Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
J Control Release ; 374: 171-180, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128771

RESUMO

MYC is one of the most important therapeutic targets in human cancer. Many attempts have been made to develop small molecules that could be used to curb its activity in patients, but most failed to identify a suitable direct inhibitor. After years of preclinical characterization, a tissue-penetrating peptide MYC inhibitor, called Omomyc, has been recently successfully used in a Phase I dose escalation study in late-stage, all-comers solid tumour patients. The study showed drug safety and positive signs of clinical activity, prompting the beginning of a new Phase Ib combination study currently ongoing in metastatic pancreatic adenocarcinoma patients. In this manuscript, we have explored the possibility to improve Omomyc targeting to specific cancer subtypes by linking it to a therapeutic antibody. The new immunoconjugate, called EV20/Omomyc, was developed by linking a humanised anti-HER3 antibody, named EV20, to Omomyc using a bifunctional linker. EV20/Omomyc shows antigen-dependent penetrating activity and therapeutic efficacy in a metastatic model of neuroblastoma. This study suggests that directing Omomyc into specific cell types using antibodies recognising tumour antigens could improve its therapeutic activity in specific indications, like in the paediatric setting.


Assuntos
Imunoconjugados , Proteínas Proto-Oncogênicas c-myc , Receptor ErbB-3 , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoconjugados/farmacologia , Humanos , Animais , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/imunologia , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/imunologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Feminino , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
Cancer Lett ; 599: 217146, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098760

RESUMO

Human epidermal growth factor receptor-3 (ERBB3) is a member of the ERBB receptor tyrosine kinases (RTKs) and is expressed in many malignancies. Along with other ERBB receptors, ERBB3 is associated with regulating normal cell proliferation, apoptosis, differentiation, and survival, and has received increased research attention for its involvement in cancer therapies. ERBB3 expression or co-expression levels have been investigated as predictive factors for cancer prognosis and drug sensitivity. Additionally, the association between the elevated expression of ERBB3 and treatment failure in cancer therapy further established ERBB3-targeting therapy as a crucial therapeutic approach. This review delves into the molecular mechanisms of ERBB3-driven resistance to targeted therapeutics against ERBB2 and EGFR and other signal transduction inhibitors, endocrine therapy, chemotherapy, and radiotherapy. Using preclinical and clinical evidence, we synthesise and explicate how various aspects of aberrant ERBB3 activities-such as compensatory activation, signal crosstalk interactions, dysregulation in the endocytic pathway, mutations, ligand-independent activation, intrinsic kinase activity, and homodimerisation-can lead to resistance development and/or treatment failures. Several ERBB3-directed monoclonal antibodies, bispecific antibodies, and the emerging antibody-drug conjugate demonstrate encouraging clinical outcomes for improving therapeutic efficacy and overcoming resistance, especially when combined with other anti-cancer approaches. More research efforts are needed to identify appropriate biomarkers tailored for ERBB3-targeted therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Receptor ErbB-3 , Transdução de Sinais , Humanos , Receptor ErbB-3/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
3.
J Transl Med ; 22(1): 665, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020378

RESUMO

Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Receptor ErbB-3 , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-3/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Feminino , Animais
4.
Cancer Treat Rev ; 129: 102786, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885540

RESUMO

Breast cancer is a heterogeneous disease, encompassing multiple different subtypes. Thanks to the increasing knowledge of the diverse biological features of each subtype, most patients receive personalized treatment based on known biomarkers. However, the role of some biomarkers in breast cancer evolution is still unknown, and their potential use as a therapeutic target is still underexplored. HER3 is a member of the human epidermal growth factors receptor family, overexpressed in 50%-70% of breast cancers. HER3 plays a key role in cancer progression, metastasis development, and drug resistance across all the breast cancer subtypes. Owing to its critical role in cancer progression, many HER3-targeting therapies have been developed over the past decade with conflicting findings. Next-generation antibody-drug conjugates have recently shown promising results in solid tumors expressing HER3, including breast cancer. In this review, we discuss the HER3 role in the pathogenesis of breast cancer and its relevance across all subtypes. We also explore the new anti-HER3 treatment strategies, calling into question the significance of HER3 detection as crucial information in breast cancer treatment.


Assuntos
Neoplasias da Mama , Receptor ErbB-3 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor ErbB-3/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Feminino , Terapia de Alvo Molecular/métodos , Resistencia a Medicamentos Antineoplásicos
5.
Lancet Oncol ; 25(7): 901-911, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823410

RESUMO

BACKGROUND: Antibody-drug conjugates have promising clinical activity in the treatment of solid tumours. BL-B01D1 is a first-in-class EGFR-HER3 bispecific antibody-drug conjugate. We aimed to assess the safety and preliminary antitumour activity of BL-B01D1 in patients with locally advanced or metastatic solid tumours. METHODS: This first-in-human, open-label, multicentre, dose-escalation and dose-expansion phase 1 trial was conducted in seven hospitals in China, enrolling patients aged 18-75 years (dose escalation; phase 1a) or older than 18 years (dose expansion; phase 1b), with a life expectancy of at least 3 months, an Eastern Cooperative Oncology Group performance status of 0-1, and histologically or cytologically confirmed locally advanced or metastatic solid tumours that had progressed on current standard treatment. In the phase 1a i3+3 design, patients received intravenous BL-B01D1 at three different schedules: 0·27 mg/kg, 1·5 mg/kg, and 3·0 mg/kg weekly; 2·5 mg/kg, 3·0 mg/kg, and 3·5 mg/kg on days 1 and 8 of each cycle every 3 weeks; or 5·0 mg/kg and 6·0 mg/kg on day 1 of each cycle every 3 weeks. The primary objectives of phase 1a were to identify the safety, maximum tolerated dose, and dose-limiting toxicity. In phase 1b, patients were treated in two schedules: 2·5 and 3·0 mg/kg on days 1 and 8 every 3 weeks, or 4·5, 5·0, and 6·0 mg/kg on day 1 every 3 weeks. The primary objectives of phase 1b were to assess the safety and recommended phase 2 dose of BL-B01D1, and objective response rate was a key secondary endpoint. Safety was analysed in all patients with safety records who received at least one dose of BL-B01D1. Antitumour activity was assessed in the activity analysis set which included all patients who received at least one dose of BL-B01D1 every 3 weeks. This trial is registered with China Drug Trials, CTR20212923, and ClinicalTrials.gov, NCT05194982, and recruitment is ongoing. FINDINGS: Between Dec 8, 2021, and March 13, 2023, 195 patients (133 [65%] men and 62 [32%] women; 25 in phase 1a and 170 in phase 1b) were consecutively enrolled, including 113 with non-small-cell lung cancer, 42 with nasopharyngeal carcinomas, 13 with small-cell lung cancer, 25 with head and neck squamous cell carcinoma, one with thymic squamous cell carcinoma, and one with submandibular lymphoepithelioma-like carcinoma. In phase 1a, four dose-limiting toxicities were observed (two at 3·0 mg/kg weekly and two at 3·5 mg/kg on days 1 and 8 every 3 weeks; all were febrile neutropenia), thus the maximum tolerated dose was reached at 3·0 mg/kg on days 1 and 8 every 3 weeks and 6·0 mg/kg on day 1 every 3 weeks. Grade 3 or worse treatment-related adverse events occurred in 139 (71%) of 195 patients; the most common of which were neutropenia (91 [47%]), anaemia (76 [39%]), leukopenia (76 [39%]), and thrombocytopenia (63 [32%]). 52 (27%) patients had a dose reduction and five (3%) patients discontinued treatment due to treatment-related adverse events. One patient was reported as having interstitial lung disease. Treatment-related deaths occurred in three (2%) patients (one due to pneumonia, one due to septic shock, and one due to myelosuppression). In 174 patients evaluated for activity, median follow-up was 6·9 months (IQR 4·5-8·9) and 60 (34%; 95% CI 27-42) patients had an objective response. INTERPRETATION: Our results suggest that BL-B01D1 has preliminary antitumour activity in extensively and heavily treated advanced solid tumours with an acceptable safety profile. Based on the safety and antitumour activity data from both phase 1a and 1b, 2·5 mg/kg on days 1 and 8 every 3 weeks was selected as the recommended phase 2 dose in Chinese patients. FUNDING: Sichuan Baili Pharmaceutical. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Biespecíficos , Receptores ErbB , Imunoconjugados , Neoplasias , Receptor ErbB-3 , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/uso terapêutico , Idoso , Adulto , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoconjugados/administração & dosagem , Imunoconjugados/efeitos adversos , Imunoconjugados/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/imunologia , Adulto Jovem , Dose Máxima Tolerável , Adolescente , Metástase Neoplásica , China , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico
6.
Eur J Pharmacol ; 977: 176725, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851563

RESUMO

Receptor tyrosine kinases (RTKs) are cell surface receptors with kinase activity that play a crucial role in diverse cellular processes. Among the RTK family members, Human epidermal growth factor receptor 2 (HER2) and HER3 are particularly relevant to breast cancer. The review delves into the complexities of receptor tyrosine kinase interactions, resistance mechanisms, and the potential of anti-HER3 drugs, offering valuable insights into the clinical implications and future directions in this field of study. It assesses the potential of anti-HER3 drugs, such as pertuzumab, in overcoming resistance observed in HER2-positive breast cancer therapies. The review also explores the resistance mechanisms associated with various drugs, including trastuzumab, lapatinib, and PI3K inhibitors, providing insights into the intricate molecular processes underlying resistance development. The review concludes by emphasizing the necessity for further clinical trials to assess the efficacy of HER3 inhibitors and the potential of developing safe and effective anti-HER3 treatments to improve treatment outcomes for patients with HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Feminino , Animais , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
7.
EMBO Mol Med ; 16(7): 1603-1629, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886591

RESUMO

Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.


Assuntos
Neoplasias da Mama , Fosfatase 6 de Especificidade Dupla , Receptor ErbB-2 , Receptor ErbB-3 , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Receptor ErbB-2/metabolismo , Animais , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
8.
Biochem Pharmacol ; 226: 116375, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38906227

RESUMO

Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase and plays critical oncogenic roles in multiple cancers. Here we show that FTO is an effective target in hepatocellular carcinoma (HCC). FTO is highly expressed in patients with HCC. Genetic depletion of Fto dramatically attenuated HCC progression in mice. Pharmacological inhibition of FTO by FB23/FB23-2 markedly suppressed the proliferation and migration of HCC cell lines in vitro and inhibited HCC tumorigenicity in xeno-transplanted mice. Mechanistically, FB23-2 suppressed the expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) and human tubulin beta class Iva (TUBB4A) by increasing the m6A level in these mRNA transcripts. The decrease in ERBB3 expression resulted in the inhibition of Akt-mTOR signaling, which subsequently impaired the proliferation and survival of HCC cells. Moreover, FB23-2 disturbed the stability of the tubulin cytoskeleton, whereas overexpression of TUBB4A rescued the migration of HCC cells. Collectively, our study demonstrates that FTO plays a critical role in HCC by maintaining the proliferation and migration of cells and highlights the potential of FTO inhibitors for targeting HCC.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor ErbB-3 , Tubulina (Proteína) , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Animais , Camundongos , Tubulina (Proteína)/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos Nus , Masculino , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Movimento Celular/efeitos dos fármacos
9.
Acta Pharmacol Sin ; 45(8): 1727-1739, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38605180

RESUMO

Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Imunoconjugados , Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Feminino , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/química , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
10.
Ann Oncol ; 35(5): 437-447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369013

RESUMO

BACKGROUND: Human epidermal growth factor receptor 3 (HER3) is broadly expressed in non-small-cell lung cancer (NSCLC) and is the target of patritumab deruxtecan (HER3-DXd), an antibody-drug conjugate consisting of a HER3 antibody attached to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker. U31402-A-U102 is an ongoing phase I study of HER3-DXd in patients with advanced NSCLC. Patients with epidermal growth factor receptor (EGFR)-mutated NSCLC that progressed after EGFR tyrosine kinase inhibitor (TKI) and platinum-based chemotherapy (PBC) who received HER3-DXd 5.6 mg/kg intravenously once every 3 weeks had a confirmed objective response rate (cORR) of 39%. We present median overall survival (OS) with extended follow-up in a larger population of patients with EGFR-mutated NSCLC and an exploratory analysis in those with acquired genomic alterations potentially associated with resistance to HER3-DXd. PATIENTS AND METHODS: Safety was assessed in patients with EGFR-mutated NSCLC previously treated with EGFR TKI who received HER3-DXd 5.6 mg/kg; efficacy was assessed in those who also had prior PBC. RESULTS: In the safety population (N = 102), median treatment duration was 5.5 (range 0.7-27.5) months. Grade ≥3 adverse events occurred in 76.5% of patients; the overall safety profile was consistent with previous reports. In 78/102 patients who had prior third-generation EGFR TKI and PBC, cORR by blinded independent central review (as per RECIST v1.1) was 41.0% [95% confidence interval (CI) 30.0% to 52.7%], median progression-free survival was 6.4 (95% CI 4.4-10.8) months, and median OS was 16.2 (95% CI 11.2-21.9) months. Patients had diverse mechanisms of EGFR TKI resistance at baseline. At tumor progression, acquired mutations in ERBB3 and TOP1 that might confer resistance to HER3-DXd were identified. CONCLUSIONS: In patients with EGFR-mutated NSCLC after EGFR TKI and PBC, HER3-DXd treatment was associated with a clinically meaningful OS. The tumor biomarker characterization comprised the first description of potential mechanisms of resistance to HER3-DXd therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Receptor ErbB-3 , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Feminino , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inibidores , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Idoso de 80 Anos ou mais , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Camptotecina/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Amplamente Neutralizantes , Imunoconjugados/uso terapêutico , Imunoconjugados/efeitos adversos , Imunoconjugados/administração & dosagem
11.
Acta Pharmacol Sin ; 45(4): 857-866, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38200149

RESUMO

HER3 (human epidermal growth factor receptor 3) acts through heterodimerization with EGFR (epidermal growth factor receptor) or HER2 to play an essential role in activating phosphoinositide 3-kinase (PI3K) and AKT signaling-a crucial pathway that promotes tumor cell survival. HER3 is a promising target for cancer therapy, and several HER3-directed antibodies have already entered into clinical trials. In this study we characterized a novel anti-HER3 monoclonal antibody, SIBP-03. SIBP-03 (0.01-10 µg/mL) specifically and concentration-dependently blocked both neuregulin (NRG)-dependent and -independent HER3 activation, attenuated HER3-mediated downstream signaling and inhibited cell proliferation. This antitumor activity was dependent, at least in part, on SIBP-03-induced, cell-mediated cytotoxicity and cellular phagocytosis. Importantly, SIBP-03 enhanced the antitumor activity of EGFR- or HER2-targeted drugs (cetuximab or trastuzumab) in vitro and in vivo. The mechanisms underlying this synergy involve increased inhibition of HER3-mediated downstream signaling. Collectively, these results demonstrated that SIBP-03, which is currently undergoing a Phase I clinical trial in China, may offer a new treatment option for patients with cancers harboring activated HER3, particularly as part of a combinational therapeutic strategy.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias , Receptor ErbB-3 , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Transdução de Sinais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias/terapia
12.
Cell Mol Life Sci ; 79(3): 178, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35249128

RESUMO

Receptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3-tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in vitro and in vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression can partially rescue proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3-MPZL3 axis in MET-amplified cancers.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor ErbB-3/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Instabilidade de Microssatélites , Fosforilação , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Transdução de Sinais/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transplante Heterólogo
13.
Sci Rep ; 12(1): 2711, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177646

RESUMO

Cancer stem cells (CSCs) are suggested to be responsible for drug resistance and aggressive phenotypes of tumors. Mechanisms of CSC induction are still under investigation. Our lab has established a novel method to generate CSCs from iPSCs under a cancerous microenvironment mimicked by the conditioned medium (CM) of cancer-derived cells. Here, we analyzed the transcriptome of CSCs, which were converted from iPSCs with CM from pancreatic ductal adenocarcinoma cells. The differentially expressed genes were identified and used to explore pathway enrichment. From the comparison of the CSCs with iPSCs, genes with elevated expression were related to the ErbB2/3 signaling pathway. Inhibition of either ErbB2 with lapatinib as a tyrosine kinase inhibitor or ErbB3 with TX1-85-1 or siRNAs arrested cell proliferation, inhibited the in vitro tumorigenicity, and lead to loss of stemness in the converting cells. The self-renewal and tube formation abilities of cells were also abolished while CD24 and Oct3/4 levels were reduced, and the MAPK pathway was overactivated. This study shows a potential involvement of the ErbB2/ErbB3 pathway in CSC generation and could lead to new insight into the mechanism of tumorigenesis and the way of cancer prevention.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Acrilamidas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Autorrenovação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Regulação Neoplásica da Expressão Gênica , Humanos , Lapatinib/farmacologia , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Transdução de Sinais , Neoplasias Pancreáticas
14.
Clin Cancer Res ; 28(2): 390-403, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921025

RESUMO

PURPOSE: EGFR-tyrosine kinase inhibitor (TKI) is a standard first-line therapy for activated EGFR-mutated non-small cell lung cancer (NSCLC). Treatment options for patients with acquired EGFR-TKI resistance are limited. HER3 mediates EGFR-TKI resistance. Clinical trials of the HER3-targeting antibody-drug conjugate patritumab deruxtecan (HER3-DXd) demonstrated its anticancer activity in EGFR-mutated NSCLC; however, the mechanisms that regulate HER3 expression are unknown. This study was conducted with the aim to clarify the mechanisms underlying HER3 regulation in EGFR-mutated NSCLC tumors and explored the strategy for enhancing the anticancer activity of HER3-DXd in EGFR-mutated NSCLC. EXPERIMENTAL DESIGN: Paired tumor samples were obtained from 48 patients with EGFR-mutated NSCLC treated with EGFR-TKI(s). HER3 expression was immunohistochemically quantified with H-score, and genomic alteration and transcriptomic signature were tested in tumors from pretreatment to post-EGFR-TKI resistance acquisition. The anticancer efficacy of HER3-DXd and osimertinib was evaluated in EGFR-mutated NSCLC cells. RESULTS: We showed augmented HER3 expression in EGFR-mutated tumors with acquired EGFR-TKI resistance compared with paired pretreatment samples. RNA sequencing revealed that repressed PI3K/AKT/mTOR signaling was associated with HER3 augmentation, especially in tumors from patients who received continuous EGFR-TKI therapy. An in vitro study also showed that EGFR-TKI increased HER3 expression, repressed AKT phosphorylation in multiple EGFR-mutated cancers, and enhanced the anticancer activity of HER3-DXd. CONCLUSIONS: Our findings help clarify the mechanisms of HER3 regulation in EGFR-mutated NSCLC tumors and highlight a rationale for combination therapy with HER3-DXd and EGFR-TKI in EGFR-mutated NSCLC.


Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor ErbB-3 , Anticorpos Monoclonais Humanizados/uso terapêutico , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
15.
Cancer Res ; 81(24): 6207-6218, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753775

RESUMO

It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow-derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody-drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. SIGNIFICANCE: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Biomarcadores Tumorais/metabolismo , Camptotecina/análogos & derivados , Neuregulina-1/metabolismo , Organoides/patologia , Neoplasias da Próstata/patologia , Receptor ErbB-3/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Camptotecina/farmacologia , Proliferação de Células , Seguimentos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neuregulina-1/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prognóstico , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS Genet ; 17(11): e1009931, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843459

RESUMO

ERBB3 has gained attention as a potential therapeutic target to treat colorectal and other types of cancers. To confirm a previous study showing intestinal polyps are dependent upon ERBB3, we generated an intestinal epithelia-specific ERBB3 deletion in C57BL/6-ApcMin/+ mice. Contrary to the previous report showing a significant reduction in intestinal polyps with ablation of ERBB3 on a B6;129 mixed genetic background, we observed a significant increase in polyp number with ablation of ERBB3 on C57BL/6J compared to control littermates. We confirmed the genetic background dependency of ERBB3 by also analyzing polyp development on B6129 hybrid and B6;129 advanced intercross mixed genetic backgrounds, which showed that ERBB3 deficiency only reduced polyp number on the mixed background as previously reported. Increased polyp number with ablation of ERBB3 was also observed in C57BL/6J mice treated with azoxymethane showing the effect is model independent. Polyps forming in absence of ERBB3 were generally smaller than those forming in control mice, albeit the effect was greatest in genetic backgrounds with reduced polyp numbers. The mechanism for differential polyp number in the absence of ERBB3 was through altered proliferation. Backgrounds with increased polyp number with loss of ERBB3 showed an increase in cell proliferation even in non-tumor epithelia, while backgrounds showing reduced polyp number with loss of ERBB3 showed reduced cellular proliferation. Increase polyp number caused by loss of ERBB3 was mediated by increased epidermal growth factor receptor (EGFR) expression, which was confirmed by deletion of Egfr. Taken together, this study raises substantial implications on the use of ERBB3 inhibitors against colorectal cancer. The prediction is that some patients may have increased progression with ERBB3 inhibitor therapy, which is consistent with observations reported for ERBB3 inhibitor clinical trials.


Assuntos
Pólipos do Colo/genética , Neoplasias Colorretais/genética , Receptores ErbB/genética , Pólipos Intestinais/genética , Receptor ErbB-3/genética , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Proliferação de Células/genética , Colo/metabolismo , Colo/patologia , Pólipos do Colo/patologia , Pólipos do Colo/terapia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Pólipos Intestinais/patologia , Pólipos Intestinais/terapia , Camundongos , Receptor ErbB-3/antagonistas & inibidores
17.
Biochem Biophys Res Commun ; 576: 59-65, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34482024

RESUMO

HER1-and HER2-targeted drugs are effective in cancer therapy, especially against lung, breast and colon malignancies; however, resistance of cancer cells to HER1-and HER2-targeted therapies is becoming a serious problem. The avidity/affinity constant (KA) and growth inhibitory effect of anti-HER3 rat monoclonal antibodies (mAb, Ab1∼Ab6) in the presence of therapeutic mAb or low-molecular-weight inhibitors against HER family proteins were analyzed by flow cytometry-based Scatchard plots (Splot) and cell proliferation assay. The KA of Ab3 and Ab6, but not Ab1 or Ab4, split into dual (high and low) modes of KA, and Ab6 exhibited greater anti-proliferative effects against LS-174T colon cancer cells in the presence of Pertuzumab (anti-HER2 mAb). A high KA by Ab6 and Ab6-mediated increased growth inhibition were observed against NCI-H1838 lung or BT474 breast cancer cells, respectively, in the presence of Panitumumab (anti-HER1 mAb) or Perutuzumab. A high KA by Ab6 and Ab6-mediated increased anti-proliferative effects against NCI-H1838 or BT474 were also respectively observed in the presence of Erlotinib (HER1 inhibitor) or Lapatinib (HER1/HER2 inhibitor). In HER1-knockout (KO) NCI-H1838, the reactivity and KA of Ab4 increased compared with in parent NCI-H1838. In HER1-KO or HER3-KO SW1116 colon cancer cells, dual modes of KA with Pertuzumab were noted, and the combination Ab6 and Pertuzumab promoted growth inhibition of HER1-KO, but not of parent SW1116.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Animais , Afinidade de Anticorpos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Ratos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Transdução de Sinais
18.
Cell Rep ; 36(4): 109455, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320350

RESUMO

In glioblastoma (GBM), the most frequent and lethal brain tumor, therapies suppressing recurrently altered signaling pathways failed to extend survival. However, in patient subsets, specific genetic lesions can confer sensitivity to targeted agents. By exploiting an integrated model based on patient-derived stem-like cells, faithfully recapitulating the original GBMs in vitro and in vivo, here, we identify a human GBM subset (∼9% of all GBMs) characterized by ERBB3 overexpression and nuclear accumulation. ERBB3 overexpression is driven by inheritable promoter methylation or post-transcriptional silencing of the oncosuppressor miR-205 and sustains the malignant phenotype. Overexpressed ERBB3 behaves as a specific signaling platform for fibroblast growth factor receptor (FGFR), driving PI3K/AKT/mTOR pathway hyperactivation, and overall metabolic upregulation. As a result, ERBB3 inhibition by specific antibodies is lethal for GBM stem-like cells and xenotransplants. These findings highlight a subset of patients eligible for ERBB3-targeted therapy.


Assuntos
Glioblastoma/genética , MicroRNAs/metabolismo , Receptor ErbB-3/metabolismo , Anticorpos/metabolismo , Apoptose , Linhagem Celular Tumoral , Fator 2 de Crescimento de Fibroblastos , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Esferoides Celulares/patologia , Serina-Treonina Quinases TOR/metabolismo
19.
Invest New Drugs ; 39(6): 1604-1612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34250553

RESUMO

Background Overactivation of human epidermal growth factor receptor 3 (HER3) triggers multiple intracellular pathways resulting in tumor cell survival. This Phase 1 study assessed the safety, efficacy, and pharmacokinetics (PK) of seribantumab, a fully human anti-HER3 monoclonal antibody. Methods Adult patients with advanced or refractory solid tumors were treated in six dose cohorts of seribantumab: 3.2, 6, 10, 15, or 20 mg/kg weekly, or 40 mg/kg loading dose followed by 20 mg/kg weekly maintenance dose (40/20 mg/kg) using a modified 3 + 3 dose escalation strategy with cohort expansion. Primary objectives were identification of a recommended Phase 2 dose (RP2D) and determination of objective response rate. Secondary objectives were assessment of safety, dose-limiting toxicities, and PK. Results Forty-four patients (26 dose escalation; 18 dose expansion) were enrolled. Seribantumab monotherapy was well tolerated with most adverse events being transient and mild to moderate (grade 1 or 2) in severity; maximum tolerated dose was not reached. The highest dose, 40/20 mg/kg, was identified as RP2D. Best response was stable disease, reported in 24% and 39% of patients during the dose escalation and expansion portions of the study, respectively. Seribantumab terminal half-life was ≈100 h; steady state concentrations were reached after 3-4 weekly doses. Conclusions Seribantumab monotherapy was well tolerated across all dose levels. Safety and PK data from this study support further seribantumab investigations in genomically defined populations.Clinical trial registration NCT00734305. August 12, 2008.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Receptor ErbB-3/antagonistas & inibidores
20.
Nat Commun ; 12(1): 2383, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888713

RESUMO

Immune checkpoint blockade (ICB) therapy has revolutionized head and neck squamous cell carcinoma (HNSCC) treatment, but <20% of patients achieve durable responses. Persistent activation of the PI3K/AKT/mTOR signaling circuitry represents a key oncogenic driver in HNSCC; however, the potential immunosuppressive effects of PI3K/AKT/mTOR inhibitors may limit the benefit of their combination with ICB. Here we employ an unbiased kinome-wide siRNA screen to reveal that HER3, is essential for the proliferation of most HNSCC cells that do not harbor PIK3CA mutations. Indeed, we find that persistent tyrosine phosphorylation of HER3 and PI3K recruitment underlies aberrant PI3K/AKT/mTOR signaling in PIK3CA wild type HNSCCs. Remarkably, antibody-mediated HER3 blockade exerts a potent anti-tumor effect by suppressing HER3-PI3K-AKT-mTOR oncogenic signaling and concomitantly reversing the immune suppressive tumor microenvironment. Ultimately, we show that HER3 inhibition and PD-1 blockade may provide a multimodal precision immunotherapeutic approach for PIK3CA wild type HNSCC, aimed at achieving durable cancer remission.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos , Mutação , Medicina de Precisão/métodos , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA