Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 8(8): e01057, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29978954

RESUMO

OBJECTIVES: M4 muscarinic receptors (MR) presumably play a role in motor coordination. Previous studies have shown different results depending on genetic background and number of backcrosses. However, no attention has been given to biorhythms. MATERIAL AND METHODS: We therefore analyzed biorhythms under a light/dark cycle obtained telemetrically in intact animals (activity, body temperature) in M4 KO mice growth on the C57Bl6 background using ChronosFit software. Studying pure effects of gene knockout in daily rhythms is especially important knowledge for pharmacological/behavioral studies in which drugs are usually tested in the morning. RESULTS: We show that M4 KO mice motor activity does not differ substantially from wild-type mice during light period while in the dark phase (mice active part of the day), the M4 KO mice reveal biorhythm changes in many parameters. Moreover, these differences are sex-dependent and are evident in females only. Mesor, night-day difference, and night value were doubled or tripled when comparing female KO versus male KO. Our in vitro autoradiography demonstrates that M4 MR proportion represents 24% in the motor cortex (MOCx), 30% in the somatosensory cortex, 50% in the striatum, 69% in the thalamus, and 48% in the intergeniculate leaflet (IGL). The M4 MR densities were negligible in the subparaventricular zone, the posterior hypothalamic area, and in the suprachiasmatic nuclei. CONCLUSIONS: We conclude that cholinergic signaling at M4 MR in brain structures such as striatum, MOCx, and probably with the important participation of IGL significantly control motor activity biorhythm. Animal activity differs in the light and dark phases, which should be taken into consideration when interpreting the results.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Atividade Motora/genética , Atividade Motora/fisiologia , Periodicidade , Receptor Muscarínico M4/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Receptor Muscarínico M4/deficiência , Fatores Sexuais
2.
Chem Pharm Bull (Tokyo) ; 66(1): 37-44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29311510

RESUMO

Among the muscarinic acetylcholine receptor (mAChR) subtypes, the M4 receptor has been investigated as a promising drug target for the treatment of schizophrenia. These investigations have been based on findings from M4-deficient mice studies as well as on the results of a clinical trial that used xanomeline, an M1/M4 mAChRs-preferring agonist. Both orthosteric agonists and positive allosteric modulators of M4 mAChR have been reported as promising ligands that not only have antipsychotic effects, but can also improve cognitive impairment and motor dysfunction. However, challenges remain due to the high homology of the orthosteric binding site among all muscarinic receptors. In this review, we summarize our approach to the identification of M4 mAChR activators, orthosteric agonists, and positive allosteric modulators based on M4 mAChR structural information and structure-activity relationship studies. These findings indicate that selective M4 mAChR activators are promising potential therapeutic agents for several central nervous system conditions.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Descoberta de Drogas , Piridinas/farmacologia , Receptor Muscarínico M4/agonistas , Tiadiazóis/farmacologia , Animais , Doenças do Sistema Nervoso Central/metabolismo , Humanos , Estrutura Molecular , Piridinas/química , Receptor Muscarínico M4/deficiência , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade , Tiadiazóis/química
3.
Eur J Pharmacol ; 746: 1-5, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25445043

RESUMO

Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and involved in regulation of cholinergic and dopaminergic transmission. Here we investigate, for the first time, the role of the M4 receptor in alcohol consumption using M4 knockout (M4(-/-)) and wild-type (M4(+/+)) mice. Experimentally naïve M4(-/-) and M4(+/+) mice were trained to orally self-administer 5%, 8% and 10% alcohol in 60min sessions, 6 days/week, after having undergone a standard sucrose fading training procedure on a fixed ratio schedule. The mice were further subjected to an extinction period followed by a 1 day reinstatement trial. M4(-/-) mice consumed more alcohol at 5% and 8% compared to their M4(+/+) littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4(-/-) mice consuming more alcohol than their M4(+/+) controls were re-established. Moreover, the M4(-/-) mice displayed a reduced capacity to extinguish their alcohol-seeking behavior. Taken together, alcohol consumption is elevated in M4(-/-) mice, indicating that the M4 receptor is involved in mediating the reinforcing effects of alcohol. The M4 receptor should be further explored as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Receptor Muscarínico M4/deficiência , Receptor Muscarínico M4/genética , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Comportamento Animal , Sinais (Psicologia) , Masculino , Camundongos , Camundongos Knockout , Receptor Muscarínico M4/metabolismo , Autoadministração
4.
Neuropsychopharmacology ; 39(7): 1578-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24442096

RESUMO

Accumulating evidence suggests that selective M4 muscarinic acetylcholine receptor (mAChR) activators may offer a novel strategy for the treatment of psychosis. However, previous efforts to develop selective M4 activators were unsuccessful because of the lack of M4 mAChR subtype specificity and off-target muscarinic adverse effects. We recently developed VU0152100, a highly selective M4 positive allosteric modulator (PAM) that exerts central effects after systemic administration. We now report that VU0152100 dose-dependently reverses amphetamine-induced hyperlocomotion in rats and wild-type mice, but not in M4 KO mice. VU0152100 also blocks amphetamine-induced disruption of the acquisition of contextual fear conditioning and prepulse inhibition of the acoustic startle reflex. These effects were observed at doses that do not produce catalepsy or peripheral adverse effects associated with non-selective mAChR agonists. To further understand the effects of selective potentiation of M4 on region-specific brain activation, VU0152100 alone and in combination with amphetamine were evaluated using pharmacologic magnetic resonance imaging (phMRI). Key neural substrates of M4-mediated modulation of the amphetamine response included the nucleus accumbens (NAS), caudate-putamen (CP), hippocampus, and medial thalamus. Functional connectivity analysis of phMRI data, specifically assessing correlations in activation between regions, revealed several brain networks involved in the M4 modulation of amphetamine-induced brain activation, including the NAS and retrosplenial cortex with motor cortex, hippocampus, and medial thalamus. Using in vivo microdialysis, we found that VU0152100 reversed amphetamine-induced increases in extracellular dopamine levels in NAS and CP. The present data are consistent with an antipsychotic drug-like profile of activity for VU0152100. Taken together, these data support the development of selective M4 PAMs as a new approach to the treatment of psychosis and cognitive impairments associated with psychiatric disorders such as schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Piridinas/farmacologia , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/química , Tiofenos/farmacologia , Anfetamina/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular Transformada , Estimulantes do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Medo/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M4/deficiência , Receptor Muscarínico M4/genética , Reflexo de Sobressalto/efeitos dos fármacos
5.
Neuropsychopharmacology ; 38(13): 2717-26, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23907402

RESUMO

The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist 'BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2(-/-), M4(-/-), and M2/M4 (M2/M4(-/-)) mice found that the effects of BuTAC were near completely lost in M2/M4(-/-) double-knockout mice and potency of BuTAC was right-shifted in M4(-/-) as compared with wild-type and M2(-/-) mice. The M2/M4(-/-) mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms associated with schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Receptor Muscarínico M4/metabolismo , Tropanos/farmacologia , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Células CHO , Condicionamento Operante/fisiologia , Cricetulus , Relação Dose-Resposta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Haloperidol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/efeitos dos fármacos , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M4/deficiência
6.
Mol Brain ; 5: 10, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22463818

RESUMO

BACKGROUND: In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. RESULTS: In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. CONCLUSIONS: These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia.


Assuntos
Comportamento Animal/fisiologia , Inibição Neural/fisiologia , Receptor Muscarínico M4/deficiência , Comportamento Social , Animais , Escuridão , Aprendizagem em Labirinto/fisiologia , Memória Episódica , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Nociceptividade/fisiologia , Receptor Muscarínico M4/metabolismo , Reflexo de Sobressalto/fisiologia
7.
Eur J Pharmacol ; 656(1-3): 39-44, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21269601

RESUMO

A delicate balance exists between the central dopaminergic and cholinergic neurotransmitter systems with respect to motor function. An imbalance can result in motor dysfunction as observed in Parkinson's disease patients and in patients treated with antipsychotic compounds. Cholinergic receptor antagonists can alleviate extrapyramidal symptoms in Parkinson's disease and motor side effects induced by antipsychotics. The effects of anticholinergics are mediated by muscarinic receptors of which five subtypes (M(1)-M(5)) exist. Muscarinic M(4) receptors are found at high concentrations in motor parts of the striatum, suggesting a role for muscarinic M(4) receptors in the motor side effects of antipsychotics, and in the alleviation of these side effects by anticholinergics. Here we investigated the potential role of the muscarinic M(4) receptor in catalepsy induced by antipsychotics (haloperidol and risperidone) as well as the anti-cataleptic effects of the non-selective anticholinergic drug scopolamine in fully backcrossed muscarinic M(4) receptor knockout mice. The drug-induced catalepsy was strongly attenuated, but not abolished, in M(4) knockout mice as compared to wild-type controls. Scopolamine further attenuated the cataleptic response in M(4) knockout mice, suggesting that non-M(4) muscarinic receptors also participate in the anti-cataleptic effects. In conclusion, these data indicate an important role for M(4) receptors in antipsychotic-induced motor side effects and suggest that M(4) receptors could be a target for future pharmacological treatment of antipsychotic-induced as well as idiopathic parkinsonism.


Assuntos
Antipsicóticos/efeitos adversos , Catalepsia/induzido quimicamente , Catalepsia/metabolismo , Receptor Muscarínico M4/deficiência , Animais , Cruzamento , Catalepsia/patologia , Catalepsia/fisiopatologia , Haloperidol/efeitos adversos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Receptor Muscarínico M4/antagonistas & inibidores , Risperidona/efeitos adversos , Escopolamina/farmacologia
8.
Life Sci ; 86(5-6): 158-69, 2010 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19958780

RESUMO

AIMS: The type 2 muscarinic receptor (M2R) differs from the other G-protein-coupled muscarinic receptor (type 4, or M4R) in tissue distribution and physiologic effects. We studied the impact of these receptors on sleep and arousal by using M2R and M4R knock-out (KO) mice. MAIN METHODS: M2R and M4R KO and genetically intact mice were compared in terms of normal patterns of sleep, responses to sleep loss, infectious challenge and acoustic startle, and acoustic prepulse inhibition of startle (PPI). KEY FINDINGS: Under basal conditions, M2R and M4R KO mice do not differ from the background strain or each other in the amount or diurnal pattern of sleep, locomotor activity, and body temperature. After enforced sleep loss, M2R KO mice, in contrast to the other two strains, show no rebound in slow-wave sleep (SWS) time, although their SWS is consolidated, and they show a greater rebound in time spent in REMS (rapid-eye-movement sleep) and REMS consolidation. During influenza infection, M2R KO mice, as compared with the other strains, show marked hypothermia and a less robust increase in SWS. During Candida albicans infection, M2R KO mice show a greater increase in SWS and a greater inflammatory response than do the other strains. M2R KO mice also show greater acoustic startle amplitude than does the background strain, although PPI was not different across the 3 strains over a range of stimulus intensities. SIGNIFICANCE: Taken together, these findings support different roles for M2R and M4R in the modulation of sleep and arousal during homeostatic challenge.


Assuntos
Nível de Alerta/fisiologia , Temperatura Corporal/fisiologia , Atividade Motora/fisiologia , Receptor Muscarínico M2/deficiência , Receptor Muscarínico M4/deficiência , Sono/fisiologia , Animais , Comportamento Animal/fisiologia , Candidíase/metabolismo , Candidíase/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/fisiopatologia , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/fisiologia , Receptor Muscarínico M4/genética , Receptor Muscarínico M4/fisiologia , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia
9.
Neuropsychopharmacology ; 35(4): 855-69, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19940843

RESUMO

We recently identified LY2033298 as a novel allosteric potentiator of acetylcholine (ACh) at the M(4) muscarinic acetylcholine receptor (mAChR). This study characterized the molecular mode of action of this modulator in both recombinant and native systems. Radioligand-binding studies revealed that LY2033298 displayed a preference for the active state of the M(4) mAChR, manifested as a potentiation in the binding affinity of ACh (but not antagonists) and an increase in the proportion of high-affinity agonist-receptor complexes. This property accounted for the robust allosteric agonism displayed by the modulator in recombinant cells in assays of [(35)S]GTPgammaS binding, extracellular regulated kinase 1/2 phosphorylation, glycogen synthase kinase 3beta phosphorylation, and receptor internalization. We also found that the extent of modulation by LY2033298 differed depending on the signaling pathway, indicating that LY2033298 engenders functional selectivity in the actions of ACh. This property was retained in NG108-15 cells, which natively express rodent M(4) mAChRs. Functional interaction studies between LY2033298 and various orthosteric and allosteric ligands revealed that its site of action overlaps with the allosteric site used by prototypical mAChR modulators. Importantly, LY2033298 reduced [(3)H]ACh release from rat striatal slices, indicating retention of its ability to allosterically potentiate endogenous ACh in situ. Moreover, its ability to potentiate oxotremorine-mediated inhibition of condition avoidance responding in rodents was significantly attenuated in M(4) mAChR knockout mice, validating the M(4) mAChR as a key target of action of this novel allosteric ligand.


Assuntos
Acetilcolina/metabolismo , Antipsicóticos/farmacologia , Ligação Competitiva/efeitos dos fármacos , Receptor Muscarínico M4/fisiologia , Acetilcolina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/fisiologia , Animais , Antipsicóticos/química , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Linhagem Celular , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Knockout , Modelos Moleculares , Análise Multivariada , Antagonistas Muscarínicos/farmacocinética , N-Metilescopolamina/farmacocinética , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacologia , Parassimpatolíticos/farmacocinética , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Quinuclidinil Benzilato/farmacocinética , Ensaio Radioligante/métodos , Ratos , Receptor Muscarínico M4/química , Receptor Muscarínico M4/deficiência , Receptor Muscarínico M4/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tiofenos/química , Tiofenos/farmacologia , Trítio/metabolismo , Trítio/farmacocinética
10.
Eur J Pharmacol ; 603(1-3): 147-9, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19111716

RESUMO

The muscarinic acetylcholine receptor (mAChR) agonist, xanomeline, attenuates amphetamine-induced activity in WT mice. This effect is abolished in mice lacking the M(4) muscarinic acetylcholine receptor (M(4) mAChR KO) and partially attenuated in mice lacking M(1) muscarinic acetylcholine receptor (M(1) mAChR KO). Collectively, these data suggest that the efficacy exhibited by xanomeline in the mouse amphetamine-induced hyperactivity model, is mediated predominantly by M(4) muscarinic acetylcholine receptors, and that M(1) muscarinic acetylcholine receptors may play a more minor role. This supports the hypothesis that activation of M(4), and to a lesser extent M(1) muscarinic acetylcholine receptors, may represent a potential target for the treatment of psychosis seen in schizophrenia.


Assuntos
Anfetamina/toxicidade , Agonistas Muscarínicos/farmacologia , Piridinas/farmacologia , Receptor Muscarínico M1/deficiência , Receptor Muscarínico M1/genética , Receptor Muscarínico M4/deficiência , Receptor Muscarínico M4/genética , Tiadiazóis/farmacologia , Animais , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Camundongos , Camundongos Knockout , Agonistas Muscarínicos/uso terapêutico , Piridinas/uso terapêutico , Especificidade por Substrato , Tiadiazóis/uso terapêutico
11.
J Neurosci ; 28(24): 6258-63, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18550768

RESUMO

Muscarinic autoreceptors regulate cholinergic tone in the striatum. We investigated the functional consequences of genetic deletion of striatal muscarinic autoreceptors by means of electrophysiological recordings from either medium spiny neurons (MSNs) or cholinergic interneurons (ChIs) in slices from single M(4) or double M(2)/M(4) muscarinic acetylcholine receptor (mAChR) knock-out (-/-) mice. In control ChIs, the muscarinic agonist oxotremorine (300 nM) produced a self-inhibitory outward current that was mostly reduced in M(4)(-/-) and abolished in M(2)/M(4)(-/-) mice, suggesting an involvement of both M(2) and M(4) autoreceptors. In MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, muscarine caused a membrane depolarization that was prevented by the M(1) receptor-preferring antagonist pirenzepine (100 nM), suggesting that M(1) receptor function was unaltered. Acetylcholine has been involved in striatal long-term potentiation (LTP) or long-term depression (LTD) induction. Loss of muscarinic autoreceptor function is predicted to affect synaptic plasticity by modifying striatal cholinergic tone. Indeed, high-frequency stimulation of glutamatergic afferents failed to induce LTD in MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, as well as in wild-type mice pretreated with the M(2)/M(4) antagonist AF-DX384 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,1 1-dihydro-6H-pyrido[2,3b][1,4] benzodiazepin-6-one). Interestingly, LTD could be restored by either pirenzepine (100 nM) or hemicholinium-3 (10 microM), a depletor of endogenous ACh. Conversely, LTP induction did not show any difference among the three mouse strains and was prevented by pirenzepine. These results demonstrate that M(2)/M(4) muscarinic autoreceptors regulate ACh release from striatal ChIs. As a consequence, endogenous ACh drives the polarity of bidirectional synaptic plasticity.


Assuntos
Potenciação de Longa Duração/genética , Depressão Sináptica de Longo Prazo/genética , Neurônios/fisiologia , Receptor Muscarínico M2/deficiência , Receptor Muscarínico M4/deficiência , Acetilcolina/metabolismo , Animais , Autorreceptores/deficiência , Corpo Estriado/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos da radiação , Camundongos , Camundongos Knockout , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos
12.
Am J Physiol Gastrointest Liver Physiol ; 292(1): G154-64, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17008557

RESUMO

The involvement of muscarinic receptors in neurogenic responses of the ileum was studied in wild-type and muscarinic-receptor (M-receptor) knockout (KO) mice. Electrical field stimulation to the wild-type mouse ileum induced a biphasic response, a phasic and sustained contraction that was abolished by tetrodotoxin. The sustained contraction was prolonged for an extended period after the termination of electrical field stimulation. The phasic contraction was completely inhibited by atropine. In contrast, the sustained contraction was enhanced by atropine. Ileal strips prepared from M2-receptor KO mice exhibited a phasic contraction similar to that seen in wild-type mice and a sustained contraction that was larger than that in wild-type mice. In M3-receptor KO mice, the phasic contraction was smaller than that observed in wild-type mice. Acetylcholine exogenously administrated induced concentration-dependent contractions in strips isolated from wild-type, M2- and M3-receptor KO mice. However, contractions in M3-receptor KO mice shifted to the right. The sustained contraction was inhibited by capsaicin and neurokinin NK2 receptor antagonist, suggesting that it is mediated by substance P (SP). SP-induced contraction of M2-receptor KO mice did not differ from that of wild-type mice. SP immunoreactivity was located in enteric neurons, colocalized with M2 receptor immunoreactivity. These results suggest that atropine-sensitive phasic contraction is mainly mediated via the M3 receptor, and SP-mediated sustained contraction is negatively regulated by the M2 receptor at a presynaptic level.


Assuntos
Sistema Nervoso Entérico/fisiologia , Íleo/inervação , Músculo Liso/inervação , Receptor Muscarínico M2/fisiologia , Receptor Muscarínico M3/fisiologia , Receptor Muscarínico M4/fisiologia , Acetilcolina/farmacologia , Animais , Atropina/farmacologia , Capsaicina/farmacologia , Sistema Nervoso Entérico/efeitos dos fármacos , Íleo/fisiologia , Camundongos , Camundongos Knockout , Receptor Muscarínico M2/deficiência , Receptor Muscarínico M3/deficiência , Receptor Muscarínico M4/deficiência , Substância P/farmacologia
14.
J Pharmacol Exp Ther ; 313(2): 765-70, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15665136

RESUMO

Stimulation of spinal muscarinic acetylcholine receptors (mAChRs) produces potent analgesia. Both M(2) and M(4) mAChRs are coupled to similar G proteins (G(i/o) family) and play a critical role in the analgesic action of mAChR agonists. To determine the relative contribution of M(2) and M(4) subtypes to activation of G(i/o) proteins in the spinal cord, we examined the receptor-mediated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding in M(2) and M(4) subtype knockout (KO) mice. Basal [(35)S]GTPgammaS binding in the spinal cord was similar in the wild-type controls, M(2) and M(4) single-KO, and M(2)/M(4) double-KO mice. The spinal [(35)S]GTPgammaS binding stimulated by either muscarine or oxotremorine-M was not significantly different among three groups of wild-type mouse strains. In M(2) single-KO and M(2)/M(4) double-KO mice, the agonist-stimulated [(35)S]GTPgammaS binding was completely abolished in the spinal cord. Furthermore, the agonist-stimulated [(35)S]GTPgammaS binding in the spinal cord of M(4) single-KO mice was significantly reduced ( approximately 15%), compared with that in wild-type controls. On the other hand, the spinal [(35)S]GTPgammaS binding stimulated by a mu-opioid agonist was not significantly different between wild-type and M(2) and M(4) KO mice. This study provides complementary new evidence that M(2) is the most predominant mAChR subtype coupled to the G(i/o) proteins in the spinal cord. Furthermore, these data suggest that a small but functionally significant population of M(4) receptors exists in the mouse spinal cord. The functional activity of these M(4) receptors seems to require the presence of M(2) receptors.


Assuntos
Receptor Muscarínico M2/deficiência , Receptor Muscarínico M2/genética , Receptor Muscarínico M4/deficiência , Receptor Muscarínico M4/genética , Medula Espinal/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Oxotremorina/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M4/agonistas , Receptores Muscarínicos/deficiência , Receptores Muscarínicos/genética , Medula Espinal/efeitos dos fármacos
15.
Mol Psychiatry ; 8(7): 673-9, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12874603

RESUMO

Among the five different muscarinic receptors that have been cloned and characterized, M2 and M4 receptors are localized both post- and presynaptically and are believed to have a pronounced autoreceptor role. The functional importance of these receptors in the regulation of acetylcholine release in the hippocampus and in cognitive processes was investigated by using M2 and M4 receptor single knockout (KO) as well as M2/M4 receptor double KO mice. We found profound alterations in acetylcholine homeostasis in the hippocampus of both M2- and M4-KO mice as well as of the combined M2/M4-KOs, as assessed by in vivo microdialysis. Basal acetylcholine efflux in the hippocampus was significantly increased in M4-KO and was elevated further in M2/M4-KOs. The increase in hippocampal acetylcholine induced by local administration of scopolamine was markedly reduced in M2-KO and completely abolished in M2/M4-KOs. In M2-KO and much more in M2/M4-KOs, the increase in hippocampal acetylcholine triggered by exposure to a novel environment was more pronounced both in amplitude and duration, with a similar trend observed for M4-KOs. Dysregulation of cholinergic function in the hippocampus, as it could result from perturbed autoreceptor function, may be associated with cognitive deficits. Importantly, M2- and M2/M4-KO, but not M4-KO, animals showed an impaired performance in the passive avoidance test. Together these results suggest a crucial role for muscarinic M2 and M4 receptors in the tonic and phasic regulation of acetylcholine efflux in the hippocampus as well as in cognitive processes.


Assuntos
Acetilcolina/metabolismo , Hipocampo/metabolismo , Receptor Muscarínico M2/fisiologia , Receptor Muscarínico M4/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Cognição/fisiologia , Cruzamentos Genéticos , Meio Ambiente , Habituação Psicofisiológica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Homeostase , Masculino , Camundongos , Camundongos Knockout , Microdiálise , Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M2/deficiência , Receptor Muscarínico M2/efeitos dos fármacos , Receptor Muscarínico M2/genética , Receptor Muscarínico M4/deficiência , Receptor Muscarínico M4/efeitos dos fármacos , Receptor Muscarínico M4/genética , Escopolamina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA