Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674107

RESUMO

The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2.


Assuntos
Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Mutação , Aprendizado de Máquina , Mutação de Sentido Incorreto , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300868

RESUMO

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Ductos Biliares Intra-Hepáticos/metabolismo , Diarreia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
3.
J Biomol Struct Dyn ; 42(4): 1940-1951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37254996

RESUMO

The fibroblast growth factor receptor 2 (FGFR2) is a key component in cellular signaling networks, and its dysfunctional activation has been implicated in various diseases including cancer and developmental disorders. Mutations at the activation loop (A-loop) have been suggested to trigger an increased basal kinase activity. However, the molecular mechanism underlying this highly dynamic process has not been fully understood due to the limitation of static structural information. Here, we conducted multiple, large-scale Gaussian accelerated molecular dynamics simulations of five (K659E, K659N, K659M, K659Q, and K659T) FGFR2 mutants at the A-loop, and comprehensively analyzed the dynamic molecular basis of FGFR2 activation. The results quantified the population shift of each system, revealing that all mutants had a higher proportion of active-like states. Using Markov state models, we extracted the representative structure of different conformational states and identified key residues related to the increased kinase activity. Furthermore, community network analysis showed enhanced information connections in the mutants, highlighting the long-range allosteric communication between the A-loop and the hinge region. Our findings may provide insights into the dynamic mechanism for FGFR2 dysfunctional activation and allosteric drug discovery.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fosforilação , Mutação
4.
Commun Biol ; 6(1): 728, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452126

RESUMO

Receptor tyrosine kinases (RTKs) are typically activated through a precise sequence of intracellular phosphorylation events starting with a tyrosine residue on the activation loop (A-loop) of the kinase domain (KD). From this point the mono-phosphorylated enzyme is active, but subject to stringent regulatory mechanisms which can vary dramatically across the different RTKs. In the absence of extracellular stimulation, fibroblast growth factor receptor 2 (FGFR2) exists in the mono-phosphorylated state in which catalytic activity is regulated to allow rapid response upon ligand binding, whilst restricting ligand-independent activation. Failure of this regulation is responsible for pathologic outcomes including cancer. Here we reveal the molecular mechanistic detail of KD control based on combinatorial interactions of the juxtamembrane (JM) and the C-terminal tail (CT) regions of the receptor. JM stabilizes the asymmetric dimeric KD required for substrate phosphorylation, whilst CT binding opposes dimerization, and down-regulates activity. Direct binding between JM and CT delays the recruitment of downstream effector proteins adding a further control step as the receptor proceeds to full activation. Our findings underscore the diversity in mechanisms of RTK oligomerisation and activation.


Assuntos
Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Tirosina , Fosforilação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Ligantes , Membrana Celular
5.
Reprod Biol ; 20(4): 501-511, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32921625

RESUMO

The present study was undertaken to evaluate the effect of different concentration of FGF2 viz. 5 ng (T1), 10 ng (T2), and 20 ng/mL (T3) on cumulus cell expansion, oocyte maturation, in vitro embryo production, total cell number (TCN) of the blastocyst, and expression of the FGF2 and FGFR2 transcripts in buffalo oocytes and the embryos. Results showed that the effect of FGF2 on the diameter of buffalo COC was significantly higher (P < 0.05) in the T1 group than the other groups at 24h of maturation. The maturation and cleavage rate of oocytes was significantly higher (P < 0.05) in the T3 group than the control, however, the values did not different (P> 0.05) from other groups. The effect of FGF2 on morula and blastocyst yield did not different (P > 0.05) between treatment groups. However, the TCN of the blastocyst was slightly higher (P > 0.05) in the T3 group than the control and other groups. In subsequent trials, the expression of the FGF2 transcript was higher (P < 0.05) in A-grade of oocytes than the C- and D-grade of oocytes, but the expression was not different (P> 0.05) from the B-grade of oocytes. While the FGFR2 expression was higher (P < 0.05) in cumulus cells than any grades of oocytes. The relative abundance of FGF2 and FGFR2 transcripts was significantly higher (P < 0.05) in the 2-cell stage of the embryo than the other stages of embryos. This study was further extended to characterize the FGF2 ligand-binding site in the D3 domain of the buffalo FGF2 receptor. Bioinformatics analysis showed that the bovine FGF2 ligand-binding site in the D3 domain of buffalo was different from the D3 domain of the cattle.


Assuntos
Búfalos/embriologia , Células do Cúmulo/efeitos dos fármacos , Fertilização in vitro/veterinária , Fator 2 de Crescimento de Fibroblastos/farmacologia , Expressão Gênica/efeitos dos fármacos , Animais , Sítios de Ligação , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Bovinos , Contagem de Células , Células do Cúmulo/química , Células do Cúmulo/metabolismo , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização in vitro/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/química , RNA Mensageiro/análise , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
6.
Cells ; 8(7)2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337028

RESUMO

Glioblastoma is the most lethal brain cancer in adults, with no known cure. This cancer is characterized by a pronounced genetic heterogeneity, but aberrant activation of receptor tyrosine kinase signaling is among the most frequent molecular alterations in glioblastoma. Somatic mutations of fibroblast growth factor receptors (FGFRs) are rare in these cancers, but many studies have documented that signaling through FGFRs impacts glioblastoma progression and patient survival. Small-molecule inhibitors of FGFR tyrosine kinases are currently being trialed, underlining the therapeutic potential of blocking this signaling pathway. Nevertheless, a comprehensive overview of the state of the art of the literature on FGFRs in glioblastoma is lacking. Here, we review the evidence for the biological functions of FGFRs in glioblastoma, as well as pharmacological approaches to targeting these receptors.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/fisiologia , Progressão da Doença , Humanos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/química
7.
Cells ; 8(6)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146385

RESUMO

Tight regulation of signaling from receptor tyrosine kinases is required for normal cellular functions and uncontrolled signaling can lead to cancer. Fibroblast growth factor receptor 2 (FGFR2) is a receptor tyrosine kinase that induces proliferation and migration. Deregulation of FGFR2 contributes to tumor progression and activating mutations in FGFR2 are found in several types of cancer. Here, we identified a negative feedback loop regulating FGFR2 signaling. FGFR2 stimulates the Ras/MAPK signaling pathway consisting of Ras-Raf-MEK1/2-ERK1/2. Inhibition of this pathway using a MEK1/2 inhibitor increased FGFR2 signaling. The putative ERK1/2 phosphorylation site at serine 780 (S780) in FGFR2 corresponds to serine 777 in FGFR1 which is directly phosphorylated by ERK1/2. Substitution of S780 in FGFR2 to an alanine also increased signaling. Truncated forms of FGFR2 lacking the C-terminal tail, including S780, have been identified in cancer and S780 has been found mutated to leucine in bladder cancer. Substituting S780 in FGFR2 with leucine increased FGFR2 signaling. Importantly, cells expressing these mutated versions of S780 migrated faster than cells expressing wild-type FGFR2. Thus, ERK1/2-mediated phosphorylation of S780 in FGFR2 constitutes a negative feedback loop and inactivation of this feedback loop in cancer cells causes hyperactivation of FGFR2 signaling, which may result in increased invasive properties.


Assuntos
Retroalimentação Fisiológica , Sistema de Sinalização das MAP Quinases , Mutação/genética , Neoplasias/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Progressão da Doença , Fator de Crescimento Epidérmico/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Serina/genética , Transdução de Sinais
8.
Cancer Discov ; 9(8): 1064-1079, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31109923

RESUMO

ATP-competitive fibroblast growth factor receptor (FGFR) kinase inhibitors, including BGJ398 and Debio 1347, show antitumor activity in patients with intrahepatic cholangiocarcinoma (ICC) harboring activating FGFR2 gene fusions. Unfortunately, acquired resistance develops and is often associated with the emergence of secondary FGFR2 kinase domain mutations. Here, we report that the irreversible pan-FGFR inhibitor TAS-120 demonstrated efficacy in 4 patients with FGFR2 fusion-positive ICC who developed resistance to BGJ398 or Debio 1347. Examination of serial biopsies, circulating tumor DNA (ctDNA), and patient-derived ICC cells revealed that TAS-120 was active against multiple FGFR2 mutations conferring resistance to BGJ398 or Debio 1347. Functional assessment and modeling the clonal outgrowth of individual resistance mutations from polyclonal cell pools mirrored the resistance profiles observed clinically for each inhibitor. Our findings suggest that strategic sequencing of FGFR inhibitors, guided by serial biopsy and ctDNA analysis, may prolong the duration of benefit from FGFR inhibition in patients with FGFR2 fusion-positive ICC. SIGNIFICANCE: ATP-competitive FGFR inhibitors (BGJ398, Debio 1347) show efficacy in FGFR2-altered ICC; however, acquired FGFR2 kinase domain mutations cause drug resistance and tumor progression. We demonstrate that the irreversible FGFR inhibitor TAS-120 provides clinical benefit in patients with resistance to BGJ398 or Debio 1347 and overcomes several FGFR2 mutations in ICC models.This article is highlighted in the In This Issue feature, p. 983.


Assuntos
Trifosfato de Adenosina/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , Idoso , Linhagem Celular Tumoral , Colangiocarcinoma/diagnóstico , DNA Tumoral Circulante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/química , Pirimidinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tomografia Computadorizada por Raios X
9.
Int J Biol Macromol ; 133: 58-66, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30981773

RESUMO

Nanoparticle-based pulmonary delivery of protein therapeutics provides a promising approach for improving protein bioavailability to treat either local or systemic diseases, however high-efficient nanocarrier is a great challenge. Here, biomimetic phosphorylcholine-chitosan nanoparticles (PCCs-NPs) taking advantages of both zwitterionic phosphorylcholine and chitosan were developed as a pulmonary protein delivery platform. msFGFR2c, a potential therapeutic protein for lung fibrosis as model was loaded into PCCs-NPs via ionic gelation. The obtained msFGFR2c/PCCs-NPs inhibited α-SMA expression in fibroblasts induced by TGF-ß1, slightly more effective than naked msFGFR2c. After orotracheal administration to bleomycin-induced pulmonary fibrosis model rats, msFGFR2c/PCCs-NPs resulted in a significant antifibrotic efficacy, with reduction in inflammatory cytokines and α-SMA expression, remarkable attenuation of lung fibrosis score and collagen deposition, and significant increase in survival rate, while naked msFGFR2c exhibited a poor efficacy. The in vitro and in vivo results strongly indicated that PCCs-NPs may be a promising nanocarrier for pulmonary protein delivery.


Assuntos
Bleomicina/efeitos adversos , Quitosana/química , Pulmão/metabolismo , Nanopartículas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Animais , Linhagem Celular , Portadores de Fármacos/química , Feminino , Humanos , Pulmão/efeitos dos fármacos , Fosforilcolina/química , Fibrose Pulmonar/induzido quimicamente , Ratos , Ratos Wistar
10.
J Cell Biochem ; 119(2): 2231-2239, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857247

RESUMO

Fibroblast growth factor receptor (FGFR) 2 and its downstream signaling cascades, PI3 K/AKT/mTOR is playing an important role in cell survival and proliferations. In this study, we firstly found that picrasidine Q (PQ), an alkaloid component extracted from Angelica keiskei species, has the capacity of anti-cell transformation and anti-cancer. After ligand shape similarity approach of PQ, we found that PQ targeted FGFR 2 and verified by FGFR2 kinase assay as well as computational docking model. FGFR2 highly expressed in esophageal cancer tissues and PQ inhibited fibroblast growth factor (FGF)-induced cell transformation. Furthermore, PQ inhibited cell proliferation and induced cell cycle arrest and apoptosis in KYSE30, KYSE410, and KYSE450 esophageal squamous cell carcinoma (ESCC) cells. It was confirmed by detecting of biological markers such as cyclinD1, cyclinD3 and cyclinB1 for cell cycle or cleaved caspase-7, caspase-3, and PARP for apoptosis. PQ targeting of FGFR2 kinase activities suppressed downstream target proteins including phosphorylation of AKT and mTOR but not MEK/ERK signaling pathways. Taken together, our results are the first to identify that PQ might be a chemopreventive and chemotherapeutic agent by direct targeting FGFR2 and inhibiting cell proliferation of ESCC cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química
11.
Nat Commun ; 8(1): 947, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038531

RESUMO

Recent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD), where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline-rich motif. Here we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline-rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2, hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p.TRPA1 has been reported to contribute lung cancer adenocarcinoma (LUAD), but the mechanisms are unclear. Here the authors propose that TRPA1/FGFR2 interaction is functional in LUAD and show that astrocytes oppose brain metastasis by mediating the downregulation of TRPA1 through exosome-delivered miRNA-142-3p.


Assuntos
MicroRNAs/metabolismo , Oncogenes , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Repetição de Anquirina , Astrócitos/metabolismo , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Proliferação de Células , Exossomos/metabolismo , Células HEK293 , Humanos , MicroRNAs/genética , Ligação Proteica , Ratos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química
13.
BMC Genet ; 18(1): 74, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768473

RESUMO

BACKGROUND: Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. RESULTS: Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. CONCLUSIONS: FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given the phenotypic similarities in FDS affected calves, the genetic mapping and absence of further high impact variants in the critical genome regions, it is highly likely that the missense mutation in the FGFR2 gene caused the FDS phenotype in a dominant mode of inheritance.


Assuntos
Doenças dos Bovinos/genética , Displasia Ectodérmica/veterinária , Mutação de Sentido Incorreto , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Sequência de Aminoácidos , Animais , Bovinos , Displasia Ectodérmica/genética , Feminino , Displasias Dérmicas Faciais Focais , Genes Dominantes , Masculino , Linhagem , Fenótipo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Homologia de Sequência , Síndrome
14.
Biophys J ; 112(10): 2209-2218, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538157

RESUMO

What motivates animal cells to intercalate is a longstanding question that is fundamental to morphogenesis. A basic mode of cell rearrangement involves dynamic multicellular structures called tetrads and rosettes. The contribution of cell-intrinsic and tissue-scale forces to the formation and resolution of these structures remains unclear, especially in vertebrates. Here, we show that Fgfr2 regulates both the formation and resolution of tetrads and rosettes in the mouse embryo, possibly in part by spatially restricting atypical protein kinase C, a negative regulator of non-muscle myosin IIB. We employ micropipette aspiration to show that anisotropic tension is sufficient to rescue the resolution, but not the formation, of tetrads and rosettes in Fgfr2 mutant limb-bud ectoderm. The findings underscore the importance of cell contractility and tissue stress to multicellular vertex formation and resolution, respectively.


Assuntos
Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Ectoderma/embriologia , Ectoderma/metabolismo , Módulo de Elasticidade , Análise de Elementos Finitos , Imunofluorescência , Membro Anterior/embriologia , Membro Anterior/metabolismo , Camundongos Transgênicos , Microscopia de Força Atômica , Microscopia Confocal , Mutação , Miosina não Muscular Tipo IIB/metabolismo , Pressão , Proteína Quinase C/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Estresse Fisiológico , Tomografia Óptica
15.
PLoS Comput Biol ; 13(2): e1005360, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151998

RESUMO

The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase's activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/ultraestrutura , Tirosina/química , Sítios de Ligação , Catálise , Ativação Enzimática , Estabilidade Enzimática , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
16.
Elife ; 62017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166054

RESUMO

Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the 'molecular brake', 'DFG latch', 'A-loop plug', and 'αC tether'. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs.


Assuntos
Regulação Alostérica , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
17.
J Theor Biol ; 418: 111-121, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28093295

RESUMO

Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, has been implicated in some biological processes such as cell proliferation, development and differentiation. High mitogenic activity of this protein has made it very suitable for repairing radiation-and chemotherapy-induced damages. Palifermin, which has been developed from human KGF, is clinically applied to reduce the incidence and duration of cancer therapeutic agents. However, the activity of Palifermin is limited during treatment due to its poor stability. In this study, we have improved the stability and activity of recombinant human KGF (Palifermin) using a computational mutagenesis approach. According to the KGF multiple sequence alignment among different species as well as literature-based information, we have generated several mutations using PyMOL program and evaluated their effects on the stability and activity of KGF in silico. In order to preserve the KGF activity, we did not change the predicted functional residues. Prior to mutagenesis, the 3D structure of rhKGF was predicted by Modeller v9.15 program and quantitative evaluation of predicted models were carried out using VADAR and PROSESS servers. The stability and activity of rhKGF mutants were analyzed using GROMACS molecular dynamics (MD) simulations and docking tools, respectively. The results showed that N159S (N105S in rhKGF sequence) and I172V (I118V in rhKGF) substitutions caused an increased stability and affinity of the rhKGF to Fibroblast growth factor receptor 2 (FGFR2). We will evaluate the effects of favorable mutations on the rhKGF stability and activity in vitro.


Assuntos
Substituição de Aminoácidos , Fator 7 de Crescimento de Fibroblastos/química , Fator 7 de Crescimento de Fibroblastos/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise de Sequência de Proteína/métodos , Software , Animais , Bovinos , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/uso terapêutico , Humanos , Camundongos , Mutagênese , Mutação de Sentido Incorreto , Neoplasias/tratamento farmacológico , Domínios Proteicos , Estabilidade Proteica , Ratos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Ovinos , Relação Estrutura-Atividade , Suínos
18.
Cancer Discov ; 7(3): 252-263, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28034880

RESUMO

Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Fenilureia/uso terapêutico , Pirimidinas/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Proteínas de Ciclo Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , DNA Tumoral Circulante/genética , Feminino , Fusão Gênica , Humanos , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Mutação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição TFIIIA/genética
19.
Chem Phys Lipids ; 202: 21-27, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27871884

RESUMO

The mutated recombinant kinase domain of human fibroblast growth factor receptor 2b (hFGFR2b) is overexpressed and purified, and its structural changes upon the interaction with three unsaturated fatty acids (UFAs), oleic, linoleic and α-linolenic are studied. This interaction is investigated to find out about the folding and unfolding effect of unsaturated fatty acids on the kinase domain structure of hFGFR2b. Recombinant pLEICS-01 vectors, containing the mutated coding region of hFGFR2b, are expressed in the standard Escherichia coli BL21 (DE3) host cells and purified by Ni2+-NTA affinity chromatography. While polyacrylamide gel electrophoresis characterizes the functionality of recombinant protein, its structural changes are studied in the presence and absence of various concentrations of oleic, α-linolenic and linoleic acids using circular dichroism (CD) and fluorescence spectroscopy. Far ultraviolet CD results show that unsaturated fatty acids do not change the secondary structure of the recombinant kinase domain of hFGFR2b. However, chemical denaturation analysis confirms that all three UFAs destabilize the tertiary structure of recombinant protein. A decrease in the fluorescence intensity without any significant red or blue shift (336±1nm) reflects a variation in the tertiary structure of protein. The direct interaction of the studied UFAs with hFGFR2b reduces the conformational stability of their kinase domains. The structural changes in hFGFR2b in the presence of UFAs may be necessary for hFGFR2b to adjust the signal transduction and regulate the key cellular processes.


Assuntos
Ácidos Graxos Ômega-3/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Ácidos Graxos Ômega-3/metabolismo , Humanos , Conformação Proteica , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
J Mol Biol ; 428(20): 3903-3910, 2016 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-27596331

RESUMO

Missense mutations that introduce or remove cysteine residues in receptor tyrosine kinases are believed to cause pathologies by stabilizing the active receptor tyrosine kinase dimers. However, the magnitude of this stabilizing effect has not been measured for full-length receptors. Here, we characterize the dimer stabilities of three full-length fibroblast growth factor receptor (FGFR) mutants harboring pathogenic cysteine substitutions: the C178S FGFR1 mutant, the C342R FGFR2 mutant, and the C228R FGFR3 mutant. We find that the three mutations stabilize the FGFR dimers. We further see that the mutations alter the configuration of the FGFR transmembrane dimers. Thus, both aberrant dimerization and perturbed dimer structure likely contribute to the pathological phenotypes arising due to these mutations.


Assuntos
Cisteína/genética , Proteínas Mutantes/metabolismo , Multimerização Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Estabilidade Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA