Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.095
Filtrar
1.
Eur J Pharmacol ; 972: 176559, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38588768

RESUMO

This study aimed to assess whether brief recall of methamphetamine (MA) memory, when combined with ketamine (KE) treatment, may prevent stress-primed MA memory reinstatement. Combining 3-min recall and KE facilitated MA memory extinction and resistance to subsequent stress-primed reinstatement. Such combination also produced glutamate metabotropic receptor 5 (mGluR5) upregulation in animals' medial prefrontal cortex (mPFC) γ-amino-butyric acid (GABA) neuron. Accordingly, chemogenetic methods were employed to bi-directionally modulate mPFC GABA activity. Following brief recall and KE-produced MA memory extinction, intra-mPFC mDlx-Gi-coupled-human-muscarinic-receptor 4 (hM4Di)-infused mice receiving compound 21 (C21) treatment showed eminent stress-primed reinstatement, while their GABA mGluR5 expression seemed to be unaltered. Intra-mPFC mDlx-Gq-coupled-human-muscarinic-receptor 3 (hM3Dq)-infused mice undergoing C21 treatment displayed MA memory extinction and resistance to stress-provoked reinstatement. These results suggest that combining a brief recall and KE treatment and exciting mPFC GABA neuron may facilitate MA memory extinction and resistance to stress-primed recall. mPFC GABA neuronal activity plays a role in mediating brief recall/KE-produced effects on curbing the stress-provoked MA seeking.


Assuntos
Extinção Psicológica , Ketamina , Rememoração Mental , Metanfetamina , Córtex Pré-Frontal , Receptor de Glutamato Metabotrópico 5 , Estresse Psicológico , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Metanfetamina/farmacologia , Ketamina/farmacologia , Masculino , Camundongos , Rememoração Mental/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Extinção Psicológica/efeitos dos fármacos , Memória/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657042

RESUMO

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Assuntos
Endocitose , Depressão Sináptica de Longo Prazo , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Receptores de AMPA , Receptores de Glutamato Metabotrópico , Receptores de AMPA/metabolismo , Animais , Fosforilação , Endocitose/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ratos , Tirosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Camundongos , Humanos , Neurônios/metabolismo
3.
Pharmacol Rep ; 76(3): 504-518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38632187

RESUMO

BACKGROUND: Partial negative allosteric modulators (NAM) of the metabotropic glutamate 5 (mGlu5) receptor are an excellent alternative to full antagonists and NAMs because they retain therapeutic effects and have a much broader therapeutic window. Here, we investigated whether partial mGlu5 NAM, 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), induced a fast and sustained antidepressant-like effect, characteristic of rapid-acting antidepressant drugs (RAADs) like ketamine, in mice. METHODS: A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels. METHODS: A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels. CONCLUSION: Partial mGlu5 receptor NAM, M-5MPEP, induced rapid and sustained antidepressant-like effects in the BDNF-dependent mechanism and enhanced (R)-ketamine action in mice, indicating both substances' convergent mechanisms of action and the possibility of their practical use in treating depression as RAAD.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Elevação dos Membros Posteriores , Ketamina , Receptor de Glutamato Metabotrópico 5 , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antidepressivos/farmacologia , Ketamina/farmacologia , Ketamina/administração & dosagem , Camundongos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Masculino , Depressão/tratamento farmacológico , Piridinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Modelos Animais de Doenças
4.
Nature ; 629(8013): 951-956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632403

RESUMO

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.


Assuntos
Modelos Moleculares , Receptor de Glutamato Metabotrópico 5 , Humanos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/química , Regulação Alostérica , Ligantes , Imagem Individual de Molécula , Ligação Proteica , Domínios Proteicos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/química
5.
Cell Rep ; 43(4): 114056, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581678

RESUMO

Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.


Assuntos
Transtorno Autístico , Modelos Animais de Doenças , Receptor alfa de Estrogênio , Camundongos Knockout , Neocórtex , PTEN Fosfo-Hidrolase , Receptor de Glutamato Metabotrópico 5 , Animais , Feminino , Masculino , Camundongos , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Receptor alfa de Estrogênio/metabolismo , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Neocórtex/patologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Células Piramidais/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Comportamento Social
6.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515319

RESUMO

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Humanos , Ratos , Masculino , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Receptor de Glutamato Metabotrópico 5 , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/prevenção & controle , Discinesia Induzida por Medicamentos/metabolismo , Oxidopamina
7.
Pharmacol Biochem Behav ; 239: 173752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521210

RESUMO

RATIONALE: Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE: The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS: Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS: Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION: In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.


Assuntos
Benzamidas , Nicotina , Receptor de Glutamato Metabotrópico 5 , Recompensa , Animais , Nicotina/farmacologia , Masculino , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Receptor de Glutamato Metabotrópico 5/metabolismo , Ratos , Plasticidade Neuronal/efeitos dos fármacos , Fumar Cigarros , Feminino , Quimpirol/farmacologia , Pirazóis/farmacologia , Ratos Sprague-Dawley , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sistema Límbico/metabolismo , Sistema Límbico/efeitos dos fármacos , Animais Recém-Nascidos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos
8.
Br J Pharmacol ; 181(12): 1793-1811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369690

RESUMO

BACKGROUND AND PURPOSE: Voltage sensitivity is a common feature of many membrane proteins, including some G-protein coupled receptors (GPCRs). However, the functional consequences of voltage sensitivity in GPCRs are not well understood. EXPERIMENTAL APPROACH: In this study, we investigated the voltage sensitivity of the post-synaptic metabotropic glutamate receptor mGlu5 and its impact on synaptic transmission. Using biosensors and electrophysiological recordings in non-excitable HEK293T cells or neurons. KEY RESULTS: We found that mGlu5 receptor function is optimal at resting membrane potentials. We observed that membrane depolarization significantly reduced mGlu5 receptor activation, Gq-PLC/PKC stimulation, Ca2+ release and mGlu5 receptor-gated currents through transient receptor potential canonical, TRPC6, channels or glutamate ionotropic NMDA receptors. Notably, we report a previously unknown activity of the NMDA receptor at the resting potential of neurons, enabled by mGlu5. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that mGlu5 receptor activity is directly regulated by membrane voltage which may have a significant impact on synaptic processes and pathophysiological functions.


Assuntos
Receptor de Glutamato Metabotrópico 5 , Transmissão Sináptica , Animais , Humanos , Células HEK293 , Potenciais da Membrana , Neurônios/metabolismo , Neurônios/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Camundongos
9.
Mol Brain ; 17(1): 9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360671

RESUMO

One of the main hallmarks of Parkinson's disease (PD) is abnormal alpha-synuclein (α-syn) aggregation which forms the main component of intracellular Lewy body inclusions. This short report used preformed α-syn fibrils, as well as an A53T mutant α-syn adenovirus to mimic conditions of pathological protein aggregation in dopaminergic human derived SH-SY5Y neural cells. Since there is evidence that the mTOR pathway and glutamatergic signaling each influence protein aggregation, we also assessed the impact of the mTOR inhibitor, rapamycin and the mGluR5 allosteric modulator, CTEP. We found that both rapamycin and CTEP induced a significant reduction of α-syn fibrils in SH-SY5Y cells and this effect was associated with a reduction in mTOR signaling and enhancement in autophagic pathway factors. These data support the possibility that CTEP (or rapamycin) might be a useful pharmacological approach to target abnormal α-syn accumulation by promoting intracellular degradation or enhanced clearance.


Assuntos
Doença de Parkinson , Receptor de Glutamato Metabotrópico 5 , Serina-Treonina Quinases TOR , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Sirolimo/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo
10.
Exp Neurol ; 374: 114691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224942

RESUMO

Blood-brain barrier (BBB) impairment and glutamate release are two pathophysiological features of traumatic brain injury (TBI), contributing to secondary brain damage and neuroinflammation. However, our knowledge of BBB integrity damage and dysfunction are still limited due to the diverse and fluctuating expression of glutamate receptors after trauma. Here, we confirmed the downregulation of metabotropic glutamate receptor 5 (mGluR5) on microvascular endothelial cell within the acute phase of TBI, and the recovered mGluR5 levels on BBB was positively associated with blood perfusion and neurological recovery. In whole body mGluR5-knockout mice, BBB dysfunction and neurological deficiency were exacerbated after TBI compared with wild type mice. In terms of mechanism, the amino acid sequence 201-259 of cytoskeletal protein Alpha-actinin-1 (ACTN1) interacted with mGluR5, facilitating mGluR5 translocation from cytoplasmic compartment to plasma membrane in endothelial cells. Activation of plasma membrane mGluR5 triggers the PLC/PKCµ/c-Jun signaling pathway, leading to increased expression of the tight junction-actin cytoskeleton connecting protein zonula occludens-1 (ZO-1). Our findings uncover a novel mechanism mediated by membrane and cytoplasmic mGluR5 in endothelial cell integrity maintenance and repair, providing the potential therapeutic target for TBI treatment targeting at mGluR5 and mGluR5/ACTN1 complex in BBB.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout , Receptor de Glutamato Metabotrópico 5/metabolismo
11.
Alzheimers Res Ther ; 16(1): 9, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217040

RESUMO

BACKGROUND: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the initial pathophysiological mechanism of Alzheimer's disease (AD). The study aims to investigate the association between mGluR5 availability and AD's biomarkers and cognitive function. METHODS: We examined 35 individuals with mGluR5 tracer [18F]PSS232 to assess mGluR5 availability, and with [18F]Florbetapir PET to assess global amyloid deposition, and [18F]FDG PET to assess glucose metabolism. The plasma neurofilament light (NfL) and p-tau181 levels in a subset of individuals were measured (n = 27). The difference in mGluR5 availability between the AD and normal control (NC) groups was explored. The associations of mGluR5 availability with amyloid deposition, glucose metabolism, gray matter volume (GMV), neuropsychological assessment scores, and plasma biomarkers were analyzed. RESULTS: The mGluR5 availability was significantly reduced in AD patients' hippocampus and parahippocampal gyrus compared to NCs. Global amyloid deposition was positively associated with mGluR5 availability in the AD group and reversely associated in the NC group. The mGluR5 availability was positively correlated with regional glucose metabolism in the overall and stratified analyses. The availability of mGluR5 in the hippocampus and parahippocampal gyrus demonstrated a strong relationship with the GMV of the medial temporal lobe, plasma p-tau181 or NfL levels, and global cognitive performance. CONCLUSIONS: [18F]PSS232 PET can quantify the changes of mGluR5 availability in the progression of AD. mGluR5 availability correlated not only with neuropathological biomarkers of AD but also with neurodegenerative biomarkers and cognitive performance. mGluR5 may be a novel neurodegenerative biomarker, and whether mGluR5 could be a potential therapeutic target for AD needs to be further studied.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Oximas , Piridinas , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Glucose/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Receptor de Glutamato Metabotrópico 5/metabolismo
12.
Brain ; 147(1): 186-200, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37656990

RESUMO

Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.


Assuntos
Isquemia Encefálica , Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo
13.
Front Immunol ; 14: 1283331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146365

RESUMO

TNF-α is essential for induction and maintenance of inflammatory responses and its dysregulation is associated with susceptibility to various pathogens that infect the central nervous system. Activation of both microglia and astrocytes leads to TNF-α production, which in turn triggers further activation of these cells. Astrocytes have been implicated in the pathophysiology of a wide range of neurodegenerative diseases with either harmful or protective roles, as these cells are capable of secreting several inflammatory factors and also promote synapse elimination and remodeling. These responses are possible because they sense their surroundings via several receptors, including the metabotropic glutamate receptor 5 (mGluR5). Under neuroinflammatory conditions, mGluR5 activation in astrocytes can be neuroprotective or have the opposite effect. In the current study, we investigated the role of mGluR5 in hiPSC-derived astrocytes subjected to pro-inflammatory stimulation by recombinant TNF-α (rTNF-α). Our results show that mGluR5 blockade by CTEP decreases the secreted levels of pro-inflammatory cytokines (IL-6 and IL-8) following short rTNF-α stimulation, although this effect subsides with time. Additionally, CTEP enhances synaptoneurosome phagocytosis by astrocytes in both non-stimulated and rTNF-α-stimulated conditions, indicating that mGluR5 blockade alone is enough to drive synaptic material engulfment. Finally, mGluR5 antagonism as well as rTNF-α stimulation augment the expression of the reactivity marker SERPINA3 and reduces the expression of synaptogenic molecules. Altogether, these data suggest a complex role for mGluR5 in human astrocytes, since its blockade may have beneficial and detrimental effects under inflammatory conditions.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Fagocitose , Receptor de Glutamato Metabotrópico 5 , Humanos , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Transl Psychiatry ; 13(1): 325, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857616

RESUMO

Animal models indicate that the endocannabinoid system (ECS) plays a modulatory role in stress and reward processing, both crucially impaired in addictive disorders. Preclinical findings showed endocannabinoid-modulated synaptic plasticity in reward brain networks linked to the metabotropic-glutamate-5 receptor (mGluR5), contributing to drug-reinforcing effects and drug-seeking behavior. Although animal models postulate a link between ECS and cocaine addiction, human translational studies are lacking. Here, we tested previous preclinical findings by investigating plasma endocannabinoids (eCBs) anandamide (AEA), 2-arachidonoylglycerol (2-AG), and the related N-acylethanolamines (NAEs) palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), including their interaction with cerebral mGluR5, in chronic cocaine users (CU). We compared basal plasma concentrations between chronic CU (N = 103; 69 recreational CU and 34 dependent CU) and stimulant-naïve healthy controls (N = 92). Follow-up basal eCB/NAE plasma levels after 12 months were used for reliability and stability check (CU: N = 33; controls: N = 43). In an additional analysis using 11C-ABP688 positron emission tomography (PET) in a male subsample (CU: N = 18; controls: N = 16), we investigated the relationships between eCBs/NAEs and mGluR5 density in the brain. We found higher 2-AG plasma levels in dependent CU compared to controls and recreational CU. 2-AG levels were stable over time across all groups. In the PET-subsample, a positive association between 2-AG and mGluR5 brain density only in CU was found. Our results corroborate animal findings suggesting an alteration of the ECS in cocaine dependence and an association between peripheral 2-AG levels and cerebral mGluR5 in humans. Therefore, the ECS might be a promising pharmaco-therapeutic target for novel treatments of cocaine dependence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Masculino , Humanos , Endocanabinoides , Receptor de Glutamato Metabotrópico 5/metabolismo , Reprodutibilidade dos Testes , Encéfalo/metabolismo , Cocaína/farmacologia
15.
Biomolecules ; 13(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37892131

RESUMO

Repeated maternal separation (MS) is a useful experimental model in rodents for studying the long-term influence of early-life stress on brain neurophysiology. In our work, we assessed the effect of repeated MS (postnatal day (PND)1-21, 180 min/day) on the postnatal development of rat brain regions involved in memory using proton magnetic resonance spectroscopy (1HMRS) for tissue volume and the level of amino acids such as glutamate, aspartate, glutamine, glycine and gamma-aminobutyric acid (GABA) in the hippocampus. We assessed whether these effects are sex dependent. We also use novel object recognition (NOR) task to examine the effect of MS on memory and the effect of ethanol on it. Finally, we attempted to ameliorate postnatal stress-induced memory deficits by using VU-29, a positive allosteric modulator (PAM) of the metabotropic glutamate type 5 (mGlu5) receptor. In males, we noted deficits in the levels of glutamate, glycine and glutamine and increases in GABA in the hippocampus. In addition, the values of perirhinal cortex, prefrontal cortex and insular cortex and CA3 were decreased in these animals. MS females, in contrast, demonstrated significant increase in glutamate levels and decrease in GABA levels in the hippocampus. Here, the CA1 values alone were increased. VU-29 administration ameliorated these cognitive deficits. Thus, MS stress disturbs amino acids levels mainly in the hippocampus of adult male rats, and enhancement of glutamate neurotransmission reversed recognition memory deficits in these animals.


Assuntos
Aminoácidos , Disfunção Cognitiva , Feminino , Ratos , Masculino , Animais , Aminoácidos/metabolismo , Glutamina/metabolismo , Caracteres Sexuais , Privação Materna , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transtornos da Memória , Receptor de Glutamato Metabotrópico 5/metabolismo , Hipocampo/metabolismo , Glicina/metabolismo
16.
Biomolecules ; 13(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37759748

RESUMO

(1) Background: Recently, we found that adenosine A2A receptor (A2AR) stimulation results in an increase in STEP phosphatase activity. In order to delve into the mechanism through which A2AR stimulation induced STEP activation, we investigated the involvement of mGlu5R since it is well documented that A2AR and mGlu5R physically and functionally interact in several brain areas. (2) Methods: In a neuroblastoma cell line (SH-SY5Y) and in mouse hippocampal slices, we evaluated the enzymatic activity of STEP by using a para-nitrophenyl phosphate colorimetric assay. A co-immunoprecipitation assay and a Western blot analysis were used to evaluate STEP/mGlu5R binding. (3) Results: We found that the A2AR-dependent activation of STEP was mediated by the mGlu5R. Indeed, the A2AR agonist CGS 21680 significantly increased STEP activity, and this effect was prevented not only by the A2AR antagonist ZM 241385, as expected, but also by the mGlu5R antagonist MPEP. In addition, we found that mGlu5R agonist DHPG-induced STEP activation was reversed not only by the mGlu5R antagonist MPEP but also by ZM 241385. Finally, via co-immunoprecipitation experiments, we found that mGlu5R and STEP physically interact when both receptors are activated (4) Conclusions: These results demonstrated a close functional interaction between mGlu5 and A2A receptors in the modulation of STEP activity.


Assuntos
Neuroblastoma , Receptor A2A de Adenosina , Humanos , Camundongos , Animais , Receptor A2A de Adenosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Adenosina/farmacologia , Linhagem Celular , Hipocampo/metabolismo
17.
Neuropharmacology ; 240: 109694, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659439

RESUMO

Environmental conditioning factors have a profound impact on alcohol-seeking behavior and the maintenance of alcohol use in individuals with alcohol dependence. Cues associated with alcohol, depending on the perceived value of the primary reinforcer, gain salience and can trigger relapse. This study investigates the correlation between the reward magnitude of the primary reinforcer and the reinstatement evoked by cues predictive of their availability in male rats. Rat self-administration procedures were used to test reinstatement, with reinforcers consisting of 10% alcohol, 10% sucrose, or 2% sodium chloride (NaCl) experienced under need-state conditions. The effect of MTEP ([(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine), a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, on motivation and reinstatement behaviors was also evaluated. RESULTS: demonstrate that under Fixed Ratio 1 (FR1) schedule, the three reinforcers maintain operant responding with the following order of magnitude 10% sucrose >2% NaCl >10% alcohol > water. Under a progressive ratio (PR) schedule of reinforcement, rats exhibit a significantly higher breakpoint for 2% NaCl (under Na-depletion), followed by 10% sucrose and 10% alcohol. After extinction, a significant reinstatement is observed with the magnitude order of 10% sucrose >10% alcohol >2% NaCl. However, only re-exposure to alcohol-paired cues induced significant reinstatement of alcohol-seeking after 4 and 8 months. Treatment with MTEP significantly reduces reinstatement of responding across all reinforcers, with the strongest effect observed on alcohol-seeking. These findings suggest that mGluR5 plays a general role in controlling cue-reactivity, but the effect is prominent in the case of alcohol compared to natural rewards. In conclusion, the results demonstrate a remarkable dissociation between the rewarding magnitude of the primary reinforcer and its ability to trigger relapse upon presentation of a cue previously associated with it. Importantly, alcohol, despite having lower intrinsic motivational value compared to a natural reward (sucrose) or a consummatory stimulus experienced under need state conditions (NaCl), can elicit more robust and longer-term reinstatement of seeking responses. Finally, our data demonstrate a significant involvement of the mGluR5 system in the regulation of seeking behavior.


Assuntos
Sinais (Psicologia) , Receptor de Glutamato Metabotrópico 5 , Ratos , Masculino , Animais , Cloreto de Sódio/farmacologia , Esquema de Reforço , Recompensa , Etanol/farmacologia , Sacarose/farmacologia , Recidiva , Autoadministração , Condicionamento Operante , Extinção Psicológica
18.
Cells ; 12(15)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37566031

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100ß and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Receptor de Glutamato Metabotrópico 5 , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Regulação para Baixo/genética , Ácido Glutâmico/metabolismo , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Receptor de Glutamato Metabotrópico 5/genética
19.
Neuropharmacology ; 238: 109642, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392820

RESUMO

The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of Fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cß and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.


Assuntos
Síndrome de Angelman , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Camundongos , Animais , Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Hidrólise , Modelos Animais de Doenças , Camundongos Knockout , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas de Transporte , Proteína do X Frágil da Deficiência Intelectual/metabolismo
20.
J Neurosci ; 43(33): 5918-5935, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37507231

RESUMO

The ventromedial hypothalamus (VMH) is a functionally heterogeneous nucleus critical for systemic energy, glucose, and lipid balance. We showed previously that the metabotropic glutamate receptor 5 (mGluR5) plays essential roles regulating excitatory and inhibitory transmission in SF1+ neurons of the VMH and facilitating glucose and lipid homeostasis in female mice. Although mGluR5 is also highly expressed in VMH astrocytes in the mature brain, its role there influencing central metabolic circuits is unknown. In contrast to the glucose intolerance observed only in female mice lacking mGluR5 in VMH SF1 neurons, selective depletion of mGluR5 in VMH astrocytes enhanced glucose tolerance without affecting food intake or body weight in both adult female and male mice. The improved glucose tolerance was associated with elevated glucose-stimulated insulin release. Astrocytic mGluR5 male and female mutants also exhibited reduced adipocyte size and increased sympathetic tone in gonadal white adipose tissue. Diminished excitatory drive and synaptic inputs onto VMH Pituitary adenylate cyclase-activating polypeptide (PACAP+) neurons and reduced activity of these cells during acute hyperglycemia underlie the observed changes in glycemic control. These studies reveal an essential role of astrocytic mGluR5 in the VMH regulating the excitatory drive onto PACAP+ neurons and activity of these cells facilitating glucose homeostasis in male and female mice.SIGNIFICANCE STATEMENT Neuronal circuits within the VMH play chief roles in the regulation of whole-body metabolic homeostasis. It remains unclear how astrocytes influence neurotransmission in this region to facilitate energy and glucose balance control. Here, we explored the role of the metabotropic glutamate receptor, mGluR5, using a mouse model with selective depletion of mGluR5 from VMH astrocytes. We show that astrocytic mGluR5 critically regulates the excitatory drive and activity of PACAP-expressing neurons in the VMH to control glucose homeostasis in both female and male mice. Furthermore, mGluR5 in VMH astrocytes influences adipocyte size and sympathetic tone in white adipose tissue. These studies provide novel insight toward the importance of hypothalamic astrocytes participating in central circuits regulating peripheral metabolism.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptor de Glutamato Metabotrópico 5 , Animais , Feminino , Masculino , Astrócitos/metabolismo , Glucose/metabolismo , Homeostase , Hipotálamo/metabolismo , Lipídeos , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA