Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Biol Sex Differ ; 14(1): 70, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817272

RESUMO

INTRODUCTION: Current understanding of sodium (Na+) handling is based on studies done primarily in males. Contrary to the gradual increase in high salt (HS) induced natriuresis over 3-5 days in males, female Sprague Dawley (SD) rats have a robust natriuresis after 1 day of HS. Renal endothelin-1 (ET-1) signaling, through ET receptor A and B, is an important natriuretic pathway and was implicated in our previous dietary salt acclimation studies, however, the contribution of ET receptors to sex-differences in acclimation to dietary Na+ challenges has yet to be clarified. We hypothesized that ET receptors mediate the augmented natriuretic capacity of female rats in response to a HS diet. METHODS: To test our hypothesis, male and female SD rats were implanted with telemeters and randomly assigned to treatment with A-182086, a dual ETA and ETB receptor antagonist, or control. 24-h urine samples were collected and assessed for electrolytes and ET-1. Studies were performed on a normal salt (NS, 0.3% NaCl) diet and after challenging rats with HS (4% NaCl) diet for 1 day. RESULTS: We found that A-182086 increased blood pressure in male and female SD rats fed either diet. Importantly, A-182086 eliminated sex-differences in natriuresis on NS and HS. In particular, A-182086 promotes HS-induced natriuresis in male rats rather than attenuating the natriuretic capacity of females. Further, the sex-difference in urinary ET-1 excretion in NS-fed rats was eliminated by A-182086. CONCLUSION: In conclusion, ET receptors are crucial for mediating sex-difference in the natriuretic capacity primarily through their actions in male rats.


Sodium balance is essential for the human body. Sodium retention in the body can cause an increase in blood pressure. Historical understanding of sodium balance is based on studies done mostly in male subjects. Recently, we showed that male and female rats acclimate to a high salt diet differently. Male rats take 3­5 days to increase sodium excretion while female rats increase sodium excretion after 1 day. Endothelin-1 which signals through two receptors, endothelin receptor subtype A and B, is important for controlling sodium excretion by the kidneys. There are known sex-differences in the ratio and function of endothelin receptors in the kidney. However, the role of endothelin receptors in salt handling during acclimation to increased salt intake is not clear. This study sought to identify whether blocking endothelin receptors eliminates the sex-difference in sodium excretion in response to a high salt diet. We treated male and female rats with a blocker for endothelin receptors and evaluated sodium handling by the kidney. Blockade of endothelin receptors increased sodium excretion in male rats fed a high salt diet; whereas sodium excretion in female rats was not affected by blocking endothelin receptors. These data indicate that ET receptors contribute to male­female differences in sodium handling during adjusting to an increased dietary salt.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Ratos , Masculino , Feminino , Animais , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Ratos Sprague-Dawley , Receptor de Endotelina B/fisiologia , Endotelinas , Sódio/metabolismo , Endotelina-1 , Dieta , Aclimatação
2.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919338

RESUMO

In brain disorders, reactive astrocytes, which are characterized by hypertrophy of the cell body and proliferative properties, are commonly observed. As reactive astrocytes are involved in the pathogenesis of several brain disorders, the control of astrocytic function has been proposed as a therapeutic strategy, and target molecules to effectively control astrocytic functions have been investigated. The production of brain endothelin-1 (ET-1), which increases in brain disorders, is involved in the pathophysiological response of the nervous system. Endothelin B (ETB) receptors are highly expressed in reactive astrocytes and are upregulated by brain injury. Activation of astrocyte ETB receptors promotes the induction of reactive astrocytes. In addition, the production of various astrocyte-derived factors, including neurotrophic factors and vascular permeability regulators, is regulated by ETB receptors. In animal models of Alzheimer's disease, brain ischemia, neuropathic pain, and traumatic brain injury, ETB-receptor-mediated regulation of astrocytic activation has been reported to improve brain disorders. Therefore, the astrocytic ETB receptor is expected to be a promising drug target to improve several brain disorders. This article reviews the roles of ETB receptors in astrocytic activation and discusses its possible applications in the treatment of brain disorders.


Assuntos
Astrócitos/metabolismo , Encefalopatias/metabolismo , Receptor de Endotelina B/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Astrócitos/fisiologia , Encefalopatias/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Endotelina-1/metabolismo , Humanos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Receptor de Endotelina B/fisiologia
3.
Sci Rep ; 10(1): 14226, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848199

RESUMO

The endothelin system has an important role in bone modelling during orthodontic tooth movement (OTM); however, little is known about the involvement of endothelin B receptors (ETB) in this process. The aim of this study was to evaluate the role of ETB in bone modelling during OTM using ETB knockout rats (ETB-KO). Thirty-two male rats were divided into 4 groups (n = 8 per group): the ETB-KO appliance group, ETB-KO control group, wild type (ETB-WT) appliance group, and ETB-WT control group. The appliance consisted of a super-elastic closed-coil spring placed between the first and second left maxillary molar and the incisors. Tooth movement was measured on days 0 and 35, and maxillary alveolar bone volume, osteoblast, and osteoclast volume were determined histomorphometrically on day 35 of OTM. Next, we determined the serum endothelin 1 (ET-1) level and gene expression levels of the osteoclast activity marker cathepsin K and osteoblast activity markers osteocalcin and dentin matrix acidic phosphoprotein 1 (DMP1) on day 35. The ETB-KO appliance group showed significantly lower osteoblast activity, diminished alveolar bone volume and less OTM than the ETB-WT appliance group. Our results showed that ETB is involved in bone modelling in the late stage of OTM.


Assuntos
Remodelação Óssea , Receptor de Endotelina B/fisiologia , Técnicas de Movimentação Dentária , Animais , Endotelina-1/sangue , Masculino , Osteogênese , Ratos Transgênicos
4.
FASEB J ; 34(5): 6262-6270, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32157737

RESUMO

Endothelin-1 (ET-1) is a member of the endothelin family of peptide hormones first discovered as endothelium-derived mediators regulating vascular tone. ET-1 also regulates the proliferation and differentiation of bone cells that synthesize fibroblast growth factor 23 (FGF23). FGF23 is a hormone controlling renal phosphate and vitamin D metabolism. Here, we studied the role of ET-1 and endothelin receptor B (ETB) for FGF23 production. Fgf23 gene expression was studied in IDG-SW3 bone cells by quantitative RT-PCR. ETB-expressing (etb+/+ ) and rescued ETB-deficient mice (etb-/- ) were studied in metabolic cages. Their serum FGF23, PTH, and 1,25(OH)2 D3 concentrations were determined by ELISA, serum and urinary phosphate and Ca2+ by photometric methods. ET-1 and ETB agonist sarafotoxin 6c suppressed Fgf23 mRNA in IDG-SW3 cells. Serum C-terminal and intact FGF23 as well as bone Fgf23 mRNA levels were significantly higher in etb-/- mice than in etb+/+ mice. Renal phosphate excretion was significantly higher in etb-/- mice despite lower phosphate levels. In addition, etb-/- animals exhibited calciuria and a significantly higher serum 1,25(OH)2 D3 concentration compared to etb+/+ mice. In conclusion, ETB-dependent ET-1 signaling is a potent suppressor of FGF23 formation. This effect is likely to be of clinical relevance given the use of endothelin receptor antagonists in various diseases.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Receptor de Endotelina B/fisiologia , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatos/metabolismo
5.
Atherosclerosis ; 292: 215-223, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606133

RESUMO

BACKGROUND AND AIMS: Endothelin-1 (ET-1) and arginase are both suggested to be involved in the inflammatory processes and development of endothelial dysfunction in atherosclerosis. However, information regarding the roles of ET-1 and arginase, as well as the interactions between the two in human atherosclerosis, is scarce. We investigated the expression of ET-1 and its receptors, ETA and ETB, as well as arginase in human carotid atherosclerotic plaques and determined the functional interactions between ET-1 and arginase in endothelial cells and THP-1-derived macrophages. METHODS: Carotid plaques and blood samples were retreived from patients undergoing surgery for symptomatic or asymptomatic carotid stenosis. Plaque gene and protein expression was determined and related to clinical characteristics. Functional interactions between ET-1 and arginase were investigated in endothelial cells and THP-1 cells. RESULTS: Expression of ET-1 and ETB receptors was increased in plaques from patients with symptomatic carotid artery disease. ET-1 was co-localized with arginase 1 and arginase 2 in the necrotic core, together with macrophage markers CD163 and CD68. Arginase 2, ET-1 and ETB receptors were expressed in endothelial cells as well as in smooth muscle cells in the fibrous cap. ET-1 increased arginase 2 mRNA expression and arginase activity in endothelial cells and arginase activity in macrophages. Moreover, ET-1 stimulated formation of reactive oxygen species (ROS) in THP-1-derived macrophages via an arginase-dependent mechanism. CONCLUSIONS: This is the first study that demonstrates co-localization of ET-1 and arginase 2 in human atherosclerotic plaques. ET-1 stimulated arginase 2 expression and activity in endothelial cells, as well as arginase activity and ROS formation in macrophages via an arginase-dependent mechanism. These results indicate an important interaction between the ET pathway and arginase in human atherosclerotic plaques.


Assuntos
Arginase/fisiologia , Endotelina-1/fisiologia , Placa Aterosclerótica/metabolismo , Receptor de Endotelina B/fisiologia , Arginase/biossíntese , Células Cultivadas , Células Endoteliais , Endotelina-1/biossíntese , Humanos
6.
Shock ; 54(1): 87-95, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31318833

RESUMO

The hypoxia-sensitive endothelin (ET) system plays an important role in circulatory regulation through vasoconstrictor ETA and ETB2 and vasodilator ETB1 receptors. Sepsis progression is associated with microcirculatory and mitochondrial disturbances along with tissue hypoxia. Our aim was to investigate the consequences of treatments with the ETA receptor (ETA-R) antagonist, ETB1 receptor (ETB1-R) agonist, or their combination on oxygen dynamics, mesenteric microcirculation, and mitochondrial respiration in a rodent model of sepsis. Sprague Dawley rats were subjected to fecal peritonitis (0.6 g kg i.p.) or a sham operation. Septic animals were treated with saline or the ETA-R antagonist ETR-p1/fl peptide (100 nmol kg i.v.), the ETB1-R agonist IRL-1620 (0.55 nmol kg i.v.), or a combination therapy 22 h after induction. Invasive hemodynamic monitoring and blood gas analysis were performed during a 90-min observation, plasma ET-1 levels were determined, and intestinal capillary perfusion (CPR) was detected by intravital videomicroscopy. Mitochondrial Complex I (CI)- and CII-linked oxidative phosphorylation (OXPHOS) was evaluated by high-resolution respirometry in liver biopsies. Septic animals were hypotensive with elevated plasma ET-1. The ileal CPR, oxygen extraction (ExO2), and CI-CII-linked OXPHOS capacities decreased. ETR-p1/fl treatment increased ExO2 (by >45%), CPR, and CII-linked OXPHOS capacity. The administration of IRL-1620 countervailed the sepsis-induced hypotension (by >30%), normalized ExO2, and increased CPR. The combined ETA-R antagonist-ETB1-R agonist therapy reduced the plasma ET-1 level, significantly improved the intestinal microcirculation (by >41%), and reversed mitochondrial dysfunction. The additive effects of a combined ETA-R-ETB1-R-targeted therapy may offer a tool for a novel microcirculatory and mitochondrial resuscitation strategy in experimental sepsis.


Assuntos
Microcirculação/efeitos dos fármacos , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/fisiologia , Sepse/tratamento farmacológico , Animais , Modelos Animais de Doenças , Antagonistas do Receptor de Endotelina A/uso terapêutico , Antagonistas do Receptor de Endotelina B/uso terapêutico , Masculino , Microcirculação/fisiologia , Microscopia de Vídeo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/agonistas , Receptor de Endotelina A/sangue , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/sangue , Receptor de Endotelina B/efeitos dos fármacos , Sepse/fisiopatologia
7.
PLoS One ; 14(4): e0215398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978262

RESUMO

Vascular pathophysiological changes after haemorrhagic stroke, such as phenotypic modulation of the cerebral arteries and cerebral vasospasms, are associated with delayed cerebral ischemia (DCI) and poor outcome. The only currently approved drug treatment shown to reduce the risk of DCI and improve neurologic outcome after aneurysmal subarachnoid haemorrhage (SAH) is nimodipine, a dihydropyridine L-type voltage-gated Ca2+ channel blocker. MEK1/2 mediated transcriptional upregulation of contractile receptors, including endothelin-1 (ET-1) receptors, has previously been shown to be a factor in the pathology of SAH. The aim of the study was to compare intrathecal and subcutaneous treatment regimens of nimodipine and intrathecal treatment regimens of U0126, a MEK1/2 inhibitor, in a single injection experimental rat SAH model with post 48 h endpoints consisting of wire myography of cerebral arteries, flow cytometry of cerebral arterial tissue and behavioural evaluation. Following ET-1 concentration-response curves, U0126 exposed arteries had a significantly lower ET-1max than vehicle arteries. Arteries from both the intrathecal- and subcutaneous nimodipine treated animals had significantly higher ET-1max contractions than the U0126 arteries. Furthermore, Ca2+ concentration response curves (precontracted with ET-1 and in the presence of nimodipine) showed that nimodipine treatment could result in larger nimodipine insensitive contractions compared to U0126. Flow cytometry showed decreased protein expression of the ETB receptor in U0126 treated cerebral vascular smooth muscle cells compared to vehicle. Only U0126 treatment lowered ET-1max contractions and ETB receptor levels, as well as decreased the contractions involving nimodipine-insensitive Ca2+ channels, when compared to both intrathecal and subcutaneous nimodipine treatment. This indicate that targeting gene expression might be a better strategy than blocking specific receptors or ion channels in future treatments of SAH.


Assuntos
Butadienos/farmacologia , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/fisiopatologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/fisiopatologia , Modelos Animais de Doenças , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Nimodipina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina B/genética , Receptor de Endotelina B/fisiologia , Hemorragia Subaracnóidea/genética , Regulação para Cima/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
8.
J Physiol ; 597(11): 2853-2865, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30847930

RESUMO

KEY POINTS: Polycystic ovary syndrome (PCOS) is a complex syndrome with cardiovascular risk factors, including obesity and insulin resistance. PCOS is also associated with high androgens, increases the risk of cardiovascular dysfunction in women. Due to the complexity of PCOS, had it has been challenging to isolate specific causes of the cardiovascular dysfunction. Our measure of cardiovascular dysfunction (endothelial dysfunction) was most profound in lean women with PCOS. The endothelin-1-induced vasodilation in these PCOS subject, was dependent on the ETB R but was not NO-dependent. We also demonstrated oestrogen administration improved endothelial function in lean and obese women with PCOS likely because oestrogen increased NO availability. Our studies indicate a primary role for androgens in cardiovascular dysfunction in PCOS. ABSTRACT: Endothelin-1 (ET-1) is an indicator of endothelial injury and dysfunction and is elevated in women with androgen excess polycystic ovary syndrome (AE-PCOS). The endothelin B receptor (ETB R) subtype mediates vasodilatation, but is blunted in women with PCOS. We hypothesized that androgen drives endothelial dysfunction in AE-PCOS women and oestradiol (EE) administration reverses these effects. We assessed microvascular endothelial function in women with (7 lean and 7 obese) and without AE-PCOS (controls, 6 lean, 7 obese). Only obese AE-PCOS women were insulin resistant (IR). We evaluated cutaneous vascular conductance (%CVCmax ) with laser Doppler flowmetry during low dose intradermal microdialysis ET-1 perfusions (1, 3, 4, 5 and 7 pmol) with either lactated Ringer solution alone, or with ETB R (BQ-788), or nitric oxide (NO) inhibition (l-NAME). Log[ET-1]-%maxCVC dose-response curves demonstrated reduced vasodilatory responses to ET-1 in lean AE-PCOS (logED50 , 0.59 ± 0.08) versus lean controls (logED50 , 0.49 ± 0.09, P < 0.05), but not compared to obese AE-PCOS (logED50 , 0.65 ± 0.09). ETB R inhibition decreased ET-1-induced vasodilatation in AE-PCOS women (logED50 , 0.64 ± 0. 22, P < 0.05). This was mechanistically observed at the cellular level, with ET-1-induced, DAF-FM-measurable endothelial cell NO production, which was abrogated by dihydrotestosterone in an androgen receptor-dependent manner. EE augmented the cutaneous vasodilating response to ET-1(logED50 0.29 ± 0.21, 0.47 ± 0.09, P < 0.05 for lean and obese, respectively). Androgens drive endothelial dysfunction in lean and obese AE-PCOS. We propose that the attenuated ET-1-induced vasodilatation in AE-PCOS is a consequence of androgen receptor-mediated, suppressed ETB R-stimulated NO production, and is reversed with EE.


Assuntos
Microvasos/fisiopatologia , Síndrome do Ovário Policístico/fisiopatologia , Receptor de Endotelina B/fisiologia , Adulto , Androgênios/farmacologia , Doenças Cardiovasculares/fisiopatologia , Di-Hidrotestosterona/farmacologia , Endotelina-1/farmacologia , Endotélio Vascular/fisiopatologia , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Feminino , Teste de Tolerância a Glucose , Humanos , Óxido Nítrico/metabolismo , Obesidade/fisiopatologia , Pele/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vasodilatação , Adulto Jovem
9.
Eur Heart J ; 40(9): 768-784, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657897

RESUMO

AIMS: Hypertension is common. Recent data suggest that macrophages (Mφ) contribute to, and protect from, hypertension. Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor with additional pro-inflammatory properties. We investigated the role of the ET system in experimental and clinical hypertension by modifying Mφ number and phenotype. METHODS AND RESULTS: In vitro, Mφ ET receptor function was explored using pharmacological, gene silencing, and knockout approaches. Using the CD11b-DTR mouse and novel mice with myeloid cell-specific endothelin-B (ETB) receptor deficiency (LysMETB-/-), we explored the effects of modifying Mφ number and phenotype on the hypertensive effects of ET-1, angiotensin II (ANG II), a model that is ET-1 dependent, and salt. In patients with small vessel vasculitis, the impacts of Mφ depleting and non-depleting therapies on blood pressure (BP) and endothelial function were examined. Mouse and human Mφ expressed both endothelin-A and ETB receptors and displayed chemokinesis to ET-1. However, stimulation of Mφ with exogenous ET-1 did not polarize Mφ phenotype. Interestingly, both mouse and human Mφ cleared ET-1 through ETB receptor mediated, and dynamin-dependent, endocytosis. Mφ depletion resulted in an augmented chronic hypertensive response to both ET-1 and salt. LysMETB-/- mice displayed an exaggerated hypertensive response to both ET-1 and ANG II. Finally, in patients who received Mφ depleting immunotherapy BP was higher and endothelial function worse than in those receiving non-depleting therapies. CONCLUSION: Mφ and ET-1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension.


Assuntos
Angiotensina II/fisiologia , Endotelina-1/fisiologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Macrófagos/fisiologia , Receptor de Endotelina B/fisiologia , Animais , Modelos Animais de Doenças , Endocitose/fisiologia , Humanos , Hipertensão/etiologia , Camundongos , Receptor de Endotelina A
10.
Biol Sex Differ ; 10(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606254

RESUMO

BACKGROUND: The pathogenesis of hypertension is distinct between men and women. Endothelin-1 (ET-1) is a potential contributor to sex differences in the pathophysiology of hypertension. ET-1 participates in blood pressure regulation through activation of endothelin A (ETA) and endothelin B (ETB) receptors including those in the vasculature. Previous studies demonstrated that sex and sex hormones evoke discrepancies in ET-1-mediated control of vascular tone in different vascular beds. However, little is known about sex- and sex hormone-related differences in ET-1-dependent renal microvascular reactivity. Accordingly, we hypothesized that loss of sex hormones impairs afferent arteriole reactivity to ET-1. METHODS: Male and female Sprague Dawley rats were subjected to gonadectomy or sham surgery (n = 6/group). After 3 weeks, kidneys from those rats were prepared for assessment of renal microvascular responses to ET-1 (ETA and ETB agonist, 10-12 to 10-8 M) and sarafotoxin 6c (S6c, ETB agonist, 10-12 to 10-8 M) using the blood-perfused juxtamedullary nephron preparation. RESULTS: Control afferent arteriole diameters at 100 mmHg were similar between sham male and female rats averaging 14.6 ± 0.3 and 15.3 ± 0.3 µm, respectively. Gonadectomy had no significant effect on control arteriole diameter. In sham males, ET-1 produced significant concentration-dependent decreases in afferent arteriole diameter, with 10-8 M ET-1 decreasing diameter by 84 ± 1%. ET-1 induced similar concentration-dependent vasoconstrictor responses in sham female rats, with 10-8 M ET-1 decreasing the diameter by 82 ± 1%. The afferent arteriolar vasoconstrictor responses to ET-1 were unchanged by ovariectomy or orchiectomy. Selective ETB receptor activation by S6c induced a concentration-dependent decline in afferent arteriole diameter, with 10-8 M S6c decreasing diameter by 77 ± 3 and 76 ± 3% in sham male and female rats, respectively. Notably, ovariectomy augmented the vasoconstrictor response to S6c (10-12 to 10-9 M), whereas orchiectomy had no significant impact on the responsiveness to ETB receptor activation. CONCLUSION: These data demonstrate that sex does not significantly influence afferent arteriole reactivity to ET receptor activation. Gonadectomy potentiated the responsiveness of the afferent arteriole to ETB-induced vasoconstriction in females, but not males, suggesting that female sex hormones influence ETB-mediated vasoconstriction in the renal microcirculation.


Assuntos
Arteríolas/efeitos dos fármacos , Endotelina-1/farmacologia , Receptor de Endotelina A/agonistas , Receptor de Endotelina B/agonistas , Animais , Arteríolas/fisiologia , Castração , Feminino , Masculino , Microcirculação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/fisiologia , Caracteres Sexuais , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Venenos de Víboras/farmacologia
11.
Dev Biol ; 444 Suppl 1: S156-S169, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171849

RESUMO

The endothelin system is a vertebrate-specific innovation with important roles in regulating the cardiovascular system and renal and pulmonary processes, as well as the development of the vertebrate-specific neural crest cell population and its derivatives. This system is comprised of three structurally similar 21-amino acid peptides that bind and activate two G-protein coupled receptors. In 1994, knockouts of the Edn3 and Ednrb genes revealed their crucial function during development of the enteric nervous system and melanocytes, two neural-crest derivatives. Since then, human and mouse genetics, combined with cellular and developmental studies, have helped to unravel the role of this signaling pathway during development and adulthood. In this review, we will summarize the known functions of the EDN3/EDNRB pathway during neural crest development, with a specific focus on recent scientific advances, and the enteric nervous system in normal and pathological conditions.


Assuntos
Endotelina-3/fisiologia , Crista Neural/metabolismo , Receptor de Endotelina B/fisiologia , Animais , Evolução Biológica , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Endotelina-3/metabolismo , Endotelinas/metabolismo , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/fisiologia , Humanos , Melanócitos/metabolismo , Crista Neural/embriologia , Crista Neural/fisiologia , Tubo Neural , Neurogênese , Receptores de Endotelina/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Vertebrados/embriologia
12.
J Pharm Pharmacol ; 70(7): 893-900, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29570803

RESUMO

OBJECTIVE: This study assessed the ability of endothelin-1 (ET-1) to evoke heat hyperalgesia when injected directly into the trigeminal ganglia (TG) of mice and determined the receptors implicated in this effect. The effects of TG ETA and ETB receptor blockade on alleviation of heat hyperalgesia in a model of trigeminal neuropathic pain induced by infraorbital nerve constriction (CION) were also examined. METHODS: Naive mice received an intraganglionar (i.g.) injection of ET-1 (0.3-3 pmol) or the selective ETB R agonist sarafotoxin S6c (3-30 pmol), and response latencies to ipsilateral heat stimulation were assessed before the treatment and at 1-h intervals up to 5 h after the treatment. Heat hyperalgesia induced by i.g. ET-1 or CION was assessed after i.g. injections of ETA R and ETB R antagonists (BQ-123 and BQ-788, respectively, each at 0.5 nmol). KEY FINDINGS: Intraganglionar ET-1 or sarafotoxin S6c injection induced heat hyperalgesia lasting 4 and 2 h, respectively. Heat hyperalgesia induced by ET-1 was attenuated by i.g. BQ-123 or BQ-788. On day 5 after CION, i.g. BQ-788 injection produced a more robust antihyperalgesic effect compared with BQ-123. CONCLUSIONS: ET-1 injection into the TG promotes ETA R/ETB R-mediated facial heat hyperalgesia, and both receptors are clearly implicated in CION-induced hyperalgesia in the murine TG system.


Assuntos
Endotelina-1/farmacologia , Hiperalgesia/induzido quimicamente , Gânglio Trigeminal/fisiologia , Animais , Constrição , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Endotelina A/farmacologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Oligopeptídeos/farmacologia , Medição da Dor/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Piperidinas/farmacologia , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/fisiologia , Gânglio Trigeminal/efeitos dos fármacos , Venenos de Víboras/farmacologia
13.
Yakugaku Zasshi ; 137(10): 1241-1246, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28966265

RESUMO

Brain edema is a severe morbid complication of brain injury, characterized by excessive fluid accumulation and an elevation of intracranial pressure. However, effective anti-brain edema drugs are lacking. One of the causes of brain edema is disruption of blood-brain barrier (BBB) function, which results in extravasation of intravascular fluid. After brain damage, astrocytes are activated, and astrocyte-derived vascular endothelial growth factor-A (VEGF-A) is known to induce BBB dysfunction. Therefore maintaining BBB integrity by regulating astrocyte function is a potentially effective strategy for treating brain edema. In this review, we focus on the endothelin ETB receptor and its role in regulation of astrocyte functions. In mice, brain damage was induced by fluid percussion injury (FPI), and the resulting BBB disruption and brain edema were observed in the mouse cerebrum. BQ788, a selective ETB receptor antagonist, attenuated the FPI-induced BBB disruption and brain edema. Levels of brain VEGF-A increased after FPI, mainly in reactive astrocytes. BQ788 suppressed the FPI-induced increase in VEGF-A expression in reactive astrocytes. Moreover, intraventricular administration of VEGF neutralizing antibody also attenuated FPI-induced BBB disruption and brain edema. Claudin-5 is an endothelial tight junction protein essential for normal BBB structure and function. Levels of claudin-5 protein were reduced by FPI. Furthermore, VEGF neutralizing antibody blocked FPI-induced decrease in claudin-5. These results suggest that the ETB receptor antagonist BQ788 protects against brain edema by inhibiting VEGF-A-mediated decrease in claudin-5.


Assuntos
Astrócitos/fisiologia , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Antagonistas do Receptor de Endotelina B , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Receptor de Endotelina B/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Barreira Hematoencefálica/fisiologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Claudina-5/metabolismo , Claudina-5/fisiologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
J Drug Target ; 25(3): 264-274, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27701898

RESUMO

The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.


Assuntos
Citocinas/biossíntese , Inflamação/metabolismo , Estresse Oxidativo , Dor/metabolismo , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/fisiologia , Superóxidos/metabolismo , Animais , Antagonistas do Receptor de Endotelina A/farmacologia , Masculino , Camundongos
15.
Biomed Pharmacother ; 84: 1979-1985, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27847206

RESUMO

Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases (CVDs). Endothelin type B (ETB) receptors were involved in the pathogenesis of CVDs. However, Sirtuin 1(Sirt1) has potential protect roles for CVDs. The present study was designed to examine the hypothesis that homocysteine up-regulates ETB receptors through down-regulation of Sirt 1. In vitro experiments were performed in rat superior mesenteric artery (SMA). The rat SMA was cultured in serum free medium for 24h in the presence and absence of homocysteine (Hcy) with or without resveroral (Res) (a Sirt 1agonist). In vivo, the rats received subcutaneous injections of Hcy in the presence of or absence of Res for 3 weeks. The contractile responses to sarafotoxin 6c (S6c) (an ETB receptor agonist) were studied using a sensitive myograph. Levels of protein expression were determined using western blotting. The blood pressure of rat was measured via a noninvasive tail-cuff plethysmography method. We observed that Hcy increased the level of ETB receptor protein expression and the ETB receptor-mediated contractile responses induced by S6c, and decreased level of Sirt1 protein expression in SMA without endothelium in vitro. However, these effects were reversed by Res. Moreover, Res also blocked the up-regulation of acetylized p65 induced by Hcy. The in vivo study showed that HHcy down-regulated Sirt 1, and up-regulated acetylized p65 and ETB receptor protein expression, and elevated the blood pressure of rats. However, Res could block these effects. In conclusion, this suggested that Hcy regulated ETB receptor expression through sirt1/nuclear factor-κB signaling pathway.


Assuntos
Homocisteína/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Receptor de Endotelina B/fisiologia , Sirtuína 1/metabolismo , Animais , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirtuína 1/antagonistas & inibidores
16.
Pediatr Surg Int ; 32(12): 1095-1101, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27663687

RESUMO

PURPOSE: Hirschsprung's disease (HD) is caused by a failure of enteric neural crest-derived cells (ENCC) to colonize the bowel, resulting in an absence of the enteric nervous system (ENS). Previously, we developed a Sox10 transgenic version of the Endothelin receptor-B (Ednrb) mouse to visualize ENCC with the green fluorescent protein, Venus. The aim of this study was to isolate Sox10-Venus+ cells, which are differentiated neurons and glial cells in the ENS, and analyze these cells using Sox10-Venus mice gut. METHODS: The mid-and hindgut of Sox10-Venus+/Ednrb +/+ and Sox10-Venus+/Ednrb -/- at E13.5 and E15.5 were dissected and cells were dissociated. Sox10-Venus+ cells were then isolated. Expression of PGP9.5 and GFAP were evaluated neurospheres using laser scanning microscopy. RESULTS: 7 days after incubation, Sox10-Venus+ cells colonized the neurosphere. There were no significant differences in PGP9.5 expressions on E13.5 and E15.5. GFAP was significantly increased in HD compared to controls on E15.5 (P < 0.05). CONCLUSIONS: Our results suggest increased glial differentiation causes an imbalance in ENCC lineages, leading to a disruption of normal ENS development in this HD model. Isolation of ENCC provides an opportunity to investigate the ENS with purity and might be a useful tool for modeling cell therapy approaches to HD.


Assuntos
Diferenciação Celular/fisiologia , Sistema Nervoso Entérico/embriologia , Doença de Hirschsprung/embriologia , Crista Neural/embriologia , Receptor de Endotelina B/fisiologia , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Sistema Nervoso Entérico/fisiopatologia , Imunofluorescência , Intestinos/embriologia , Intestinos/fisiopatologia , Camundongos , Camundongos Knockout , Crista Neural/fisiopatologia , Neurônios/fisiologia
17.
Exp Anim ; 65(3): 245-51, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923755

RESUMO

Hirschsprung disease (HSCR), or colonic aganglionosis, is a congenital disorder characterized by the absence of intramural ganglia along variable lengths of the colon, resulting in intestinal obstruction. It is the most common cause of congenital intestinal obstruction, with an incidence of 1 in 5,000 live births. N-ethyl-N-nitrosourea (ENU)-induced mutagenesis is a powerful tool for the study of gene function and the generation of human disease models. In the current study, a novel mutant mouse with aganglionic megacolon and coat color spotting was generated by ENU-induced mutagenesis. Histological and acetylcholinesterase (AChE) whole-mount staining analysis showed a lack of ganglion cells in the colon in mutant mice. The mutation was mapped to chromosome 14 between markers rs30928624 and D14Mit205 (Chr 14 positions 103723921 bp and 105054651 bp). The Ednrb (Chr 14 position 103814625-103844173 bp) was identified as a potential candidate gene in this location. Mutation analysis revealed a T>C missense mutation at nucleotide 857 of the cDNA encoding endothelin receptor B (EDNRB) in which a proline was substituted for the highly conserved Lys-286 residue (L286P) in the fifth transmembrane (TM V) domain of this G protein-coupled receptor. The mutant mouse was named Ednrb(m1yzcm) (Ednrb; mutation 1, Yangzhou University Comparative Medicine Center). The results of the present study implicate the structural importance of the TM V domain in Ednrb function, and the Ednrb(m1yzcm) mouse represents a valuable model for the study of HSCR in humans.


Assuntos
Modelos Animais de Doenças , Doença de Hirschsprung/genética , Lisina/genética , Mutação de Sentido Incorreto , Domínios Proteicos/genética , Receptor de Endotelina B/química , Receptor de Endotelina B/genética , Animais , Cromossomos Humanos Par 14/genética , Etilnitrosoureia , Feminino , Gânglios/patologia , Estudos de Associação Genética , Doença de Hirschsprung/complicações , Doença de Hirschsprung/patologia , Humanos , Obstrução Intestinal/congênito , Obstrução Intestinal/etiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Mutantes , Receptor de Endotelina B/fisiologia , Receptores Acoplados a Proteínas G/química
18.
J Reprod Dev ; 62(2): 151-7, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26781611

RESUMO

The oviduct is an active contractile tube that provides the proper environment for sperm transport, capacitation and survival. Oviductal contractions are regulated by autocrine/paracrine secretion of several factors, such as prostaglandins (PGs) and endothelin-1 (EDN-1). We have previously shown that during the preovulatory stage, sperm are exposed to polymorphonuclear neutrophils (PMNs) in the bovine oviduct, and the bovine oviduct epithelial cells (BOECs) secrete molecules including PGE2 that suppress sperm phagocytosis by PMNs in vitro. In this study, we investigated the possible effects of EDN-1 on the phagocytic activity of PMNs toward sperm. The local concentrations of EDN-1 in oviduct fluid and BOEC culture medium ranged from 10(-10) to 10(-11) M as determined by EIA. Phagocytosis and superoxide production were assayed by co-incubation of sperm pretreated to induce capacitation with PMNs exposed to EDN-1 (0, 10(-11), 10(-10), 10(-9), and 10(-8) M) for 2 h. EDN-1 suppressed dose dependently (10(-11) to 10(-8) M) the phagocytic activity for sperm and superoxide production of PMNs in response to capacitated sperm. Moreover, this suppression was eliminated by an ETB receptor antagonist (BQ-788). EDN-1 suppressed mRNA expression of EDN-1 and ETB but not ETA receptors in PMNs, suggesting the ETB receptor-mediated pathway. Scanning electron microscopic observation revealed that incubation of PMNs with EDN-1 (10(-9) M) completely suppressed the formation of DNA-based neutrophil extracellular traps for sperm entanglement. The results provide evidence indicating that EDN-1 may be involved in the protection of sperm from phagocytosis by PMNs in the bovine oviduct, supporting sperm survival until fertilization.


Assuntos
Endotelina-1/fisiologia , Neutrófilos/citologia , Oviductos/fisiologia , Fagocitose , Espermatozoides/citologia , Animais , Bovinos , Meios de Cultura/química , Regulação para Baixo , Antagonistas do Receptor de Endotelina B/farmacologia , Feminino , Fertilização , Masculino , Microscopia Eletrônica de Varredura , Oligopeptídeos/química , Piperidinas/química , RNA Mensageiro/metabolismo , Receptor de Endotelina B/fisiologia , Superóxidos/metabolismo
19.
Life Sci ; 159: 144-147, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26724217

RESUMO

AIMS: Endothelin (ET)-1 promotes natriuresis via the endothelin B receptor (ETB) within the renal medulla. In male rats, direct interstitial infusion of ET-1 into the renal medulla has no effect on renal sodium and water excretion but is associated with endothelin A receptor (ETA)-dependent reductions in medullary blood flow. Loss of ETB function leads to salt-sensitive hypertension. We hypothesized that HS intake would increase the natriuretic and diuretic response to renal medullary infusion of ET peptides. MAIN METHODS: Male Sprague-Dawley (SD) rats were fed a normal (NS) or high (HS) salt diet for 7days. Rats were anesthetized and a catheter implanted in the renal medulla for interstitial infusion along with a ureteral catheter for urine collection. Medullary infusion of a low dose of ETB receptor agonist, sarafotoxin 6c (S6c; 0.15µg/kg/h), or ET-1 (0.45µg/kg/h) was used to determine changes in sodium excretion (UNaV). KEY FINDINGS: In HS fed rats, intramedullary infusion of a low dose of S6c induced a significant increase in UNaV, roughly 2-fold over baseline, compared to no response to this low dose in NS fed rats. In HS fed rats, intramedullary infusion of ET-1 induced a significantly greater increase in UNaV compared to NS fed rats, although this increase was not different from the HS time control studies. SIGNIFICANCE: We conclude that high salt intake enhances the diuretic and natriuretic effects of ETB receptor activation in vivo consistent with a role for the ETB receptor in maintaining fluid-electrolyte homeostasis.


Assuntos
Medula Renal/efeitos dos fármacos , Receptor de Endotelina B/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Animais , Medula Renal/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina B/fisiologia
20.
Toxicol Sci ; 149(1): 213-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26496744

RESUMO

Airborne fine particulate matter (PM(2.5)) increases the risk of cerebrovascular diseases. However, existing experimental data do not sufficiently explain how PM(2.5) affects cerebral vessels. This study sought to examine whether PM(2.5) alters endothelin (ET) receptor expression on rat cerebral arteries and the potential underlying mechanisms. Isolated rat basilar arteries were cultured with PM(2.5) aqueous suspension in the presence of mitogen-activated protein kinase (MAPK) pathway inhibitors. ET receptor-mediated vasomotor functions were recorded by a sensitive myograph. ET(A) and ET(B) receptor mRNA and protein expressions were assessed using quantitative real-time PCR, Western blotting, and immunohistochemistry, respectively. Compared with fresh and culture alone arteries, PM(2.5) significantly enhanced ET(A) and ET(B) receptor-mediated contractions and increased receptor mRNA and protein expressions in basilar arteries, indicating PM(2.5) upregulates ET(A) and ET(B) receptors. Culturing with SB386023 (MEK/ERK1/2 inhibitor), U0126 (ERK1/2 inhibitor), SP600125 [c-Jun N-terminal kinase (JNK) inhibitor], or SB203580 (p38 inhibitor) attenuated PM(2.5)-induced ETB receptor upregulation. PM(2.5)-induced enhancement of ET(A) receptor-mediated contraction and receptor expression was notably inhibited by SB386023 or U0126. However, neither SP600125 nor SB203580 had an effect on PM(2.5)-induced ET(A) receptor upregulation. In conclusion, PM(2.5) upregulates ET(A) and ET(B) receptors in rat basilar arteries. ET(B) receptor upregulation is involved in MEK/ERK1/2, JNK, and p38 MAPK pathways, and ET(A) receptors upregulation is associated with MEK/ERK1/2 pathway.


Assuntos
Artéria Basilar/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Material Particulado/toxicidade , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina B/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/análise , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/análise , Receptor de Endotelina B/fisiologia , Regulação para Cima , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA