Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.061
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Phys Med ; 121: 103360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692114

RESUMO

This paper reports the development of dosimeters based on plastic scintillating fibers imaged by a charge-coupled device camera, and their performance evaluation through irradiations with the electron Flash research accelerator located at the Centro Pisano Flash Radiotherapy. The dosimeter prototypes were composed of a piece of plastic scintillating fiber optically coupled to a clear optical fiber which transported the scintillation signal to the readout systems (an imaging system and a photodiode). The following properties were tested: linearity, capability to reconstruct the percentage depth dose curve in solid water and to sample in time the single beam pulse. The stem effect contribution was evaluated with three methods, and a proof-of-concept one-dimensional array was developed and tested for online beam profiling. Results show linearity up to 10 Gy per pulse, and good capability to reconstruct both the timing and spatial profiles of the beam, thus suggesting that plastic scintillating fibers may be good candidates for low-energy electron Flash dosimetry.


Assuntos
Elétrons , Plásticos , Dosímetros de Radiação , Dosagem Radioterapêutica , Contagem de Cintilação , Elétrons/uso terapêutico , Contagem de Cintilação/instrumentação , Radiometria/instrumentação
2.
Sci Rep ; 14(1): 10637, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724569

RESUMO

Hadron therapy is an advanced radiation modality for treating cancer, which currently uses protons and carbon ions. Hadrons allow for a highly conformal dose distribution to the tumour, minimising the detrimental side-effects due to radiation received by healthy tissues. Treatment with hadrons requires sub-millimetre spatial resolution and high dosimetric accuracy. This paper discusses the design, fabrication and performance tests of a detector based on Gas Electron Multipliers (GEM) coupled to a matrix of thin-film transistors (TFT), with an active area of 60 × 80 mm2 and 200 ppi resolution. The experimental results show that this novel detector is able to detect low-energy (40 kVp X-rays), high-energy (6 MeV) photons used in conventional radiation therapy and protons and carbon ions of clinical energies used in hadron therapy. The GEM-TFT is a compact, fully scalable, radiation-hard detector that measures secondary electrons produced by the GEMs with sub-millimetre spatial resolution and a linear response for proton currents from 18 pA to 0.7 nA. Correcting known detector defects may aid in future studies on dose uniformity, LET dependence, and different gas mixture evaluation, improving the accuracy of QA in radiotherapy.


Assuntos
Radiometria , Radiometria/instrumentação , Radiometria/métodos , Humanos , Radioterapia/métodos , Radioterapia/normas , Radioterapia/instrumentação , Garantia da Qualidade dos Cuidados de Saúde , Elétrons , Dosagem Radioterapêutica , Neoplasias/radioterapia , Desenho de Equipamento , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos
3.
Radiat Res ; 201(5): 440-448, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714319

RESUMO

The development of effective uses of biodosimetry in large-scale events has been hampered by residual, i.e., "legacy" thinking based on strategies that scale up from biodosimetry in small accidents. Consequently, there remain vestiges of unrealistic assumptions about the likely magnitude of victims in "large" radiation events and incomplete analyses of the logistics for making biodosimetry measurements/assessments in the field for primary triage. Elements remain from an unrealistic focus on developing methods to use biodosimetry in the initial stage of triage for a million or more victims. Based on recent events and concomitant increased awareness of the potential for large-scale events as well as increased sophistication in planning and experience in the development of biodosimetry, a more realistic assessment of the most effective roles of biodosimetry in large-scale events is urgently needed. We argue this leads to a conclusion that the most effective utilization of biodosimetry in very large events would occur in a second stage of triage, after initially winnowing the population by identifying those most in need of acute medical attention, based on calculations of geographic sites where significant exposures could have occurred. Understanding the potential roles and limitations of biodosimetry in large-scale events involving significant radiation exposure should lead to development of the most effective and useful biodosimetric techniques for each stage of triage for acute radiation syndrome injuries, i.e., based on more realistic assumptions about the underlying event and the logistics for carrying out biodosimetry for large populations.


Assuntos
Síndrome Aguda da Radiação , Liberação Nociva de Radioativos , Triagem , Humanos , Síndrome Aguda da Radiação/etiologia , Medição de Risco , Triagem/métodos , Radiometria/métodos
4.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697045

RESUMO

Whole-body counters (WBC) are used in internal dosimetry forin vivomonitoring in radiation protection. The calibration processes of a WBC set-up include the measurement of a physical phantom filled with a certificate radioactive source that usually is referred to a standard set of individuals determined by the International Commission on Radiological Protection (ICRP). The aim of this study was to develop an anthropomorphic and anthropometric female physical phantom for the calibration of the WBC systems. The reference female computational phantom of the ICRP, now called RFPID (Reference Female Phantom for Internal Dosimetry) was printed using PLA filament and with an empty interior. The goal is to use the RFPID to reduce the uncertainties associated within vivomonitoring system. The images which generated the phantom were manipulated using ImageJ®, Amide®, GIMP®and the 3D Slicer®software. RFPID was split into several parts and printed using a 3D printer in order to print the whole-body phantom. The newly printed physical phantom RFPID was successfully fabricated, and it is suitable to mimic human tissue, anatomically similar to a human body i.e., size, shape, material composition, and density.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Contagem Corporal Total , Humanos , Feminino , Contagem Corporal Total/métodos , Calibragem , Proteção Radiológica/métodos , Proteção Radiológica/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Antropometria
5.
Radiat Environ Biophys ; 63(2): 297-306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722389

RESUMO

For locally advanced cervical cancer, the standard therapeutic approach involves concomitant chemoradiation therapy, supplemented by a brachytherapy boost. Moreover, an external beam radiotherapy (RT) boost should be considered for treating gross lymph node (LN) volumes. Two boost approaches exist with Volumetric Intensity Modulated Arc Therapy (VMAT): Sequential (SEQ) and Simultaneous Integrated Boost (SIB). This study undertakes a comprehensive dosimetric and radiobiological comparison between these two boost strategies. The study encompassed ten patients who underwent RT for cervical cancer with node-positive disease. Two sets of treatment plans were generated for each patient: SIB-VMAT and SEQ-VMAT. Dosimetric as well as radiobiological parameters including tumour control probability (TCP) and normal tissue complication probability (NTCP) were compared. Both techniques were analyzed for two different levels of LN involvement - only pelvic LNs and pelvic with para-aortic LNs. Statistical analysis was performed using SPSS software version 25.0. SIB-VMAT exhibited superior target coverage, yielding improved doses to the planning target volume (PTV) and gross tumour volume (GTV). Notably, SIB-VMAT plans displayed markedly superior dose conformity. While SEQ-VMAT displayed favorable organ sparing for femoral heads, SIB-VMAT appeared as the more efficient approach for mitigating bladder and bowel doses. TCP was significantly higher with SIB-VMAT, suggesting a higher likelihood of successful tumour control. Conversely, no statistically significant difference in NTCP was observed between the two techniques. This study's findings underscore the advantages of SIB-VMAT over SEQ-VMAT in terms of improved target coverage, dose conformity, and tumour control probability. In particular, SIB-VMAT demonstrated potential benefits for cases involving para-aortic nodes. It is concluded that SIB-VMAT should be the preferred approach in all cases of locally advanced cervical cancer.


Assuntos
Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Feminino , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Metástase Linfática/radioterapia
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 773-779, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708512

RESUMO

OBJECTIVE: To investigate the dosimetric difference between manual and inverse optimization in 3-dimensional (3D) brachytherapy for gynecologic tumors. METHODS: This retrospective study was conducted among a total of 110 patients with gynecologic tumors undergoing intracavitary combined with interstitial brachytherapy or interstitial brachytherapy. Based on the original images, the brachytherapy plans were optimized for each patient using Gro, IPSA1, IPSA2 (with increased volumetric dose limits on the basis of IPSA1) and HIPO algorithms. The dose-volume histogram (DVH) parameters of the clinical target volume (CTV) including V200, V150, V100, D90, D98 and CI, and the dosimetric parameters D2cc, D1cc, and D0.1cc for the bladder, rectum, and sigmoid colon were compared among the 4 plans. RESULTS: Among the 4 plans, Gro optimization took the longest time, followed by HIPO, IPSA2 and IPSA1 optimization. The mean D90, D98, and V100 of HIPO plans were significantly higher than those of Gro and IPSA plans, and D90 and V100 of IPSA1, IPSA2 and HIPO plans were higher than those of Gro plans (P < 0.05), but the CI of the 4 plans were similar (P > 0.05). For the organs at risk (OARs), the HIPO plan had the lowest D2cc of the bladder and rectum; the bladder absorbed dose of Gro plans were significantly greater than those of IPSA1 and HIPO (P < 0.05). The D2cc and D1cc of the rectum in IPSA1, IPSA2 and HIPO plans were better than Gro (P < 0.05). The D2cc and D1cc of the sigmoid colon did not differ significantly among the 4 plans. CONCLUSION: Among the 4 algorithms, the HIPO algorithm can better improve dose coverage of the target and lower the radiation dose of the OARs, and is thus recommended for the initial plan optimization. Clinically, the combination of manual optimization can achieve more individualized dose distribution of the plan.


Assuntos
Algoritmos , Braquiterapia , Neoplasias dos Genitais Femininos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Braquiterapia/métodos , Feminino , Estudos Retrospectivos , Neoplasias dos Genitais Femininos/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos
8.
J Appl Clin Med Phys ; 25(5): e14343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569013

RESUMO

PURPOSE: Single-isocenter multi-target intracranial stereotactic radiotherapy (SIMT) is an effective treatment for brain metastases with complex treatment plans and delivery optimization necessitating rigorous quality assurance. This work aims to assess five methods for quality assurance of SIMT treatment plans in terms of their suitability and sensitivity to delivery errors. METHODS: Sun Nuclear ArcCHECK and SRS MapCHECK, GafChromic EBT Radiochromic Film, machine log files, and Varian Portal Dosimetry were all used to measure 15 variations of a single SIMT plan. Variations of the original plan were created with Python. They comprised various degrees of systematic MLC offsets per leaf up to 2 mm, random per-leaf variations with differing minimum and maximum magnitudes, simulated collimator, and dose miscalibrations (MU scaling). The erroneous plans were re-imported into Eclipse and plan-quality degradation was assessed by comparing each plan variation to the original clinical plan in terms of the percentage of clinical goals passing relative to the original plan. Each erroneous plan could be then ranked by the plan-quality degradation percentage following recalculation in the TPS so that the effects of each variation could be correlated with γ pass rates and detector suitability. RESULTS & CONCLUSIONS: It was found that 2%/1 mm is a good starting point for the ArcCHECK, Portal Dosimetry, and the SRS MapCHECK methods, respectively, and provides clinically relevant error detection sensitivity. Looser dose criteria of 5%/1 mm or 5%/1.5 mm are suitable for film dosimetry and log-file-based methods. The statistical methods explored can be expanded to other areas of patient-specific QA and detector assessment.


Assuntos
Neoplasias Encefálicas , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Radiocirurgia/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Algoritmos
9.
J Appl Clin Med Phys ; 25(5): e14345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664894

RESUMO

PURPOSE: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD: CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS: Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS: Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Órgãos em Risco/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos , Processamento de Imagem Assistida por Computador/métodos
10.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652667

RESUMO

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in thex-axis,y-axis, major axis, minor axis, and relative positional errors in thex-axis andy-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.


Assuntos
Redes Neurais de Computação , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Terapia com Prótons/métodos , Radiometria/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina , Reprodutibilidade dos Testes , Prótons
11.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38631317

RESUMO

Introduction. The currently available dosimetry techniques in computed tomography can be inaccurate which overestimate the absorbed dose. Therefore, we aimed to provide an automated and fast methodology to more accurately calculate the SSDE usingDwobtained by using CNN from thorax and abdominal CT study images.Methods. The SSDE was determined from the 200 records files. For that purpose, patients' size was measured in two ways: (a) by developing an algorithm following the AAPM Report No. 204 methodology; and (b) using a CNN according to AAPM Report No. 220.Results. The patient's size measured by the in-house software in the region of thorax and abdomen was 27.63 ± 3.23 cm and 28.66 ± 3.37 cm, while CNN was 18.90 ± 2.6 cm and 21.77 ± 2.45 cm. The SSDE in thorax according to 204 and 220 reports were 17.26 ± 2.81 mGy and 23.70 ± 2.96 mGy for women and 17.08 ± 2.09 mGy and 23.47 ± 2.34 mGy for men. In abdomen was 18.54 ± 2.25 mGy and 23.40 ± 1.88 mGy in women and 18.37 ± 2.31 mGy and 23.84 ± 2.36 mGy in men.Conclusions. Implementing CNN-based automated methodologies can contribute to fast and accurate dose calculations, thereby improving patient-specific radiation safety in clinical practice.


Assuntos
Algoritmos , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Masculino , Feminino , Tamanho Corporal , Redes Neurais de Computação , Software , Automação , Tórax/diagnóstico por imagem , Adulto , Abdome/diagnóstico por imagem , Radiometria/métodos , Radiografia Torácica/métodos , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Radiografia Abdominal/métodos , Idoso
12.
Clin Endocrinol (Oxf) ; 100(6): 585-592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567706

RESUMO

BACKGROUND: The optimal treatment strategy for radioiodine (RAI) treatment protocols for benign hyperthyroidism remains elusive. Although individualised activities are recommended in European Law, many centres continue to provide fixed activities. Our institution implemented a dosimetry protocol in 2016 following years of fixed dosing which facilitates the calculation of individualised activities based on thyroid volume and radioiodine uptake. METHODS: This was a retrospective study comparing success rates using a dosimetry protocol targeting an absorbed dose of 150 Gy for Graves' disease (GD) and 125 Gy for Toxic Multinodular Goiter (TMNG) with fixed dosing (200MBq for GD and 400MBq for TMNG) among 204 patients with hyperthyroidism. Success was defined as a non-hyperthyroid state at 1 year for both disease states. Results were analysed for disease specific or patient specific modulators of response. RESULTS: This study included 204 patients; 74% (n = 151) received fixed activities and 26% (n = 53) of activities administered were calculated using dosimetry. A dosimetry-based protocol was successful in 80.5% of patients with GD and 100% of patients with TMNG. Differences in success rates and median activity administered between the fixed (204Mbq) and dosimetry (246MBq) cohort were not statistically significant (p = .64) however 44% of patients with GD and 70% of patients with TMNG received lower activities following treatment with dosimetry as opposed to fixed activities. Use of dosimetry resulted in successful treatment and reduced RAI exposure for 36% of patients with GD, 70% of patients with TMNG, and 44% of patients overall. CONCLUSION: This retrospective clinical study demonstrated that treatment with a dosimetry-based protocol for TMNG and GD achieved comparable success rates to fixed protocols while reducing RAI exposure for over a third of patients with GD and most patients with TMNG. This study also highlighted that RAI can successfully treat hyperthyroidism for some patients with activities lower than commonplace in clinical practise. No patient or disease specific modulators of treatment response were established in this study; however, the data supports a future prospective trial which further scrutinises the individual patient factors governing treatment response to RAI.


Assuntos
Doença de Graves , Hipertireoidismo , Radioisótopos do Iodo , Radiometria , Humanos , Estudos Retrospectivos , Feminino , Hipertireoidismo/radioterapia , Masculino , Pessoa de Meia-Idade , Radioisótopos do Iodo/uso terapêutico , Radioisótopos do Iodo/administração & dosagem , Adulto , Doença de Graves/radioterapia , Idoso , Resultado do Tratamento , Radiação Ionizante , Bócio Nodular/radioterapia
13.
Phys Med Biol ; 69(10)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38593817

RESUMO

Objective. Severe radiation-induced lymphopenia occurs in 40% of patients treated for primary brain tumors and is an independent risk factor of poor survival outcomes. We developed anin-silicoframework that estimates the radiation doses received by lymphocytes during volumetric modulated arc therapy brain irradiation.Approach. We implemented a simulation consisting of two interconnected compartmental models describing the slow recirculation of lymphocytes between lymphoid organs (M1) and the bloodstream (M2). We used dosimetry data from 33 patients treated with chemo-radiation for glioblastoma to compare three cases of the model, corresponding to different physical and biological scenarios: (H1) lymphocytes circulation only in the bloodstream i.e. circulation inM2only; (H2) lymphocytes recirculation between lymphoid organs i.e. circulation inM1andM2interconnected; (H3) lymphocytes recirculation between lymphoid organs and deep-learning computed out-of-field (OOF) dose to head and neck (H&N) lymphoid structures. A sensitivity analysis of the model's parameters was also performed.Main results. For H1, H2 and H3 cases respectively, the irradiated fraction of lymphocytes was 99.8 ± 0.7%, 40.4 ± 10.2% et 97.6 ± 2.5%, and the average dose to irradiated pool was 309.9 ± 74.7 mGy, 52.6 ± 21.1 mGy and 265.6 ± 48.5 mGy. The recirculation process considered in the H2 case implied that irradiated lymphocytes were irradiated in the field only 1.58 ± 0.91 times on average after treatment. The OOF irradiation of H&N lymphoid structures considered in H3 was an important contribution to lymphocytes dose. In all cases, the estimated doses are low compared with lymphocytes radiosensitivity, and other mechanisms could explain high prevalence of RIL in patients with brain tumors.Significance. Our framework is the first to take into account OOF doses and recirculation in lymphocyte dose assessment during brain irradiation. Our results demonstrate the need to clarify the indirect effects of irradiation on lymphopenia, in order to potentiate the combination of radio-immunotherapy or the abscopal effect.


Assuntos
Neoplasias Encefálicas , Linfócitos , Dosagem Radioterapêutica , Humanos , Linfócitos/efeitos da radiação , Linfócitos/citologia , Neoplasias Encefálicas/radioterapia , Radiometria , Doses de Radiação , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Encéfalo/efeitos da radiação
14.
Sci Rep ; 14(1): 9557, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664481

RESUMO

Breakthrough multi-response miniature dosimetry/spectrometry of electroneutrons (EN) was made on surface and in-depths of whole-body polyethylene phantom under 10 cm × 10 cm electron beam of 20 MV Varian Clinac 2100C electron medical accelerator commonly applied for prostate treatment. While dosimetry/spectrometry of photoneutrons (PN) has been well characterized for decades, those of ENs lagged behind due to very low EN reaction cross section and lack of sensitive neutron dosimeters/spectrometers meeting neutron dosimetry requirements. Recently, Sohrabi "miniature neutron dosimeter/spectrometer" and "Stripe polycarbonate dosimeter" have broken this barrier and determined seven EN ambient dose equivalent (ENDE) (µSv.Gy-1) responses from electron beam and from albedo ENs including beam thermal (21 ± 2.63), albedo thermal (43 ± 3.70), total thermal (64 ± 6.33), total epithermal (32 ± 3.90), total fast (112.00), total thermal + epithermal (l96 ± 10), and total thermal + epithermal + fast (208 ± 10.23) ENs. Having seven ENDE responses of this study and seven PNDE responses of previous study with the same accelerator obtained at identical conditions by the same principle author provided the opportunity to compare the two sets of responses. The PNDE (µSv.Gy-1) responses have comparatively higher values and 22.60 times at isocenter which provide for the first time breakthrough ENDE responses not yet reported in any studies before worldwide.


Assuntos
Aceleradores de Partículas , Radiometria , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Nêutrons , Humanos , Elétrons , Imagens de Fantasmas
15.
Cancer Radiother ; 28(2): 195-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599941

RESUMO

PURPOSE: Preclinical data demonstrated that the use of proton minibeam radiotherapy reduces the risk of toxicity in healthy tissue. Ventricular tachycardia radioablation is an area under clinical investigation in proton beam therapy. We sought to simulate a ventricular tachycardia radioablation with proton minibeams and to demonstrate that it was possible to obtain a homogeneous coverage of an arrhythmogenic cardiac zone with this technique. MATERIAL AND METHODS: An arrhythmogenic target volume was defined on the simulation CT scan of a patient, localized in the lateral wall of the left ventricle. A dose of 25Gy was planned to be delivered by proton minibeam radiotherapy, simulated using a Monte Carlo code (TOPAS v.3.7) with a collimator of 19 0.4 mm-wide slits spaced 3mm apart. The main objective of the study was to obtain a plan ensuring at least 93% of the prescription dose in 93% of the planning target volume without exceeding 110% of the prescribed dose in the planning target volume. RESULTS: The average dose in the planning treatment volume in proton minibeam radiotherapy was 25.12Gy. The percentage of the planning target volume receiving 93% (V93%), 110% (V110%), and 95% (V95%) of the prescribed dose was 94.25%, 0%, and 92.6% respectively. The lateral penumbra was 6.6mm. The mean value of the peak-to-valley-dose ratio in the planning target volume was 1.06. The mean heart dose was 2.54Gy versus 5.95Gy with stereotactic photon beam irradiation. CONCLUSION: This proof-of-concept study shows that proton minibeam radiotherapy can achieve a homogeneous coverage of an arrhythmogenic cardiac zone, reducing the dose at the normal tissues. This technique, ensuring could theoretically reduce the risk of late pulmonary and breast fibrosis, as well as cardiac toxicity as seen in previous biological studies in proton minibeam radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Humanos , Estudos de Viabilidade , Terapia com Prótons/métodos , Radiometria , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Método de Monte Carlo
16.
Appl Radiat Isot ; 208: 111307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564840

RESUMO

Early works that used thermoluminescent dosimeters (TLDs) to measure absorbed dose from alpha particles reported relatively high variation (10%) between TLDs, which is undesirable for modern dosimetry applications. This work outlines a method to increase precision for absorbed dose measured using TLDs with alpha-emitting radionuclides by applying an alpha-specific chip factor (CF) that individually characterizes the TLD sensitivity to alpha particles. Variation between TLDs was reduced from 21.8% to 6.7% for the standard TLD chips and 7.9% to 3.3% for the thin TLD chips. It has been demonstrated by this work that TLD-100 can be calibrated to precisely measure the absorbed dose to water from alpha-emitting radionuclides.


Assuntos
Dosímetros de Radiação , Dosimetria Termoluminescente , Dosimetria Termoluminescente/métodos , Radioisótopos , Radiometria/métodos , Calibragem
17.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605613

RESUMO

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Algoritmos , Calibragem , Eletrônica , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos
18.
J Radiol Prot ; 44(2)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569480

RESUMO

The number of healthcare workers occupationally exposed to ionizing radiation (IR) is increasing every year. As health effects from exposure to low doses IR have been reported, radiation protection (RP) in the context of occupational activities is a major concern. This study aims to assess the compliance of healthcare workers with RP policies, according to their registered cumulative dose, profession, and perception of radiation self-exposure and associated risk. Every healthcare worker from one of the participating hospitals in France with at least one dosimetric record for each year 2009, 2014, and 2019 in the SISERI registry was included and invited to complete an online questionnaire including information on the worker's occupational exposure, perception of IR-exposure risk and RP general knowledge. Hp(10) doses were provided by the SISERI system. Multivariate logistic regressions were used. Dosimeter wearing and RP practices compliance were strongly associated with 'feeling of being IR-exposed' (OR = 3.69, CI95% 2.04-6.66; OR = 4.60, CI95% 2.28-9.30, respectively). However, none of these factors was associated with RP training courses attendance. The main reason given for non-compliance is unsuitability or insufficient numbers of RP devices. This study provided useful information for RP policies. Making exposed workers aware of their own IR-exposure seems to be a key element to address in RP training courses. This type of questionnaire should be introduced into larger epidemiological studies. Dosimeter wearing and RP practices compliance are associated to feeling being IR-exposed. RP training courses should reinforce workers' awareness of their exposure to IR.


Assuntos
Exposição Ocupacional , Proteção Radiológica , Humanos , Conhecimentos, Atitudes e Prática em Saúde , Pessoal de Saúde , Radiometria , Radiação Ionizante , Hospitais , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise
19.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38579691

RESUMO

Background.Modern radiation therapy technologies aim to enhance radiation dose precision to the tumor and utilize hypofractionated treatment regimens. Verifying the dose distributions associated with these advanced radiation therapy treatments remains an active research area due to the complexity of delivery systems and the lack of suitable three-dimensional dosimetry tools. Gel dosimeters are a potential tool for measuring these complex dose distributions. A prototype tabletop solid-tank fan-beam optical CT scanner for readout of gel dosimeters was recently developed. This scanner does not have a straight raypath from source to detector, thus images cannot be reconstructed using filtered backprojection (FBP) and iterative techniques are required.Purpose.To compare a subset of the top performing algorithms in terms of image quality and quantitatively determine the optimal algorithm while accounting for refraction within the optical CT system. The following algorithms were compared: Landweber, superiorized Landweber with the fast gradient projection perturbation routine (S-LAND-FGP), the fast iterative shrinkage/thresholding algorithm with total variation penalty term (FISTA-TV), a monotone version of FISTA-TV (MFISTA-TV), superiorized conjugate gradient with the nonascending perturbation routine (S-CG-NA), superiorized conjugate gradient with the fast gradient projection perturbation routine (S-CG-FGP), superiorized conjugate gradient with with two iterations of CG performed on the current iterate and the nonascending perturbation routine (S-CG-2-NA).Methods.A ray tracing simulator was developed to track the path of light rays as they traverse the different mediums of the optical CT scanner. Two clinical phantoms and several synthetic phantoms were produced and used to evaluate the reconstruction techniques under known conditions. Reconstructed images were analyzed in terms of spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal non-uniformity (SNU), mean relative difference (MRD) and reconstruction time. We developed an image quality based method to find the optimal stopping iteration window for each algorithm. Imaging data from the prototype optical CT scanner was reconstructed and analysed to determine the optimal algorithm for this application.Results.The optimal algorithms found through the quantitative scoring metric were FISTA-TV and S-CG-2-NA. MFISTA-TV was found to behave almost identically to FISTA-TV however MFISTA-TV was unable to resolve some of the synthetic phantoms. S-CG-NA showed extreme fluctuations in the SNR and CNR values. S-CG-FGP had large fluctuations in the SNR and CNR values and the algorithm has less noise reduction than FISTA-TV and worse spatial resolution than S-CG-2-NA. S-LAND-FGP had many of the same characteristics as FISTA-TV; high noise reduction and stability from over iterating. However, S-LAND-FGP has worse SNR, CNR and SNU values as well as longer reconstruction time. S-CG-2-NA has superior spatial resolution to all algorithms while still maintaining good noise reduction and is uniquely stable from over iterating.Conclusions.Both optimal algorithms (FISTA-TV and S-CG-2-NA) are stable from over iterating and have excellent edge detection with ESF MTF 50% values of 1.266 mm-1and 0.992 mm-1. FISTA-TV had the greatest noise reduction with SNR, CNR and SNU values of 424, 434 and 0.91 × 10-4, respectively. However, low spatial resolution makes FISTA-TV only viable for large field dosimetry. S-CG-2-NA has better spatial resolution than FISTA-TV with PSF and LSF MTF 50% values of 1.581 mm-1and 0.738 mm-1, but less noise reduction. S-CG-2-NA still maintains good SNR, CNR, and SNU values of 168, 158 and 1.13 × 10-4, respectively. Thus, S-CG-2-NA is a well rounded reconstruction algorithm that would be the preferable choice for small field dosimetry.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radiometria/métodos , Razão Sinal-Ruído , Algoritmos
20.
Asian Pac J Cancer Prev ; 25(4): 1425-1432, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38680004

RESUMO

AIM: This study comprehensively investigated pre-treatment quality assurance (QA) for 100 cancer patients undergoing stereotactic treatments (SRS/SRT) using various detectors. METHODS: The study conducted QA for SRS/SRT treatments planned with a 6MV SRS beam at a dose rate of 1,000 MU/min, utilizing Eclipse v13.6 Treatment Planning System (TPS). Point dose measurements employed 0.01cm3 and 0.13cm3 cylindrical ionization chambers, while planar dose verification utilized Gafchromic EBT-XD Film and Portal Imager (aS1000). Plans were categorized by target volume, and a thorough analysis compared point dose agreements, planar dose gamma pass rates, and their correlations with chamber volume mean dose, detector type, and point dose agreement. Additionally, the consistency between different ionization chambers was assessed. RESULTS: Point dose agreement generally improved with increasing target volume, except for volumes over 10cm3 with 0.01cm3 chambers, showing a contrary trend. Significant differences (p<0.05) were observed between TPS and measured doses for both chambers. Gamma pass rate improved with increasing target volume in EBT XD and aS1000 analyses, except for the >10cm3 group in EBT XD. EBT XD demonstrated better agreement with TPS for target volumes up to 10cm3 compared to aS1000, with a statistically significant difference (p<0.05) between the detectors. Strong correlations were found between chamber point dose and chamber volume mean dose agreement, as well as between the two gamma criteria analyses of the same detector type in the planar dose correlation analysis. However, weak correlations were discovered for other analyses. CONCLUSION: This study found weak correlation between different detector types in pre-treatment QA for point dose and planar dose evaluation. However, within a specific detector type, strong correlation was observed for different point dose evaluation methods and gamma criteria. This highlights the importance of cautious interpretation of QA results, particularly for SRS QA, due to the lack of correlation between detector types.


Assuntos
Neoplasias , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Neoplasias/radioterapia , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA