Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
Eur J Med Chem ; 271: 116415, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643670

RESUMO

Fibroblast growth factor receptor (FGFR) is an attractive target for cancer therapy, but existing FGFR inhibitors appear to hardly meet the demand for clinical application. Herein, a number of irreversible covalent FGFR inhibitors were designed and synthesized by selecting several five- and six-membered azaheterocycles as parent scaffold with different substituents to take over the hydrophobic region in the active pocket of FGFR proteins. Among the resulting target compounds, III-30 showed the most potent effect on enzyme activity inhibition and anti-proliferative activity against the tested cancer cell lines. Significantly, III-30 could inhibit the enzyme activity by achieving irreversible covalent binding with FGFR1 and FGFR4 proteins. It could also regulate FGFR-mediated signaling pathway and mitochondrial apoptotic pathway to promote cancer cell apoptosis and inhibit cancer cell invasion and metastasis. Moreover, III-30 had a good metabolic stability and showed relatively potent anti-tumor activity in the MDA-MB-231 xenograft tumor mice model.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Camundongos , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Estrutura Molecular , Linhagem Celular Tumoral , Purinas/farmacologia , Purinas/química , Purinas/síntese química , Descoberta de Drogas , Apoptose/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Dose-Resposta a Droga , Camundongos Nus , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Feminino
2.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604131

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Assuntos
Inibidores de Proteínas Quinases , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Microssomos Hepáticos/metabolismo
3.
PeerJ ; 12: e17123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560469

RESUMO

Background: The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods: Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results: It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion: EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.


Assuntos
Eritropoetina , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Epoetina alfa/metabolismo , Eritropoetina/farmacologia , Isquemia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
4.
J Transl Med ; 22(1): 379, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650006

RESUMO

BACKGROUND: TAS-102 (Lonsurf®) is an oral fluoropyrimidine consisting of a combination of trifluridine (a thymidine analog) and tipiracil (a thymidine phosphorylation inhibitor). The drug is effective in metastatic colorectal cancer (mCRC) patients refractory to fluorouracil, irinotecan and oxaliplatin. This study is a real-world analysis, investigating the interplay of genotype/phenotype in relation to TAS-102 sensitivity. METHODS: Forty-seven consecutive mCRC patients were treated with TAS-102 at the National Cancer Institute of Naples from March 2019 to March 2021, at a dosage of 35 mg/m2, twice a day, in cycles of 28 days (from day 1 to 5 and from day 8 to 12). Clinical-pathological parameters were described. Activity was evaluated with RECIST criteria (v1.1) and toxicity with NCI-CTC (v5.0). Survival was depicted through the Kaplan-Meyer curves. Genetic features of patients were evaluated with Next Generation Sequencing (NGS) through the Illumina NovaSeq 6000 platform and TruSigt™Oncology 500 kit. RESULTS: Median age of patients was 65 years (range: 46-77). Forty-one patients had 2 or more metastatic sites and 38 patients underwent to more than 2 previous lines of therapies. ECOG (Eastern Cooperative Oncology Group) Performance Status (PS) was 2 in 19 patients. The median number of TAS-102 cycles was 4 (range: 2-12). The most frequent toxic event was neutropenia (G3/G4 in 16 patients). There were no severe (> 3) non-haematological toxicities or treatment-related deaths. Twenty-six patients experienced progressive disease (PD), 21 stable disease (SD). Three patients with long-lasting disease control (DC: complete, partial responses or stable disease) shared an FGFR4 (p.Gly388Arg) mutation. Patients experiencing DC had more frequently a low tumour growth rate (P = 0.0306) and an FGFR4 p.G388R variant (P < 0.0001). The FGFR4 Arg388 genotype was associated with better survival (median: 6.4 months) compared to the Gly388 genotype (median: 4 months); the HR was 0.25 (95% CI 0.12- 0.51; P = 0.0001 at Log-Rank test). CONCLUSIONS: This phenotype/genotype investigation suggests that the FGFR4 p.G388R variant may serve as a new marker for identifying patients who are responsive to TAS-102. A mechanistic hypothesis is proposed to interpret these findings.


Assuntos
Neoplasias Colorretais , Combinação de Medicamentos , Metástase Neoplásica , Pirrolidinas , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Timina , Trifluridina , Uracila , Humanos , Trifluridina/uso terapêutico , Trifluridina/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Pirrolidinas/uso terapêutico , Masculino , Feminino , Uracila/análogos & derivados , Uracila/uso terapêutico , Uracila/efeitos adversos , Pessoa de Meia-Idade , Idoso , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Polimorfismo de Nucleotídeo Único/genética
5.
J Enzyme Inhib Med Chem ; 39(1): 2343350, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38655602

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. FGFR4 has been implicated in HCC progression, making it a promising therapeutic target. We introduce an approach for identifying novel FGFR4 inhibitors by sequentially adding fragments to a common warhead unit. This strategy resulted in the discovery of a potent inhibitor, 4c, with an IC50 of 33 nM and high selectivity among members of the FGFR family. Although further optimisation is required, our approach demonstrated the potential for discovering potent FGFR4 inhibitors for HCC treatment, and provides a useful method for obtaining hit compounds from small fragments.


Assuntos
Relação Dose-Resposta a Droga , Descoberta de Drogas , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo
6.
Eur J Med Chem ; 268: 116281, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432058

RESUMO

Aberrant signaling via fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) has been identified as a driver of tumorigenesis and the development of many solid tumors, making FGFR4 is a promising target for anticancer therapy. Herein, we designed and synthesized a series of bis-acrylamide covalent FGFR4 inhibitors and evaluated their inhibitory activity against FGFRs, FGFR4 mutants, and their antitumor activity. CXF-007, verified by mass spectrometry and crystal structures to form covalent bonds with Cys552 of FGFR4 and Cys488 of FGFR1, exhibited stronger selectivity and potent inhibitory activity for FGFR4 and FGFR4 cysteine mutants. Moreover, CXF-007 exhibited significant antitumor activity in hepatocellular carcinoma cell lines and breast cancer cell lines through sustained inhibition of the FGFR4 signaling pathway. In summary, our study highlights a novel covalent FGFR4 inhibitor, CXF-007, which has the potential to overcome drug-induced FGFR4 mutations and might provide a new strategy for future anticancer drug discovery.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Antineoplásicos/química , Transdução de Sinais , Células MCF-7 , Fosforilação , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral
7.
Eur J Pharmacol ; 970: 176493, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484925

RESUMO

Excessive activation of FGF19/fibroblast growth factor receptor 4 (FGFR4) signaling is associated with poor survival of patients with hepatocellular carcinoma (HCC). FGFR4 inhibitors show promise for HCC treatment. F30, an indazole derivative designed through computer-aided drug design targeting FGFR4, demonstrated anti-HCC activity as described in our previous studies. However, the precise molecular mechanisms underlying F30's anticancer effects remain largely unexplored. We report here that F30 could effectively induce ferroptosis in HCC cells. The concentrations of cellular ferrous iron, the peroxidation of cell membranes and the homeostasis of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) were dysregulated by F30, thereby affecting cellular redox status. Induction of ferroptosis in HCC by F30 was inhibited by specific ferroptosis inhibitor ferrostatin-1. F30 upregulates various ferroptosis-related genes, including the heme oxygenase enzymes 1 (HMOX1), a key mediator of redox regulation. Surprisingly, F30-induced ferroptosis in HCC is dependent on HMOX1. The dysregulation of cellular ferrous iron concentrations and cell membrane peroxidation was rescued when knocking down HMOX1 with specific small interfering RNA. These findings shed light on the molecular mechanisms underlying FGFR4-targeting F30's anti-HCC effects and suggest that FGFR4 inactivation could be beneficial for HCC treatment involving ferroptosis.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ferro , Heme Oxigenase-1
8.
J Med Chem ; 67(5): 3764-3777, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38385325

RESUMO

Hepatocellular carcinoma (HCC) is a frequent malignancy that has a high death rate and a high rate of recurrence following surgery, owing to insufficient surgical resection. Furthermore, HCC is prone to peritoneal metastasis (HCC-PM), resulting in a significant number of tiny cancer lesions, making surgical removal more challenging. As a potential imaging target, FGFR4 is highly expressed in tumors, especially in HCC, but is less expressed in the normal liver. In this study, we used computational simulation approaches to develop peptide I0 derived from FGF19, a particular ligand of FGFR4, and labeled it with the NIRF dye, MPA, for HCC detection. In surgical navigation, the TBR was 9.31 ± 1.36 and 8.57 ± 1.15 in HepG2 in situ tumor and HCC-PM models, respectively, indicating considerable tumor uptake. As a result, peptide I0 is an excellent clinical diagnostic reagent for HCC, as well as a tool for surgically resecting HCC peritoneal metastases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Cirurgia Assistida por Computador , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos , Linhagem Celular Tumoral
9.
J Med Chem ; 67(4): 2667-2689, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348819

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) has been considered as a potential anticancer target due to FGF19/FGFR4 mediated aberrant signaling in hepatocellular carcinoma (HCC). Several FGFR4 inhibitors have been reported, but none have gained approval. Herein, a series of 5-formyl-pyrrolo[3,2-b]pyridine-3-carboxamides and a series of 6-formylpyridyl ureas were characterized as selective reversible-covalent FGFR4 inhibitors. The representative 6-formylpyridyl urea 8z exhibited excellent potency against FGFR4WT, FGFR4V550L, and FGFR4V550M with IC50 values of 16.3, 12.6, and 57.3 nM, respectively. It also potently suppressed proliferation of Ba/F3 cells driven by FGFR4WT, FGFR4V550L, and FGFR4V550M, and FGFR4-dependent Hep3B and Huh7 HCC cells, with IC50 values of 1.2, 13.5, 64.5, 15.0, and 20.4 nM, respectively. Furthermore, 8z displayed desirable microsomal stability and significant in vivo efficacy in the Huh7 HCC cancer xenograft model in nude mice. The study provides a promising new lead for anticancer drug discovery directed toward overcoming FGFR4 gatekeeper mutation mediated resistance in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Ureia/farmacologia , Ureia/uso terapêutico , Camundongos Nus , Fatores de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral
10.
J Intern Med ; 295(3): 292-312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212977

RESUMO

Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Carcinogênese/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
11.
Biomed Pharmacother ; 170: 115955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048735

RESUMO

Immune-checkpoint blockade (ICB) therapies have been widely used in clinical treatment of cancer patients, but only 20-30% of patients benefit from immunotherapy. Therefore, it is important to decipher the molecular mechanism of resistance to ICB and develop new combined treatment strategies. PD-L1 up-regulation in tumor cells contributes to the occurrence of immune escape. Increasing evidence shows that its transcription level is affected by multiple factors, which limits the objective response rate of ICB. Fibroblast growth factor 19 (FGF19), a member of the fibroblast growth factor family, is widely involved in the malignant progression of many tumors by binding to fibroblast growth factor receptor 4 (FGFR4). In this study, we confirmed that FGF19 acts as a driver gene in hepatocellular carcinoma (HCC) progression by binding to FGFR4. The up-regulation of FGF19 and FGFR4 in HCC is associated with poor prognosis. We found that FGF19/FGFR4 promoted the proliferation and invasion of HCC cells by driving IGF2BP1 to promote PD-L1 expression. Knockdown of FGFR4 significantly reduced the expression of IGF2BP1/PD-L1 and inhibited the proliferation and invasion of HCC cells. These biological effects are achieved by inhibiting the PI3K/AKT pathway. The combination of FGFR4 knockdown and anti-PD-1 antibody greatly suppressed tumor growth and enhanced the sensitivity of immunotherapy, highlighting the clinical significance of FGF19/FGFR4 activation in immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Antígeno B7-H1/genética , Fosfatidilinositol 3-Quinases , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral
12.
Redox Biol ; 69: 102998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154380

RESUMO

Helicobacter pylori (H. pylori) is the leading risk factor for gastric carcinogenesis. Fibroblast growth factor receptor 4 (FGFR4) is a member of transmembrane tyrosine kinase receptors that are activated in cancer. We investigated the role of FGFR4 in regulating the cellular response to H. pylori infection in gastric cancer. High levels of oxidative stress signature and FGFR4 expression were detected in gastric cancer samples. Gene set enrichment analysis (GSEA) demonstrated enrichment of NRF2 signature in samples with high FGFR4 levels. H. pylori infection induced reactive oxygen species (ROS) with a cellular response manifested by an increase in FGFR4 with accumulation and nuclear localization NRF2. Knocking down FGFR4 significantly reduced NRF2 protein and transcription activity levels, leading to higher levels of ROS and DNA damage following H. pylori infection. We confirmed the induction of FGFR4 and NRF2 levels using mouse models following infection with a mouse-adapted H. pyloristrain. Pharmacologic inhibition of FGFR4 using H3B-6527, or its knockdown, remarkably reduced the level of NRF2 with a reduction in the size and number of gastric cancer spheroids. Mechanistically, we detected binding between FGFR4 and P62 proteins, competing with NRF2-KEAP1 interaction, allowing NRF2 to escape KEAP1-dependent degradation with subsequent accumulation and translocation to the nucleus. These findings demonstrate a novel functional role of FGFR4 in cellular homeostasis via regulating the NRF2 levels in response to H. pylori infection in gastric carcinogenesis, calling for testing the therapeutic efficacy of FGFR4 inhibitors in gastric cancer models.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
13.
J Exp Clin Cancer Res ; 42(1): 293, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924157

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effective against hematological malignancies, but their efficacy against solid tumors needs to be improved. CD276 (B7-H3) is a target upregulated in RMS and detected at low levels in normal tissues. FGFR4 is a very specific target for RMS. Here, we optimized CAR Ts for these two targets, alone or in combination, and tested their anti-tumor activity in vitro and in vivo. METHODS: Four different single-domain antibodies were used to select the most specific FGFR4-CAR construct. RMS cell killing and cytokine production by CD276- and FGFR4-CAR Ts expressing CD8α or CD28 HD/TM domains in combination with 4-1BB and/or CD28 co-stimulatory domains were tested in vitro. The most effective CD276- and FGFR4-CAR Ts were used to generate Dual-CAR Ts. Tumor killing was evaluated in vivo in three orthotopic RMS mouse models. RESULTS: CD276.V-CAR Ts (276.MG.CD28HD/TM.CD28CSD.3ζ) showed the strongest killing of RMS cells, and the highest release of IFN-γ and Granzyme B in vitro. FGFR4.V-CAR Ts (F8-FR4.CD28HD/TM.CD28CSD.3ζ) showed the most specific killing. CD276-CAR Ts successfully eradicated RD- and Rh4-derived RMS tumors in vivo, achieving complete remission in 3/5 and 5/5 mice, respectively. In CD276low JR-tumors, however, they achieved complete remission in only 1/5 mice. FGFR4 CAR Ts instead delayed Rh4 tumor growth. Dual-CAR Ts promoted Rh4-tumors clearance in 5/5 mice. CONCLUSIONS: CD276- and CD276/FGFR4-directed CAR Ts showed effective RMS cell killing in vitro and eradication of CD276high RMS tumors in vivo. CD276low tumors escaped the therapy highlighting a correlation between antigen density and effectiveness. FGFR4-CAR Ts showed specific killing in vitro but could only delay RMS growth in vivo. Our results demonstrate that combined expression of CD276-CAR with other CAR does not reduce its benefit. Introducing immunotherapy with CD276-CAR Ts in RMS seems to be feasible and promising, although CAR constructs design and target combinations have to be further improved to eradicate tumors with low target expression.


Assuntos
Antígenos B7 , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Rabdomiossarcoma , Linfócitos T , Animais , Camundongos , Antígenos B7/metabolismo , Antígenos CD28/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Rabdomiossarcoma/terapia , Rabdomiossarcoma/patologia
14.
Clin Transl Med ; 13(10): e1452, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37846441

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of death from cancer and has a very poor prognosis with few effective therapeutic options. Despite the approval of lenvatinib for the treatment of patients suffering from advanced HCC, only a small number of patients can benefit from this targeted therapy. METHODS: Diethylnitrosamine (DEN)-CCL4 mouse liver tumour and the xenograft tumour models were used to evaluate the function of KDM6A in HCC progression. The xenograft tumour model and HCC cell lines were used to evaluate the role of KDM6A in HCC drug sensitivity to lenvatinib. RNA-seq and ChIP assays were conducted for mechanical investigation. RESULTS: We revealed that KDM6A exhibited a significant upregulation in HCC tissues and was associated with an unfavourable prognosis. We further demonstrated that KDM6A knockdown remarkably suppressed HCC cell proliferation and migration in vitro. Moreover, hepatic Kdm6a loss also inhibited liver tumourigenesis in a mouse liver tumour model. Mechanistically, KDM6A loss downregulated the FGFR4 expression to suppress the PI3K-AKT-mTOR signalling pathway, leading to a glucose and lipid metabolism re-programming in HCC. KDM6A and FGFR4 levels were positively correlated in HCC specimens and mouse liver tumour tissues. Notably, KDM6A knockdown significantly inhibited the efficacy of lenvatinib therapy in HCC cells in vitro and in vivo. CONCLUSIONS: Our findings revealed that KDM6A promoted HCC progression by activating FGFR4 expression and may be an essential molecule for influencing the efficacy of lenvatinib in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
15.
J Exp Clin Cancer Res ; 42(1): 263, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817227

RESUMO

BACKGROUND: RNA N6-Methyladenosine (m6A) modification is implicated in the progression of human cancers including cholangiocarcinoma (CCA). METTL16 is recently identified as a new RNA methyltransferase responsible for m6A modification, although the role of METTL16 in CCA has not yet been examined. The current study aims to investigate the effect and mechanism of the RNA methyltransferase METTL16 in CCA. METHODS: The expression of METTL16 in CCA was examined by analyzing publicly available datasets or by IHC staining on tumor samples. siRNA or CRISPR/Cas9-mediated loss of function studies were performed in vitro and in vivo to investigate the oncogenic role of METTL16 in CCA. MeRIP-Seq was carried out to identify the downstream target of METTL16. ChIP-qPCR, immunoprecipitation, and immunoblots were used to explore the regulation mechanisms for METTL16 expression in CCA. RESULTS: We observed that the expression of METTL16 was noticeably increased in human CCA tissues. Depletion of METTL16 significantly inhibited CCA cell proliferation and decreased tumor progression. PRDM15 was identified as a key target of METTL16 in CCA cells. Mechanistically, our data showed that METTL16 regulated PRDM15 protein expression via YTHDF1-dependent translation. Accordingly, we observed that restoration of PRDM15 expression could rescue the deficiency of CCA cell proliferation/colony formation induced by METTL16 depletion. Our subsequent analyses revealed that METTL16-PRDM15 signaling regulated the expression of FGFR4 in CCA cells. Specifically, we observed that PRDM15 protein was associated with the FGFR4 promoter to regulate its expression. Furthermore, we showed that the histone acetyltransferase p300 cooperated with the transcription factor YY1 to regulate METTL16 gene expression via histone H3 lysine 27 (H3K27) acetylation in CCA cells. CONCLUSIONS: This study describes a novel METTL16-PRDM15-FGFR4 signaling axis which is crucial for CCA growth and may have important therapeutic implications. We showed that depletion of METTL16 significantly inhibited CCA cell proliferation and decreased tumor progression.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , RNA Interferente Pequeno , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Proteínas de Ligação a DNA , Fatores de Transcrição/genética
16.
Cell Rep Med ; 4(10): 101212, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37774704

RESUMO

Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS. The 3A11 CAR T cells induced robust cytokine production and cytotoxicity against RMS cell lines in vitro. In contrast, a panel of healthy human primary cells failed to activate 3A11 CAR T cells, confirming the selectivity of 3A11 CAR T cells against tumors with high FGFR4 expression. Finally, we demonstrate that 3A11 CAR T cells are persistent in vivo and can effectively eliminate RMS tumors in two metastatic and two orthotopic models. Therefore, our study credentials CAR T cell therapy targeting FGFR4 to treat patients with RMS.


Assuntos
Receptores de Antígenos Quiméricos , Rabdomiossarcoma , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia Adotiva , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Antígenos Quiméricos/genética , Rabdomiossarcoma/tratamento farmacológico
17.
Mol Cancer Ther ; 22(12): 1479-1492, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37710057

RESUMO

Aberrant activation of the FGF19-FGFR4 signaling pathway plays an essential role in the tumorigenesis of hepatocellular carcinoma (HCC). As such, FGFR4 inhibition has emerged as a novel therapeutic option for the treatment of HCC and has shown preliminary efficacy in recent clinical trials for patients exhibiting aberrant FGF19 expression. Resistance to kinase inhibitors is common in oncology, presenting a major challenge in the clinical treatment process. Hence, we investigated the potential mechanisms mediating and causing resistance to FGFR4 inhibition in HCC. Upon the successful establishment of a battery of cellular models developing resistance to FGFR4 inhibitors, we have identified the activation of EGFR, MAPK, and AKT signaling as the primary mechanisms mediating the acquired resistance. Combination of inhibitors against EGFR or its downstream components restored sensitivity to FGFR4 inhibitors. In parental HCC cell lines, EGF treatment also resulted in resistance to FGFR4 inhibitors. This resistance was effectively reverted by inhibitors of the EGFR signaling pathway, suggesting that EGFR activation is a potential cause of intrinsic resistance. We further confirmed the above findings in vivo in mouse xenograft tumor models. Genomic analysis of patient samples from The Cancer Genome Atlas confirmed that a segment of patients with HCC harboring FGF19 overexpression indeed exhibited increased activation of EGFR signaling. These findings conclusively indicate that both induced and innate activation of EGFR could mediate resistance to FGFR4 inhibition, suggesting that dual blockade of EGFR and FGFR4 may be a promising future therapeutic strategy for the treatment of FGF19-FGFR4 altered HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
18.
J Appl Genet ; 64(4): 749-758, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656292

RESUMO

Lifestyle factors, including smoking, have been linked to neoplastic diseases, and reports suggest an association between smoking and overexpression of FGFR (fibroblast growth factor receptor) in certain neoplasms. This study aims to assess the expression of FGFR3 and FGFR4 genes in patients with and without a history of smoking.A total of 118 participants were recruited, including 83 Juvenile Nasopharyngeal Angiofibroma (JNA) patients and 35 healthy participants, the JNA patients were further stratified as smokers and nonsmokers. Total RNA was extracted from the blood & saliva sample by using TRIzol reagent, and quantified using a Nanodrop, and then subjected to gene expression analysis of FGFR3/4 using RT-PCR. Immunohistochemistry analysis was employed using fresh biopsies of JNA to validate the findings. All experiments were performed in triplicates and analysed using the Chi-Square test (P < 0.05). Smokers exhibited significantly lower total RNA concentrations across all sample types (P < 0.001). The study revealed significant upregulation of both FGFR3/4 genes in JNA patients (P < 0.05). Moreover, FGFR3 expression was significantly higher among smokers 66% (95% CI: 53-79%) compared to non-smokers 22% (95% CI: 18-26%). Immunohistochemistry analysis demonstrated moderate to strong staining intensity for FGFR3 among smokers. The study highlights the overexpression of FGFR3/4 genes in JNA patients, with a stronger association observed among smokers. Furthermore, medical reports indicated higher rates of recurrence and bleeding intensity among smokers. These findings emphasize the potential role of FGFR3 as a key molecular factor in JNA, particularly in the context of smoking.


Assuntos
Angiofibroma , Neoplasias Nasofaríngeas , Humanos , Angiofibroma/genética , Angiofibroma/metabolismo , Angiofibroma/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Imuno-Histoquímica , Fumar/genética , RNA , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética
19.
Eur J Med Chem ; 259: 115703, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37556948

RESUMO

Aberrant FGFR4 signaling has been implicated in the development of several cancers, making FGFR4 a promising target for cancer therapy. Several FGFR4-selective inhibitors have been developed, yet none of them have been approved. Herein, we report a novel series of 1,6-naphthyridine-2-one derivatives as potent and selective inhibitors targeting FGFR4 kinase. Preliminary structure-activity relationship analysis was conducted. The screening cascades revealed that 19g was the preferred compound among the prepared series. 19g demonstrated excellent kinase selectivity and substantial cytotoxic effect against all tested colorectal cancer cell lines. 19g induced significant tumor inhibition in a HCT116 xenograft mouse model without any apparent toxicity. Notably, 19g exhibited excellent potency in disrupting the phosphorylation of FGFR4 and downstream signaling proteins mediated by FGF18 and FGF19. Compound 19g might be a potential antitumor drug candidate for the treatment of colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico
20.
Eur J Med Chem ; 258: 115628, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37437349

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) has been proved to be an effective target for cancer therapy. Aberration in FGF19/FGFR4 signaling is oncogenic driving force in human hepatocellular carcinoma (HCC). FGFR4 gatekeeper mutations induced acquired resistance remains an unmet clinical challenge for HCC treatment. In this study, a series of 1H-indazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. These new derivatives showed significant FGFR4 inhibitory and antitumor activities, among which compound 27i was demonstrated to be the most potent compound (FGFR4 IC50 = 2.4 nM). Remarkably, compound 27i exhibited no activity against a panel of 381 kinases at 1 µM. Additionally, compound 27i displayed nanomolar IC50s against huh7 (IC50 = 21 nM) and two mutant cell lines, BaF3/ETV6-FGFR4-V550L and BaF3/ETV6-FGFR4-N535K (IC50 = 2.5/171 nM). Meanwhile, compound 27i exhibited potent antitumor potency (TGI: 83.0%, 40 mg/kg, BID) in Huh7 xenograft mouse models with no obvious toxicity observed. Overall, compound 27i was identified as a promising preclinical candidate for overcoming FGFR4 gatekeeper mutations for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA