Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
ACS Appl Mater Interfaces ; 13(36): 42473-42485, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474563

RESUMO

The particular characteristics of hypoxia, immune suppression in the tumor microenvironment, and the lack of accurate imaging guidance lead to the limited effects of stereotactic body radiotherapy (SBRT) in reducing the recurrence rate and mortality of hepatocellular carcinoma (HCC). This research developed a novel theranostic agent based on Bi/Se nanoparticles (NPs), synthesized by a simple reduction reaction method for in vivo CT image-guided SBRT sensitization in mice. After loading Lenvatinib (Len), the obtained Bi/Se-Len NPs had excellent performance in reversing hypoxia and the immune suppression status of HCC. In vivo CT imaging results uncovered that the radiotherapy (RT) area could be accurately labeled after the injection of Bi/Se-Len NPs. Under Len's unique and robust properties, in vivo treatment was then carried out upon injection of Bi/Se-Len NPs, achieving excellent RT sensitization effects in a mouse HCC model. Comprehensive tests and histological stains revealed that Bi/Se-Len NPs could reshape and normalize tumor blood vessels, reduce the hypoxic situation of the tumor, and upregulate tumor-infiltrating CD4+ and CD8+ T lymphocytes around the tumors. Our work highlights an excellent proposal of Bi/Se-Len NPs as theranostic nanoparticles for image-guided HCC radiotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Meios de Contraste/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Animais , Bismuto/química , Bismuto/uso terapêutico , Bismuto/toxicidade , Vasos Sanguíneos/efeitos dos fármacos , Carcinoma Hepatocelular/diagnóstico por imagem , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/uso terapêutico , Portadores de Fármacos/toxicidade , Feminino , Humanos , Hipóxia/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico por imagem , Linfócitos/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos BALB C , Compostos de Fenilureia/uso terapêutico , Medicina de Precisão , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Pontos Quânticos/toxicidade , Quinolinas/uso terapêutico , Radiossensibilizantes/síntese química , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/toxicidade , Radiocirurgia , Selênio/química , Selênio/uso terapêutico , Selênio/toxicidade , Tomografia Computadorizada por Raios X
2.
ACS Appl Mater Interfaces ; 13(24): 27934-27944, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101408

RESUMO

Due to conventional photodynamic therapy encountering serious problems of phototoxicity and low tissue-penetrating depth of light, other dynamic therapy-based therapeutic methods such as sonodynamic therapy (SDT) are expected to be developed. To improve the therapeutic response to SDT, more effective sonosensitizers are imperative. In this study, a novel water-soluble iridium(III)-porphyrin sonosensitizer (IrTMPPS) was synthesized and used for SDT. IrTMPPS generated ample singlet oxygen (1O2) under US irradiation and especially showed distinguished US-activatable abilities at more than 10 cm deep-tissue depths. Interestingly, under US irradiation, IrTMPPS sonocatalytically oxidized intracellular NADH, which would enhance SDT efficiency by breaking the redox balance in the tumor. Moreover, IrTMPPS displayed great sonocytotoxicity toward various cancer cells, and in vivo experiments demonstrated efficient tumor inhibition and anti-metastasis to the lungs in the presence of IrTMPPS and US irradiation. This report gives a novel idea of metal-based sonosensitizers for sonotherapy by fully taking advantage of non-invasiveness, water solubility, and deep tumor therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Porfirinas/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Irídio/química , Irídio/uso terapêutico , Irídio/toxicidade , Camundongos , NAD/química , NAD/metabolismo , Neoplasias/patologia , Oxirredução , Porfirinas/síntese química , Porfirinas/toxicidade , Radiossensibilizantes/síntese química , Radiossensibilizantes/toxicidade , Oxigênio Singlete/metabolismo , Ondas Ultrassônicas , Peixe-Zebra
3.
Langmuir ; 36(39): 11637-11644, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902987

RESUMO

Many noble metal-based nanoparticles have emerged for applications in cancer radiotherapy in recent years, but few investigations have been carried out for palladium nanoparticles. Herein, palladium nanosheets (Pd NSs), which possess a sheetlike morphology with a diameter of ∼14 nm and a thickness of ∼2 nm, were utilized as a sensitizer to improve the performance of radiotherapy. It was found that Pd NSs alone did not decrease the cell viability after treatment for as long as 130 h, suggesting the excellent cytocompatibility of the nanoagents. However, the viability of cancer cells treated with X-ray irradiation became lower, and the viability became even lower if the cells were co-treated with X-ray and Pd NSs, indicating the radiosensitization effect of Pd NSs. Additionally, compared with X-ray irradiation, the combined treatment of Pd NSs and X-ray irradiation induced the generation of more DNA double-stranded breaks and reactive oxygen species within cancer cells, which eventually caused elevated cell apoptosis. Moreover, in vivo experiments also verified the radiosensitization effect and the favorable biocompatibility of Pd NSs, indicating their potential for acquiring satisfactory in vivo radiotherapeutic effect at lower X-ray doses. It is believed that the present research will open new avenues for the application of noble metal-based nanoparticles in radiosensitization.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Apoptose , Sobrevivência Celular , Nanopartículas Metálicas/toxicidade , Paládio , Radiossensibilizantes/toxicidade
4.
Biochem Pharmacol ; 182: 114205, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828802

RESUMO

A continuous state of oxidative stress during inflammation contributes to the development of 25% of human cancers. Epithelial and inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can damage DNA. ROS/RNS have biological implications in both chemoresistance and tumor recurrence. As several clinically employed anticancer drugs can generate ROS/RNS, we have addressed herein how inducible nitric oxide synthase and nitric oxide (iNOS/•NO) affect the molecular pathways implicated in the tumor response to oxidative stress. To mimic the oxidative stress associated with chemotherapy, we used a photosensitizer (pheophorbide a) that can generate ROS/RNS in a controlled manner. We investigated how iNOS/•NO modulates the tumor response to oxidative stress by involving the NF-κB and Nrf2 molecular pathways. We found that low levels of iNOS induce the development of a more aggressive tumor population, leading to survival, recurrence and resistance. By contrast, high levels of iNOS/•NO sensitize tumor cells to oxidative treatment, causing cell growth arrest. Our analysis showed that NF-κB and Nrf2, which are activated in response to oxidative stress, communicate with each other through RKIP. For this critical role, RKIP could be an interesting target for anticancer drugs. Our study provides insight into the complex signaling response of cancer cells to oxidative treatments as well as new possibilities for the rational design of new therapeutic strategies.


Assuntos
Óxido Nítrico/fisiologia , Estresse Oxidativo/fisiologia , Neoplasias da Próstata/metabolismo , Radiossensibilizantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Clorofila/análogos & derivados , Clorofila/toxicidade , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/efeitos da radiação , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/efeitos da radiação
5.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120829

RESUMO

Nanomedicine has stepped into the spotlight of radiation therapy over the last two decades. Nanoparticles (NPs), especially metallic NPs, can potentiate radiotherapy by specific accumulation into tumors, thus enhancing the efficacy while alleviating the toxicity of radiotherapy. Water radiolysis is a simple, fast and environmentally-friendly method to prepare highly controllable metallic nanoparticles in large scale. In this study, we used this method to prepare biocompatible PEGylated (with Poly(Ethylene Glycol) diamine) platinum nanoflowers (Pt NFs). These nanoagents provide unique surface chemistry, which allows functionalization with various molecules such as fluorescent markers, drugs or radionuclides. The Pt NFs were produced with a controlled aggregation of small Pt subunits through a combination of grafted polymers and radiation-induced polymer cross-linking. Confocal microscopy and fluorescence lifetime imaging microscopy revealed that Pt NFs were localized in the cytoplasm of cervical cancer cells (HeLa) but not in the nucleus. Clonogenic assays revealed that Pt NFs amplify the gamma rays induced killing of HeLa cells with a sensitizing enhancement ratio (SER) of 23%, thus making them promising candidates for future cancer radiation therapy. Furthermore, the efficiency of Pt NFs to induce nanoscopic biomolecular damage by interacting with gamma rays, was evaluated using plasmids as molecular probe. These findings show that the Pt NFs are efficient nano-radio-enhancers. Finally, these NFs could be used to improve not only the performances of radiation therapy treatments but also drug delivery and/or diagnosis when functionalized with various molecules.


Assuntos
Nanopartículas Metálicas/química , Neoplasias/radioterapia , Platina/química , Radiossensibilizantes/farmacologia , Morte Celular , Citoplasma/metabolismo , Células HeLa , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/química , Radiossensibilizantes/química , Radiossensibilizantes/toxicidade , Água/química
6.
Cancer Prev Res (Phila) ; 13(6): 551-562, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32161072

RESUMO

Sulforaphane (SFN), a potent antioxidant and antiinflammatory agent, has been shown to protect against cancers especially at early stages. However, how SFN affects UVB-mediated epigenome/DNA methylome and transcriptome changes in skin photodamage has not been fully assessed. Herein, we investigated the transcriptomic and DNA methylomic changes during tumor initiation, promotion, and progression and its impact and reversal by SFN using next-generation sequencing (NGS) technology. The results show that SFN reduced tumor incidence and tumor number. SFN's protective effects were more dramatic in the early stages than with later stages. Bioinformatic analysis of RNA sequencing (RNA-seq) data shows differential expressed genes and identifies the top canonical pathways related to SFN treatment of UVB-induced different stages of epidermal carcinogenesis. These pathways include p53 signaling, cell cycle: G2-M DNA damage checkpoint regulation, Th1, and Th2 activation pathway, and PTEN signaling pathways. The top upstream regulators related to UVB and SFN treatment as time progressed include dextran sulfate, TP53, NFE2L2 (Nrf2), IFNB1, and IL10RA. Bioinformatic analysis of Methyl-seq data shows several differential methylation regions induced by UVB were attenuated by SFN. These include Notch1, Smad6, Gnai3, and Apc2 Integrative analysis of RNA-seq and DNA-seq/CpG methylome yields a subgroup of genes associated with ultraviolet B (UVB) and SFN treatment. The changes in gene expression were inversely correlated with promoter CpG methylation status. These genes include Pik3cd, Matk, and Adm2 In conclusion, our study provides novel insights on the impact of SFN on the transcriptomic and DNA methylomic of UVB-induced different stages of skin cancer in mice.


Assuntos
Anticarcinógenos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Sulfóxidos/uso terapêutico , Transcriptoma/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Acetona/toxicidade , Animais , Ilhas de CpG/efeitos dos fármacos , DNA de Neoplasias/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Camundongos Pelados , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/genética , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA-Seq , Radiossensibilizantes/toxicidade , Distribuição Aleatória , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética
7.
J Photochem Photobiol B ; 205: 111820, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065959

RESUMO

Recent studies focus on usage of blue light of λ = 450 nm in combination with photosensitizers to treat surface skin disorders, including cancers. In search of convenient therapeutic factor we studied riboflavin analogue 3-methyl-tetraacetylriboflavin (3MeTARF) as potential sensitizer. Riboflavin (Rfl) itself, non -toxic in the darkness, upon absorption of UVA and blue light, may act as photosensitizer. However, Rfl efficiency is limited due to its susceptibility to photodecomposition. Riboflavin's acetylated analogue, 3MeTARF, bears substituents in ribose chain, which inhibit intramolecular processes leading to degradation. Upon excitation, this compound, reveals higher photochemical resistance, remaining a good singlet oxygen generator. Thus, being more stable as the sensitizer, might be much more efficient in photodynamic processes. The objective of undertaken study was to elucidate mechanisms of 3MeTARF photoreactivity under the irradiation with blue light in comparison to its mater compound, riboflavin. We approached this goal by using spectroscopic methods, like direct singlet oxygen phosphorescence detection at 1270 nm, EPR spin trapping and oximetry. Additionally, we tested both riboflavin and 3MeTARF phototoxicity against melanoma cells (WM115) and we studied mechanism of photodynamic cell death, as well. Moreover, 3MeTARF induces apoptosis in melanoma cells at ten times lower concentration than riboflavin itself. Our studies confirmed that 3MeTARF remains stable upon blue light activation and is more efficient photosensitizer than Rfl.


Assuntos
Radiossensibilizantes , Riboflavina , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dermatite Fototóxica , Humanos , Peróxido de Hidrogênio/metabolismo , Luz , Radiossensibilizantes/química , Radiossensibilizantes/efeitos da radiação , Radiossensibilizantes/toxicidade , Riboflavina/análogos & derivados , Riboflavina/química , Riboflavina/efeitos da radiação , Riboflavina/toxicidade , Oxigênio Singlete/química
8.
Clin Cancer Res ; 25(20): 6035-6043, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31337643

RESUMO

PURPOSE: Iododeoxyuridine (IUdR) is a potent radiosensitizer; however, its clinical utility is limited by dose-limiting systemic toxicities and the need for prolonged continuous infusion. 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is an oral prodrug of IUdR that, compared with IUdR, is easier to administer and less toxic, with a more favorable therapeutic index in preclinical studies. Here, we report the clinical and pharmacologic results of a first-in-human phase I dose escalation study of IPdR + concurrent radiation therapy (RT) in patients with advanced metastatic gastrointestinal (GI) cancers. PATIENTS AND METHODS: Adult patients with metastatic GI cancers referred for palliative RT to the chest, abdomen, or pelvis were eligible for study. Patients received IPdR orally once every day × 28 days beginning 7 days before the initiation of RT (37.5 Gy in 2.5 Gy × 15 fractions). A 2-part dose escalation scheme was used, pharmacokinetic studies were performed at multiple time points, and all patients were assessed for toxicity and response to Day 56. RESULTS: Nineteen patients were entered on study. Dose-limiting toxicity was encountered at 1,800 mg every day, and the recommended phase II dose is 1,200 mg every day. Pharmacokinetic analyses demonstrated achievable and sustainable levels of plasma IUdR ≥1 µmol/L (levels previously shown to mediate radiosensitization). Two complete, 3 partial, and 9 stable responses were achieved in target lesions. CONCLUSIONS: Administration of IPdR orally every day × 28 days with RT is feasible and tolerable at doses that produce plasma IUdR levels ≥1 µmol/L. These results support the investigation of IPdR + RT in phase II studies.


Assuntos
Quimiorradioterapia/métodos , Neoplasias Gastrointestinais/terapia , Idoxuridina/farmacocinética , Nucleosídeos de Pirimidina/administração & dosagem , Radiossensibilizantes/administração & dosagem , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Estudos de Viabilidade , Feminino , Neoplasias Gastrointestinais/patologia , Humanos , Idoxuridina/administração & dosagem , Idoxuridina/toxicidade , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Pró-Fármacos/toxicidade , Nucleosídeos de Pirimidina/farmacocinética , Nucleosídeos de Pirimidina/toxicidade , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/toxicidade , Resultado do Tratamento
9.
Environ Res ; 170: 383-388, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623885

RESUMO

PURPOSE: To evaluate if the common field lampricide 3-trifluoromethyl-4-nitrophenol (TFM) that is intended to eradicate the invasive species sea lampreys in the Great Lakes has the potential to sensitize radiation responses in cells from non-targeted native fish MATERIALS AND METHODS: The TFM toxicity was assessed acutely and chronically with the clonogenic fish cell line eelB. The acute toxicity (24-h exposure) was determined by the fluorescent cell viability probe Alamar Blue. The chronic toxicity was determined either by Alamar Blue (7-d exposure) or the clonogenic survival assay (14-d exposure). Pre- and post-exposure of fish cells to environmentally relevant TFM concentrations following gamma irradiation were performed. Clonogenic survival was determined to assess the damage level of radiation-induced reproductive cell death. RESULTS: The chronic toxicity tests were more sensitive than the acute toxicity tests. The 14-d EC50 using the clonogenic survival endpoint was 2.09 ±â€¯0.28 µg/mL and was statistically similar to the 7-d EC50 (1.85 ±â€¯0.07 µg/mL) based on the Alamar Blue-based cytotoxicity endpoint. Post-exposure of cells to environmentally relevant TFM concentrations following irradiation did not have any effect as compared to the irradiation alone group. In contrast, pre-exposure of cells to TFM following irradiation had a negative additive effect when the total radiation dose was 2 Gy, but not 0.1 or 0.5 Gy. CONCLUSION: Our results suggest that the common field lampricide TFM is a potential radiation sensitizer in cells from non-targeted native fish. This could be a health problem of concern for non-targeted native fish if a large accidental radioactive release occurs.


Assuntos
Nitrofenóis/toxicidade , Radiossensibilizantes/toxicidade , Animais , Sobrevivência Celular , Peixes , Petromyzon/fisiologia
10.
Drug Deliv Transl Res ; 9(3): 615-624, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30690675

RESUMO

Nanocarriers for drug delivery have made great progress in the treatment of cancer, but the dense extracellular collagen of tumors has greatly limited the efficiency of drug delivery. In this study, losartan is used to deplete tumor collagen and improve the delivery efficiency and photodynamic therapeutic efficacy of chlorine 6 (Ce6)-loaded periodic mesoporous organosilica nanoplatform (Ce6-PMO) for breast cancer. After pretreatment with losartan in vivo, the tumor collagen I fraction is significantly reduced by 53% compared to that of mice pretreated with saline. Importantly, the accumulation of the Ce6-PMO nanoplatforms in the tumor is remarkably enhanced via peritumoral and intravenous injection, respectively, after the mice are pretreated with losartan. Further, combination of losartan with the Ce6-PMO nanoplatforms shows the best therapeutic efficacy, and the suppression rate of tumor volume is measured up to 82%. Taken together, this study provides a very promising synergetic strategy to improve the tumor photodynamic treatment efficacy of nanoplatforms.


Assuntos
Colágeno Tipo I/metabolismo , Losartan/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Fotoquimioterapia , Porfirinas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Feminino , Losartan/toxicidade , Masculino , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Porfirinas/toxicidade , Radiossensibilizantes/toxicidade , Dióxido de Silício/toxicidade , Carga Tumoral/efeitos dos fármacos
11.
Biomed Pharmacother ; 109: 2173-2181, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551474

RESUMO

Breast cancer resistance protein (BCRP) belongs to the family of ATP-binding cassette (ABC) transporters, overexpression of which can confer a multidrug-resistant phenotype in cancer cells and tumors. BCRP mediates efflux of numerous xenobiotics, including various chemotherapeutic agents and photosensitizers. Hypericin (HY) is a naturally-occurring photosensitizer synthesized by plants of the genus Hypericum. Our recently published results indicate that accumulation of HY in cancer cells of different tissue origin can be affected mostly by BCRP. Considering all known facts, the main goal of this study was to verify whether not only HY accumulation but also toxicity of HY-mediated photodynamic therapy (PDT) can be affected by the presence of some ABC transporters. To specifically prove our hypothesis, we used an experimental model of human leukemia cell lines differing in the expression level of the main drug efflux transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and BCRP. The lowest HY accumulation, and consequently the highest resistance to HY-PDT, was found in cells overexpressing BCRP. Moreover, pretreatment with BCRP inhibitor Ko143 significantly increased HY accumulation and sensitized cells to HY-PDT. Therefore, our findings represent direct evidence that BCRP is the nemesis of HY accumulation and toxicity of HY-PDT. Thus, we should emphasize that individualized screening for BCRP expression and activity may represent a useful tool for prediction of HY-mediated photodynamic diagnosis (PDD) or PDT effectiveness.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Perileno/análogos & derivados , Fotoquimioterapia , Radiossensibilizantes/metabolismo , Antracenos , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Células HL-60 , Humanos , Perileno/antagonistas & inibidores , Perileno/metabolismo , Perileno/toxicidade , Fotoquimioterapia/efeitos adversos , Radiossensibilizantes/toxicidade
12.
Clin Transl Oncol ; 21(4): 479-488, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30298468

RESUMO

OBJECTIVES: To investigate the effects of Au@Fe2O3 core-shell nanoparticle (NP), with and without conjugation to folic acid (FA) as a targeting ligand, on radiosensitization of both cancer and healthy cells. METHODS: Au@Fe2O3 NPs were first synthesized, then modified with FA, and finally characterized. Radiation dose enhancement studies were performed on KB cancer cells and L929 healthy cells. NPs at the concentration of 20 µg/ml were first incubated with both cell lines and then different doses of 6 MV X-ray radiation were examined. The end effects were evaluated via MTT assay and flow cytometry using AnnexinV/PI kit. RESULTS: It was indicated that viability of KB cells has a much lower rate than L929 cells when the cells were treated by {(FA-Au@Fe2O3) + (X-ray)} regimen. Cell viability was even decreased significantly when X-ray dose increased. Moreover, flow cytometry studies revealed that FA-targeted NPs induced higher level of apoptosis for KB cancer cells than L929 healthy cells. CONCLUSION: Our findings provide a new perspective on high ability of the synthesized FA-targeted Au@Fe2O3 NPs which may be considered as an efficient radiosensitizer in the process of targeted radiation therapy of cancer.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Ouro/química , Nanopartículas de Magnetita/química , Radiossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Células KB , Células L , Camundongos , Doses de Radiação , Radiossensibilizantes/química , Radiossensibilizantes/toxicidade , Radioterapia , Raios X
13.
Int J Radiat Biol ; 94(9): 838-843, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29939813

RESUMO

PURPOSE: Some phytochemicals have shown the potential of being radiomodifiers, especially phenolic compounds, such as lichenic secondary metabolites. To evaluate the phytochemical usnic acid as a radiomodifier, embryonic cells of molluscs have been used due to their ease of collection, high sensitivity to physical and chemical agents, well-known embryology and low cost for analysis. MATERIALS AND METHODS: This study aimed to assess the radiosensitizing action of usnic acid on Biomphalaria glabrata embryos. Samples were irradiated with 4 Gy of gamma rays from a 60Co source (dose rate 2.906 Gy/h). An acute toxicity test was performed using B. glabrata embryos in the blastula stage, in order to determine the toxicity of usnic acid and to establish the lethal Concentration for 50% (LC50). Subsequently, the radiomodifing capacity of usnic acid was estimated using assays with B. glabrata embryos. RESULTS: Irradiation increased the number of non-viable embryos compared to unirradiated controls. Additionally, it was observed that embryos exposed to a non-toxic concentration of usnic acid (0.6 µg/mL) before irradiation showed a further enhancement in non-viable embryos when compared with exposure to ionizing radiation alone. CONCLUSION: The results presented here indicate that usnic acid makes cells more sensitive to the damaging effects of radiation.


Assuntos
Benzofuranos/farmacologia , Biomphalaria/embriologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/efeitos da radiação , Radiossensibilizantes/farmacologia , Animais , Benzofuranos/toxicidade , Radioisótopos de Cobalto , Raios gama , Dose Letal Mediana , Radiossensibilizantes/toxicidade
14.
J Med Chem ; 61(3): 1241-1254, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29253343

RESUMO

Innovations in the field of radiotherapy such as stereotactic body radiotherapy, along with the advent of radio-immuno-oncology, herald new opportunities for classical oxygen-mimetic radiosensitizers. The role of hypoxic tumor cells in resistance to radiotherapy and in suppression of immune response continues to endorse tumor hypoxia as a bona fide, yet largely untapped, drug target. Only nimorazole is used clinically as a radiosensitizer, and there is a dearth of new radiosensitizers in development. Here we present a survey of novel nitroimidazole alkylsulfonamides and document their cytotoxicity and ability to radiosensitize anoxic tumor cells in vitro. We use a phosphate prodrug approach to increase aqueous solubility and to improve tumor drug delivery. A 2-nitroimidazole and a 5-nitroimidazole analogue demonstrated marked tumor radiosensitization in either ex vivo assays of surviving clonogens or tumor regrowth delay.


Assuntos
Nitroimidazóis/química , Nitroimidazóis/farmacologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Descoberta de Drogas , Feminino , Células HCT116 , Humanos , Camundongos , Nitroimidazóis/farmacocinética , Nitroimidazóis/toxicidade , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/toxicidade , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
15.
DNA Repair (Amst) ; 60: 89-101, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29112893

RESUMO

Investigation of natural products is an attractive strategy to identify novel compounds for cancer prevention and treatment. Numerous studies have shown the efficacy and safety of natural products, and they have been widely used as alternative treatments for a wide range of illnesses, including cancers. However, it remains unknown whether natural products affect homologous recombination (HR)-mediated DNA repair and whether these compounds can be used as sensitizers with minimal toxicity to improve patients' responses to radiation therapy, a mainstay of treatment for many human cancers. In this study, in order to systematically identify natural products with an inhibitory effect on HR repair, we developed a high-throughput image-based HR repair screening assay and screened a chemical library containing natural products. Among the most interesting of the candidate compounds identified from the screen was ß-thujaplicin, a bioactive compound isolated from the heart wood of plants in the Cupressaceae family, can significantly inhibit HR repair. We further demonstrated that ß-thujaplicin inhibits HR repair by reducing the recruitment of a key HR repair protein, Rad51, to DNA double-strand breaks. More importantly, our results showed that ß-thujaplicin can radiosensitize cancer cells. Additionally, ß-thujaplicin sensitizes cancer cells to PARP inhibitor in different cancer cell lines. Collectively, our findings for the first time identify natural compound ß-thujaplicin, which has a good biosafety profile, as a novel HR repair inhibitor with great potential to be translated into clinical applications as a sensitizer to DNA-damage-inducing treatment such as radiation and PARP inhibitor. In addition, our study provides proof of the principle that our robust high-throughput functional HR repair assay can be used for a large-scale screening system to identify novel natural products that regulate DNA repair and cellular responses to DNA damage-inducing treatments such as radiation therapy.


Assuntos
Monoterpenos/uso terapêutico , Neoplasias/tratamento farmacológico , Rad51 Recombinase/efeitos dos fármacos , Radiossensibilizantes/uso terapêutico , Reparo de DNA por Recombinação/efeitos dos fármacos , Tropolona/análogos & derivados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cupressaceae/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Quimioterapia Combinada , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Monoterpenos/farmacologia , Monoterpenos/toxicidade , Neoplasias/enzimologia , Neoplasias/genética , Extratos Vegetais , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rad51 Recombinase/metabolismo , Radiossensibilizantes/farmacologia , Radiossensibilizantes/toxicidade , Tropolona/farmacologia , Tropolona/uso terapêutico , Tropolona/toxicidade
16.
J Coll Physicians Surg Pak ; 27(6): 342-347, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28689522

RESUMO

OBJECTIVE: To evaluate the efficacy of concurrent chemoradiation in patients with locally advanced inoperable squamous cell carcinoma of oral cavity in terms of local control and toxicity. STUDY DESIGN: Case series. PLACE AND DURATION OF STUDY: Institute of Nuclear Medicine and Oncology (INMOL), Lahore, from January 2008 to December 2013. METHODOLOGY: Sixty-nine patients with locally advanced inoperable oral cavity cancer, registered in INMOL hospital from January 2008 to December 2013 who fulfilled a pre-defined eligibility criteria, were enrolled in the study. Concurrent chemoradiation protocol consisted of conventional fractionation delivering 70 Gy with weekly Cisplatin (50 mg/m2) during the course of radiation. Tumor response was calculated by RECISTcriteria version 1.1 along with the median overall survival and disease-free survival. Acute treatment related toxicities were graded as (G). RESULTS: Thirty-six (52.17%) patients showed complete response; while 19 (27.54%), 8 (11.59%) and 6 (8.7%) were observed with partial response, stable and progressive disease, respectively. Treatment response was significant (p<0.001) in terms of responders vs. non responders to treatment. Median overall survival was 18.00 months; whereas, median disease-free survival remained 14.00 months. Main toxicities included mucositis (G3 and G4, 71%), xerostomia (G2 and G3, 82.5%), vomiting (G3 and G4, 51%), myelosuppression (G3 and G4, 26.2%), dermatitis (G3 and G4, 49.2%), and fatigue (G3 and G4, 57.9%). CONCLUSION: Platinum based CCR Tremained effective for inoperable oral cancer patients.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Quimiorradioterapia/efeitos adversos , Cisplatino/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/radioterapia , Radiossensibilizantes/administração & dosagem , Adulto , Idoso , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Cisplatino/toxicidade , Terapia Combinada , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Mucosite/induzido quimicamente , Paquistão , Radiossensibilizantes/toxicidade , Dosagem Radioterapêutica , Índice de Gravidade de Doença , Taxa de Sobrevida , Resultado do Tratamento , Vômito/induzido quimicamente , Xerostomia/induzido quimicamente
17.
Int J Radiat Biol ; 93(8): 757-763, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28452253

RESUMO

BACKGROUND AND PURPOSE: The aim of radiotherapy is to deliver lethal damage to cancerous tissue while preserving adjacent normal tissues. Radiation absorbed dose of the tumoral cells can increase when high atomic nanoparticles are present in them during irradiation. Also, the dose rate is an important aspect in radiation effects that determines the biological results of a given dose. This in vitro study investigated the dose-rate effect on the induced radiosensitivity by dextran-coated iron oxide in cancer cells. MATERIALS AND METHODS: HeLa and MCF-7 cells were cultured in vitro and incubated with different concentrations of dextran-coated iron oxide nanoparticles. They were then irradiated with 6 MV photons at dose rates of 43, 185 and 370 cGy/min. The MTT test was used to obtain the cells' survival after 48 h of irradiations. RESULTS: Incubating the cells with the nanoparticles at concentrations of 10, 40 and 80 µg/ml showed no significant cytotoxicity effect. Dextran-coated iron oxide nanoparticles showed more radiosensitivity effect by increasing the dose rate and nanoparticles concentration. Radiosensitization enhancement factors of MCF-7 and HeLa cells at a dose-rate of 370 cGy/min and nanoparticles' concentration of 80 µg/ml were 1.21 ± 0.06 and 1.19 ± 0.04, respectively. CONCLUSION: Increasing the dose rate of 6 MV photons irradiation in MCF-7 and HeLa cells increases the radiosensitization induced by the dextran-coated iron nanoparticles in these cells.


Assuntos
Dextranos/química , Compostos Férricos/química , Compostos Férricos/farmacologia , Nanopartículas , Doses de Radiação , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Relação Dose-Resposta à Radiação , Compostos Férricos/toxicidade , Células HeLa , Humanos , Células MCF-7 , Radiossensibilizantes/toxicidade , Raios X
18.
Sci Rep ; 6: 31973, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558808

RESUMO

Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Complexos de Coordenação/química , Replicação do DNA/efeitos dos fármacos , Substâncias Intercalantes/química , Radiossensibilizantes/química , Rutênio/química , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Células HeLa , Histonas/metabolismo , Humanos , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/toxicidade , Fosforilação/efeitos dos fármacos , Quinolinas/toxicidade , Quinuclidinas/toxicidade , Radiação Ionizante , Radiossensibilizantes/metabolismo , Radiossensibilizantes/toxicidade
19.
J Nanosci Nanotechnol ; 16(5): 4554-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483789

RESUMO

Adenylate cyclase is a key intracellular enzyme involved in energy imbalance leading to tumor hypoxia and cytotoxicity. In this study, adenylate cyclase activities in isolated hepatocytes and Kupffer cells were compared in the presence of several metabolic stimulators. In cultured hepatocyte cells, adenylate cyclase was stimulated by guanylyl imidotriphosphate (GITP), guanosine triphosphate (GTP), progesterone and nitroimidazole embedded nanoparticle (NNP) effectors, while prostaglandin E2 and F2α were used as effectors in cultured Kupffer cells. The results showed that NNPs decreased adenylate cyclase specific activity in a dose-dependent manner after preincubation of hepatocytes with NNPs. The NNPs stimulated adenylate cyclase activities in hepatocytes were evaluated based on measurement of cyclic adenosine monophosphate (cAMP). The stimulatory effects of NNPs on adenylate cyclase were independent of the presence of GTP and may have been due to a direct effect on the catalytic subunit of adenylate cyclase. In addition, basal cAMP generation in hepatocyte cells was efficiently suppressed by the NNPs. In conclusion, NNPs exerted direct effects on the catalytic subunit of the adenylate cyclase system, and adenylate cyclase was hormone sensitive in liver cells.


Assuntos
Adenilil Ciclases/metabolismo , Hepatócitos/enzimologia , Células de Kupffer/enzimologia , Nanocápsulas/química , Nitroimidazóis/toxicidade , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/patologia , Nanocápsulas/toxicidade , Nanocápsulas/ultraestrutura , Radiossensibilizantes/toxicidade
20.
Phys Med ; 32(11): 1444-1452, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28327297

RESUMO

This study provides the first proof of the novel application of bismuth oxide as a radiosensitiser. It was shown that on the highly radioresistant 9L gliosarcoma cell line, bismuth oxide nanoparticles sensitise to both kilovoltage (kVp) or megavoltage (MV) X-rays radiation. 9L cells were exposed to a concentration of 50µg.mL-1 of nanoparticle before irradiation at 125kVp and 10MV. Sensitisation enhancement ratios of 1.48 and 1.25 for 125kVp and 10MV were obtained in vitro, respectively. The radiation enhancement of the nanoparticles is postulated to be a combination of the high Z nature of the bismuth (Z=83), and the surface chemistry. Monte Carlo simulations were performed to elucidate the physical interactions between the incident radiation and the nanoparticle. The results of this work show that Bi2O3 nanoparticles increase the radiosensitivity of 9L gliosarcoma tumour cells for both kVp and MV energies. Monte Carlo simulations demonstrate the advantage of a platelet morphology.


Assuntos
Bismuto/química , Bismuto/farmacologia , Nanopartículas , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Bismuto/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Gliossarcoma/patologia , Humanos , Método de Monte Carlo , Radiossensibilizantes/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA