Alemão | MEDLINE | ID: mdl-38663381
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA