Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.342
Filtrar
1.
Biochem Biophys Res Commun ; 718: 150058, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38729076

RESUMO

The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors. We irradiated mouse intradermal tumors of B16F10-ovalbumin (OVA) mouse melanoma cells and 3LL-OVA mouse lung cancer cells with carbon-ion beams or X-rays in the presence or absence of CTLs. CTL removal was performed by administration of anti-CD8 monoclonal antibody (mAb) in mice. Based on tumor growth delay, we determined the tumor growth and regression curves. The enhancement ratio (ER) of the slope of regression lines in the presence of CTLs, relative to the absence of CTLs, indicates the dependency of RT on CTLs for shrinking mouse tumors, and the biological effectiveness (RBE) of CIRT relative to XRT were calculated. Tumor growth curves revealed that the elimination of CD8+ CTLs by administrating anti-CD8 mAb accelerated tumor growth compared to the presence of CTLs in both RTs. The ERs were larger in CIRT compared to XRT in the B16F10-OVA tumor models, but not in the 3LL-OVA models, suggesting a greater contribution of CTL-mediated anti-tumor immunity to tumor reduction in CIRT compared to XRT in the B16F10-OVA tumor model. In addition, the RBE values for both models were larger in the presence of CTLs compared to models without CTLs, suggesting that CIRT may utilize CTL-mediated anti-tumor immunity more than X-ray. The findings from this study suggest that although immunological contribution to therapeutic efficacy may vary depending on the type of tumor cell, CIRT utilizes CTL-mediated immunity to a greater extent compared to XRT.


Assuntos
Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos , Animais , Linfócitos T Citotóxicos/imunologia , Camundongos , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Melanoma Experimental/terapia , Melanoma Experimental/patologia , Radioterapia com Íons Pesados/métodos , Terapia por Raios X , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia
2.
J Med Case Rep ; 18(1): 228, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720351

RESUMO

BACKGROUND: Mesonephric adenocarcinoma is an extremely rare subtype of uterine cervical cancer that is associated with a poor prognosis and for which a standardized treatment protocol has not been established. Carbon ion radiotherapy (CIRT) is an emerging radiotherapy modality that has been shown to have a favorable anti-tumor effect, even for tumors resistant to conventional photon radiotherapy or chemotherapy. However, there is no report on CIRT outcomes for mesonephric adenocarcinoma of the uterine cervix. CASE PRESENTATION: We treated a 47-year-old Japanese woman with mesonephric adenocarcinoma of the uterine cervix (T2bN0M0 and stage IIB according to the 7th edition of the Union for International Cancer Control and International Federation of Gynecology and Obstetrics, respectively) with CIRT combined with brachytherapy and concurrent chemotherapy. CIRT consisted of whole pelvic irradiation and boost irradiation to the gross tumor; 36.0 Gy (relative biological effectiveness [RBE]) in 12 fractions and 19.2 Gy (RBE) in 4 fractions, respectively, performed once a day, four times per week. Computed tomography-based image-guided adaptive brachytherapy was performed after completion of CIRT, for which the D90 (i.e., the dose prescribed to 90% of the target volume) for the high-risk clinical target volume was 20.4 Gy in a total of 3 sessions in 2 weeks. A weekly cisplatin (40 mg/m2) dose was administered concomitantly with the radiotherapy for a total of five courses. From 4 months post-CIRT, the patient developed metastasis of the lung, with a total of 10 lung metastases over 70 months; these lesions were treated on each occasion by photon stereotactic body radiotherapy and/or systemic therapy. At 8 years from initial treatment (i.e., 2 years after the last treatment), the patient is alive without any evidence of recurrence and maintains a high quality of life. CONCLUSIONS: This is the first report of CIRT for treatment of mesonephric adenocarcinoma of the uterine cervix. The present case indicates the potential efficacy of CIRT in combination with brachytherapy for treatment of this disease.


Assuntos
Adenocarcinoma , Braquiterapia , Radioterapia com Íons Pesados , Neoplasias do Colo do Útero , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Adenocarcinoma/radioterapia , Adenocarcinoma/patologia , Radioterapia com Íons Pesados/métodos , Braquiterapia/métodos , Resultado do Tratamento , Quimiorradioterapia/métodos
3.
Technol Cancer Res Treat ; 23: 15330338241246653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773763

RESUMO

Purpose: Head and neck adenoid cystic carcinoma (HNACC) is a radioresistant tumor. Particle therapy, primarily proton beam therapy and carbon-ion radiation, is a potential radiotherapy treatment for radioresistant malignancies. This study aims to conduct a meta-analysis to evaluate the impact of charged particle radiation therapy on HNACC. Methods: A comprehensive search was conducted in Pubmed, Cochrane Library, Web of Science, Embase, and Medline until December 31, 2022. The primary endpoints were overall survival (OS), local control (LC), and progression-free survival (PFS), while secondary outcomes included treatment-related toxicity. Version 17.0 of STATA was used for all analyses. Results: A total of 14 studies, involving 1297 patients, were included in the analysis. The pooled 5-year OS and PFS rates for primary HNACC were 78% (95% confidence interval [CI] = 66-91%) and 62% (95% CI = 47-77%), respectively. For all patients included, the pooled 2-year and 5-year OS, LC, and PFS rates were as follows: 86.1% (95% CI = 95-100%) and 77% (95% CI = 73-82%), 92% (95% CI = 84-100%) and 73% (95% CI = 61-85%), and 76% (95% CI = 68-84%) and 55% (95% CI = 48-62%), respectively. The rates of grade 3 and above acute toxicity were 22% (95% CI = 13-32%), while late toxicity rates were 8% (95% CI = 3-13%). Conclusions: Particle therapy has the potential to improve treatment outcomes and raise the quality of life for HNACC patients. However, further research and optimization are needed due to the limited availability and cost considerations associated with this treatment modality.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma Adenoide Cístico/radioterapia , Carcinoma Adenoide Cístico/mortalidade , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/mortalidade , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Resultado do Tratamento
4.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38636504

RESUMO

Objective.Treatment plans of ion-beam therapy have been made under an assumption that all cancer cells within a tumour equally respond to a given radiation dose. However, an intra-tumoural cellular radiosensitivity heterogeneity clearly exists, and it may lead to an overestimation of therapeutic effects of the radiation. The purpose of this study is to develop a biological model that can incorporate the radiosensitivity heterogeneity into biological optimization for ion-beam therapy treatment planning.Approach.The radiosensitivity heterogeneity was modeled as the variability of a cell-line specific parameter in the microdosimetric kinetic model following the gamma distribution. To validate the developed intra-tumoural-radiosensitivity-heterogeneity-incorporated microdosimetric kinetic (HMK) model, a treatment plan with H-ion beams was made for a chordoma case, assuming a radiosensitivity heterogeneous region within the tumour. To investigate the effects of the radiosensitivity heterogeneity on the biological effectiveness of H-, He-, C-, O-, and Ne-ion beams, the relative biological effectiveness (RBE)-weighted dose distributions were planned for a cuboid target with the stated ion beams without considering the heterogeneity. The planned dose distributions were then recalculated by taking the heterogeneity into account.Main results. The cell survival fraction and corresponding RBE-weighted dose were formulated based on the HMK model. The first derivative of the RBE-weighted dose distribution was also derived, which is needed for fast biological optimization. For the patient plan, the biological optimization increased the dose to the radiosensitivity heterogeneous region to compensate for the heterogeneity-induced reduction in biological effectiveness of the H-ion beams. The reduction in biological effectiveness due to the heterogeneity was pronounced for low linear energy transfer (LET) beams but moderate for high-LET beams. The RBE-weighted dose in the cuboid target decreased by 7.6% for the H-ion beam, while it decreased by just 1.4% for the Ne-ion beam.Significance.Optimal treatment plans that consider intra-tumoural cellular radiosensitivity heterogeneity can be devised using the HMK model.


Assuntos
Cordoma , Tolerância a Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Cordoma/radioterapia , Modelos Biológicos , Eficiência Biológica Relativa , Doses de Radiação , Sobrevivência Celular/efeitos da radiação , Radioterapia com Íons Pesados/métodos
5.
Radiat Oncol ; 19(1): 51, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649902

RESUMO

BACKGROUND: Radiation-induced liver damage (RILD) occasionally occurs following carbon-ion radiotherapy (CIRT) for liver tumors, such as hepatocellular carcinoma (HCC), in patients with impaired liver function disease. However, the associated risk factors remain unknown. The present study aimed to determine the risk factors of RILD after CIRT. METHODS: We retrospectively analyzed 108 patients with HCC treated with CIRT at the Osaka Heavy Ion Therapy Center between December 2018 and December 2022. RILD was defined as a worsening of two or more points in the Child-Pugh score within 12 months following CIRT. The median age of the patients was 76 years (range 47-95 years), and the median tumor diameter was 41 mm (range 5-160 mm). Based on the pretreatment liver function, 98 and 10 patients were categorized as Child-Pugh class A and B, respectively. We analyzed patients who received a radiation dose of 60 Gy (relative biological effectiveness [RBE]) in four fractions. The median follow-up period was 9.7 months (range 2.3-41.1 months), and RILD was observed in 11 patients (10.1%). RESULTS: Multivariate analysis showed that pretreatment Child-Pugh score B (p = 0.003, hazard ratio [HR] = 6.90) and normal liver volume spared from < 30 Gy RBE (VS30 < 739 cm3) (p = 0.009, HR = 5.22) were significant risk factors for RILD. The one-year cumulative incidences of RILD stratified by Child-Pugh class A or B and VS30 < 739 cm3 or ≥ 739 cm3 were 10.3% or 51.8% and 39.6% or 9.2%, respectively. CONCLUSION: In conclusion, the pretreatment Child-Pugh score and VS30 of the liver are significant risk factors for RILD following CIRT for HCC.


Assuntos
Carcinoma Hepatocelular , Radioterapia com Íons Pesados , Neoplasias Hepáticas , Lesões por Radiação , Humanos , Neoplasias Hepáticas/radioterapia , Carcinoma Hepatocelular/radioterapia , Radioterapia com Íons Pesados/efeitos adversos , Idoso , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Prognóstico , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Fatores de Risco , Fígado/efeitos da radiação , Fígado/patologia
6.
Igaku Butsuri ; 44(1): 1-7, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38583957

RESUMO

At the National Institutes for Quantum Science and Technology (QST), a multi-ion therapy using helium, carbon, oxygen, and neon ions has been studied for charged particle therapy with more optimal biological effects. To make multi-ion therapy clinically feasible, a new treatment system was developed to realize the changes of the ion species in each irradiation using the Heavy Ion Medial Accelerator in Chiba (HIMAC). Since radiation therapy is safety-critical, it is necessary to construct a safety system that includes multiple safety barriers in the new treatment system for multi-ion therapy and to perform a safety analysis for the prevention of serious accidents. In this study, we conducted a safety analysis using event tree analysis (ETA) for newly introduced processes in the treatment planning, accelerator, and irradiation system of the multi-ion therapy. ETA is an optimal method to verify multiple safety barriers that are essential for medical safety and to shorten the time for safety analysis by focusing only on the new processes. Through ETA, we clarified the types of malfunctions and human errors that may lead to serious accidents in the new system for multi-ion therapy, and verified whether safety barriers such as interlock systems and human check procedures are sufficient to prevent such malfunctions and human errors. As a result, 6 initial events which may lead to serious accidents were listed in the treatment planning process, 16 initial events were listed in the accelerator system, and 13 initial events were listed in the irradiation system. Among these 35 initial events, 5 cautionary initial events were identified that could lead to serious final events and they had a probability of occurrence higher than 10-4. Meanwhile, the others were all initial events that do not lead to serious accidents, or the initial events that can lead to serious accidents but were considered to have sufficient safety barriers. The safety analysis using ETA successfully identified the system malfunctions and the human errors that can lead to serious accidents, and the multiple safety barriers against them were systematically analyzed. It became clear that the multiple safety barriers were not sufficient for some initial events. We plan to improve the safety barriers for the five cautionary initial events before the start of the clinical trial. Based on these findings, we achieved our objective to conduct a safety analysis for a new treatment system for multi-ion therapy. The safety analysis procedure using ETA proposed by this study will be effective when new systems for radiotherapy are established at QST and other facilities in the future as well.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Humanos , Radioterapia com Íons Pesados/métodos , Íons , Oxigênio/uso terapêutico , Carbono
7.
Radiat Prot Dosimetry ; 200(7): 670-676, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38665036

RESUMO

Silicon has been developed as a microdosemeter, as it can provide sensitive volumes at submicrometric levels, does not need a gas supply, has a fast response, and has low power consumption. However, since the energy response in silicon is not the same as that in tissue, a spectral conversion from silicon to tissue is necessary to obtain the probability distribution of energy deposition in tissue. In this work, we present a method for microdosimetric spectra conversion from silicon to tissue based on the scaled Fourier transformation and the geometric scaling factor, which shows relatively good results in the spectral conversion from diamond to tissue. The results illustrate that the method can convert the energy deposition spectra from silicon to tissue with proper accuracy. Meanwhile, the inconsistency between the converted and actual spectra due to the inherent difference was also observed. Whereas, the reasons for the disagreement are different. For the plateau part of the Bragg curve, the discrepancy between the converted and actual spectra is due to the poor tissue equivalent of silicon. For the proximal part of the Bragg curve, the spectral difference is attributed to the different shapes of the energy deposition spectra obtained in silicon and water, which is the same as that in the diamond. In summary, this method can be employed in the tissue equivalent conversion of silicon microdosemeter, but the poor tissue equivalent of silicon limited the accuracy of this method. In addition, the correction for the deviation between the converted and calculated spectra due to the difference in spectral shapes is required to improve the practicality of this mod.


Assuntos
Silício , Silício/química , Humanos , Radioterapia com Íons Pesados , Imagens de Fantasmas , Dosagem Radioterapêutica , Radiometria/métodos , Radiometria/instrumentação , Desenho de Equipamento , Análise de Fourier
8.
Med Phys ; 51(5): 3782-3795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569067

RESUMO

BACKGROUND: Interpatient variation of tumor radiosensitivity is rarely considered during the treatment planning process despite its known significance for the therapeutic outcome. PURPOSE: To apply our mechanistic biophysical model to investigate the biological robustness of carbon ion radiotherapy (CIRT) against DNA damage repair interference (DDRi) associated patient-to-patient variability in radiosensitivity and its potential clinical advantages against conventional radiotherapy approaches. METHODS AND MATERIALS: The "UNIfied and VERSatile bio response Engine" (UNIVERSE) was extended by carbon ions and its predictions were compared to a panel of in vitro and in vivo data including various endpoints and DDRi settings within clinically relevant dose and linear energy transfer (LET) ranges. The implications of UNIVERSE predictions were then assessed in a clinical patient scenario considering DDRi variance. RESULTS: UNIVERSE tests well against the applied benchmarks. While in vitro survival curves were predicted with an R2 > 0.92, deviations from in vivo RBE data were less than 5.6% The conducted paradigmatic patient plan study implies a markedly reduced significance of DDRi based radiosensitivity variability in CIRT (13% change of D 50 ${{D}_{50}}$ in target) compared to conventional radiotherapy (62%) and that boosting the LET within the target further amplifies this robustness of CIRT (8%). In the case of heightened tumor radiosensitivity, a dose de-escalation strategy for photons allows a reduction of the maximum effective dose within the normal tissue (NT) from a D 2 ${{D}_2}$ of 2.65 to 1.64 Gy, which lies below the level found for CIRT ( D 2 ${{D}_2}$  = 2.41 Gy) for the analyzed plan and parameters. However, even after de-escalation, the integral effective dose in the NT is found to be substantially higher for conventional radiotherapy in comparison to CIRT ( D m e a n ${{D}_{mean}}$ of 0.75, 0.46, and 0.24 Gy for the conventional plan, its de-escalation and CIRT, respectively). CONCLUSIONS: The framework offers adequate predictions of in vitro and in vivo radiation effects of CIRT while allowing the consideration of DRRi based solely on parameters derived from photon data. The results of the patient planning study underline the potential of CIRT to minimize important sources of interpatient divergence in therapy outcome, especially when combined with techniques that allow to maximize the LET within the tumor. Despite the potential of de-escalation strategies for conventional radiotherapy to reduce the maximum effective dose in the NT, CIRT appears to remain a more favorable option due to its ability to reduce the integral effective dose within the NT.


Assuntos
Dano ao DNA , Reparo do DNA , Radioterapia com Íons Pesados , Tolerância a Radiação , Humanos , Reparo do DNA/efeitos da radiação , Modelos Biológicos , Transferência Linear de Energia
9.
Phys Med Biol ; 69(10)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38604184

RESUMO

Objective. To investigate the effect of redistribution and reoxygenation on the 3-year tumor control probability (TCP) of patients with stage I non-small cell lung cancer (NSCLC) treated with carbon-ion radiotherapy.Approach. A meta-analysis of published clinical data of 233 NSCLC patients treated by carbon-ion radiotherapy under 18-, 9-, 4-, and single-fraction schedules was conducted. The linear-quadratic (LQ)-based cell-survival model incorporating the radiobiological 5Rs, radiosensitivity, repopulation, repair, redistribution, and reoxygenation, was developed to reproduce the clinical TCP data. Redistribution and reoxygenation were regarded together as a single phenomenon and termed 'resensitization' in the model. The optimum interval time between fractions was investigated for each fraction schedule using the determined model parameters.Main results.The clinical TCP data for 18-, 9-, and 4-fraction schedules were reasonably reproduced by the model without the resensitization effect, whereas its incorporation was essential to reproduce the TCP data for all fraction schedules including the single fraction. The curative dose for the single-fraction schedule was estimated to be 49.0 Gy (RBE), which corresponds to the clinically adopted dose prescription of 50.0 Gy (RBE). For 18-, 9-, and 4-fraction schedules, a 2-to-3-day interval is required to maximize the resensitization effect during the time interval. In contrast, the single-fraction schedule cannot benefit from the resensitization effect, and the shorter treatment time is preferable to reduce the effect of sub-lethal damage repair during the treatment.Significance.The LQ-based cell-survival model incorporating the radiobiological 5Rs was developed and used to evaluate the effect of the resensitization on clinical results of NSCLC patients treated with hypo-fractionated carbon-ion radiotherapy. The incorporation of the resensitization into the cell-survival model improves the reproducibility to the clinical TCP data. A shorter treatment time is preferable in the single-fraction schedule, while a 2-to-3-day interval between fractions is preferable in the multi-fraction schedules for effective treatments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Radioterapia com Íons Pesados , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Estadiamento de Neoplasias , Modelos Biológicos , Tolerância a Radiação
10.
Cancer Lett ; 591: 216858, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621460

RESUMO

Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.


Assuntos
Neoplasias Colorretais , Imunoterapia , Microambiente Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/patologia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Terapia Combinada/métodos , Animais , Radioterapia com Íons Pesados/métodos
11.
Anticancer Res ; 44(4): 1773-1780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537982

RESUMO

BACKGROUND/AIM: The aging population is expected to increase the occurrences of bone sarcoma (BS) and soft tissue sarcoma (STS). Carbon ion radiotherapy (CIRT) is reported to be effective for BS and several STSs. However, the effect of CIRT on clinical outcomes, functional prognoses, and quality of life (QOL) in older patients who underwent CIRT has not been reported. Therefore, we aimed to evaluate the effect of CIRT on clinical outcomes, functional prognoses and QOL in older patients with BS or STS. PATIENTS AND METHODS: This retrospective cohort study included 235 patients aged >70 years with BS or STS who underwent CIRT. Overall survival (OS), cancer-specific survival (CSS), and local control (LC) were evaluated in chordoma and non-chordoma patients. Furthermore, factors associated with post-CIRT Toronto Extremity Salvage Score (TESS) and EuroQoL 5-dimension 5-level (EQ-5D-5L) index were assessed. RESULTS: The overall 5-year LC, OS, and CSS rates were 81%, 62%, and 76%, respectively. In the chordoma and non-chordoma groups, the 5-year LC, OS, and CSS rates were 84%, 72%, and 87%; and 77%, 47%, and 60%, respectively. The mean post-CIRT TESS and EQ-5D-5L index were 75% and 0.71, respectively. The TESSs and EQ-5D-5L indices tended to be better among males, younger patients (<76 years old), patients with small tumor volumes, and patients with chordoma. CONCLUSION: CIRT is effective for older patients with BS, especially with chordoma, and STS with good LC and survival rates. Furthermore, post-treatment limb function and QOL were comparable with those of the other treatments and age groups.


Assuntos
Neoplasias Ósseas , Cordoma , Radioterapia com Íons Pesados , Osteossarcoma , Sarcoma , Masculino , Humanos , Idoso , Qualidade de Vida , Estudos Retrospectivos , Cordoma/radioterapia , Sarcoma/patologia , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Osteossarcoma/etiologia , Neoplasias Ósseas/patologia , Carbono
12.
Phys Med ; 120: 103325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493583

RESUMO

PURPOSE: The present study aimed to develop a porous structure with plug-ins (PSP) to broaden the Bragg peak width (BPW, defined as the distance in water between the proximal and distal 80% dose) of the carbon ion beam while maintaining a sharp distal falloff width (DFW, defined as the distance along the beam axis where the dose in water reduces from 80% to 20%). METHODS: The binary voxel models of porous structure (PS) and PSP were established in the Monte Carlo code FLUKA and the corresponding physical models were manufactured by 3D printing. Both experiment and simulation were performed for evaluating the modulation capacity of PS and PSP. BPWs and DFWs derived from each integral depth dose curves were compared. Fluence homogeneity of 430 MeV/u carbon-ion beam passing through the PSP was recorded by analyzing radiochromic films at six different locations downstream the PSP in the experiment. Additionally, by changing the beam spot size and incident position on the PSP, totally 48 different carbon-ion beams were simulated and corresponding deviations of beam metrics were evaluated to test the modulating stability of PSP. RESULTS: According to the measurement data, the use of PSP resulted in an average increase of 0.63 mm in BPW and a decrease of 0.74 mm in DFW compared to PS. The 2D radiation field inhomogeneities were lower than 3 % when the beam passing through a ≥ 10 cm PMMA medium. Furthermore, employing a spot size of ≥ 6 mm ensures that beam metric deviations, including BPW, DFW, and range, remain within a deviation of 0.1 mm across various incident positions. CONCLUSION: The developed PSP demonstrated its capability to effectively broaden the BPW of carbon ion beams while maintaining a sharp DFW comparing to PS. The superior performance of PSP, indicates its potential for clinical use in the future.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Método de Monte Carlo , Porosidade , Radioterapia com Íons Pesados/métodos , Carbono , Água , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos
14.
Radiat Oncol ; 19(1): 42, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553768

RESUMO

BACKGROUND: Solitary fibrous tumors (SFT) of the central nervous system are rare and treatment options are not well established. The aim of this study was to evaluate the clinical outcomes of radiotherapy (RT) and re-radiotherapy (re-RT) for de novo intracranial SFT and recurrent intracranial SFT. METHODS: This retrospective study analyzed efficacy and toxicity of different RT modalities in patients who received radiotherapy (RT) for intracranial SFT at Heidelberg University Hospital between 2000 and 2020 following initial surgery after de novo diagnosis ("primary group"). We further analyzed the patients of this cohort who suffered from tumor recurrence and received re-RT at our institution ("re-irradiation (re-RT) group"). Median follow-up period was 54.0 months (0-282) in the primary group and 20.5 months (0-72) in the re-RT group. RT modalities included 3D-conformal RT (3D-CRT), intensity-modulated RT (IMRT), stereotactic radiosurgery (SRS), proton RT, and carbon-ion RT (C12-RT). Response rates were analyzed according to RECIST 1.1 criteria. RESULTS: While the primary group consisted of 34 patients (f: 16; m:18), the re-RT group included 12 patients (f: 9; m: 3). Overall response rate (ORR) for the primary group was 38.3% (N = 11), with 32.4% (N = 11) complete remissions (CR) and 5.9% (N = 2) partial remissions (PR). Stable disease (SD) was confirmed in 5.9% (N = 2), while 41.2% (N = 14) experienced progressive disease (PD). 14% (N = 5) were lost to follow up. The re-RT group had 25.0% CR and 17.0% PR with 58.0% PD. The 1-, 3-, and 5-year progression-free survival rates were 100%, 96%, and 86%, respectively, in the primary group, and 81%, 14%, and 14%, respectively, in the re-RT group. Particle irradiation (N = 11) was associated with a lower likelihood of developing a recurrence in the primary setting than photon therapy (N = 18) (OR = 0.038; p = 0.002), as well as doses ≥ 60.0 Gy (N = 15) versus < 60.0 Gy (N = 14) (OR = 0.145; p = 0.027). Risk for tumor recurrence was higher for women than for men (OR = 8.07; p = 0.014) with men having a median PFS of 136.3 months, compared to women with 66.2 months. CONCLUSION: The data suggests RT as an effective treatment option for intracranial SFT, with high LPFS and PFS rates. Radiation doses ≥ 60 Gy could be associated with lower tumor recurrence. Particle therapy may be associated with a lower risk of recurrence in the primary setting, likely due to the feasibility of higher RT-dose application.


Assuntos
Radioterapia com Íons Pesados , Hemangiopericitoma , Tumores Fibrosos Solitários , Masculino , Humanos , Feminino , Prótons , Recidiva Local de Neoplasia/radioterapia , Estudos Retrospectivos , Hemangiopericitoma/radioterapia , Hemangiopericitoma/patologia , Hemangiopericitoma/cirurgia , Tumores Fibrosos Solitários/radioterapia , Tumores Fibrosos Solitários/patologia , Radioterapia com Íons Pesados/efeitos adversos
15.
Int J Radiat Biol ; 100(5): 669-677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442137

RESUMO

PURPOSE: Lymphopenia is now generally recognized as a negative prognostic factor in radiotherapy. Already at the beginning of the century we demonstrated that high-energy carbon ions induce less damage to the lymphocytes of radiotherapy patients than X-rays, even if heavy ions are more effective per unit dose in the induction of chromosomal aberrations in blood cells irradiated ex-vivo. The explanation was based on the volume effect, i.e. the sparing of larger volumes of normal tissue in Bragg peak therapy. Here we will review the current knowledge about the difference in lymphopenia between particle and photon therapy and the consequences. CONCLUSIONS: There is nowadays an overwhelming evidence that particle therapy reduces significantly the radiotherapy-induced lymphopenia in several tumor sites. Because lymphopenia turns down the immune response to checkpoint inhibitors, it can be predicted that particle therapy may be the ideal partner for combined radiation and immunotherapy treatment and should be selected for patients where severe lymphopenia is expected after X-rays.


Assuntos
Linfopenia , Humanos , Linfopenia/etiologia , Neoplasias/radioterapia , Radioterapia com Íons Pesados/efeitos adversos , Linfócitos/efeitos da radiação
16.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474078

RESUMO

Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.


Assuntos
Radioterapia com Íons Pesados , Células Supressoras Mieloides , Neoplasias , Humanos , Neoplasias/patologia , Linfócitos T Reguladores , DNA , Microambiente Tumoral
17.
Semin Radiat Oncol ; 34(2): 207-217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508785

RESUMO

The unique physical and biological characteristics of proton and carbon ions allow for improved sparing of normal tissues, decreased integral dose to the body, and increased biological effect through high linear energy transfer. These properties are particularly useful for sarcomas given their histology, wide array of locations, and age of diagnosis. This review summarizes the literature and describes the clinical situations in which these heavy particles have advantages for treating sarcomas.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Sarcoma , Humanos , Prótons , Sarcoma/radioterapia
18.
Oral Oncol ; 151: 106683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387259

RESUMO

BACKGROUND: Although carbon ion radiation therapy (CIRT) substantially improves the overall survival (OS) of patients with LR-NPC, approximately 40% of the patients may develop local recurrence. The purpose of study is to assess the value of tumor volume (TV) as a predictive tool to guide individualized CIRT. METHODS: Consecutive patients with LR-NPC treated using CIRT at Shanghai Proton and Heavy Ion Center between April 2015 and May 2019 were included. TV before CIRT was delineated and calculated. The generalized additive Cox model was used to examine the relationship between TV and OS and local progression-free survival (LPFS). A cutoff value of tumor volume was identified to best discriminate patients with different 2-year OS rates, using receiver operating characteristic (ROC) analysis. RESULTS: A total of 157 patients were enrolled. The median tumor volume was 22.49 (2.52-90.13) ml. In the univariable analyses, tumor volume was significantly associated with OS (p < 0.001) and LPFS (p = 0.01). The relationships with OS (p = 0.009) and LPFS (p = 0.020) remained significant in multivariable analyses. Using ROC analysis, a TV of 26.69 ml was identified to predict the 2-year OS rate. To facilitate potential clinical use, 25 ml was designated as the final cutoff value. The 2-year OS and LPFS rates were 88.6 % vs 62.3 %, and 54.7 % vs 35.5 %, for patients with a TV ≤ 25 ml and > 25 ml, respectively. CONCLUSION: Tumor volume could predict the OS and LPFS of patients. We propose that tumor volume should be considered in the risk stratification and CIRT-based treatment for patients with LR-NPC.


Assuntos
Radioterapia com Íons Pesados , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Carga Tumoral , China , Radioterapia com Íons Pesados/efeitos adversos , Estudos Retrospectivos , Prognóstico
19.
Radiother Oncol ; 194: 110180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403023

RESUMO

This feasibility study confirmed the initial safety and efficacy of a novel carbon-ion radiotherapy (CIRT) using linear energy transfer (LET) painting for head and neck cancer. This study is the first step toward establishing CIRT with LET painting in clinical practice and making it a standard practice in the future.


Assuntos
Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Transferência Linear de Energia , Dosagem Radioterapêutica , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia com Íons Pesados/métodos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade
20.
Appl Radiat Isot ; 206: 111233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340532

RESUMO

Carbon ions have unique physical and biological properties that allow for precise targeting of tumors while minimizing damage to surrounding healthy tissues. The emitted neutrons dominate the radiation field in the treatment room and pose challenges for radiological shielding. Concrete is extensively utilized in the construction of radiotherapy facilities due to its good shielding characteristics, and it can be easily poured into the desired shapes and thickness. The difference in composition of concrete affects the characteristics of neutron attenuation and activation performance. Therefore, the purpose of this study is to clarify the shielding properties and activation performances of four types of concrete for carbon ion therapy facilities. The Monte Carlo method is used to analyze the neutron spectra from thick targets upon carbon ion bombardment. Furthermore, the deep attenuation efficiency of the secondary neutron in different compositions of concrete is discussed. The shielding design is developed to ensure compliance with the prescribed dose limit outside the shielding during operation. Finally, the induced radioactivity in concrete is estimated for both short-term and long-term operation. The produced radionuclides inventories and depth profiling are determined. This study reveals the shielding and radioactivity issue of carbon ion therapy facilities and is expected to aid in the design or construction of similar facilities.


Assuntos
Radioterapia com Íons Pesados , Nêutrons , Íons , Radioisótopos , Carbono , Método de Monte Carlo , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA