Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Elife ; 132024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172042

RESUMO

We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic, and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when the light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of presumed BLA input, and decreased BLA-driven feedforward inhibition of amygdala output neurons. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.


Assuntos
Luz , Receptor de Glutamato Metabotrópico 5 , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Animais , Masculino , Camundongos , Neuralgia/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Analgésicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Camundongos Endogâmicos C57BL
2.
CNS Neurosci Ther ; 30(8): e14695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39107945

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a complex pathophysiological process, and increasing attention has been paid to the important role of post-synaptic density (PSD) proteins, such as glutamate receptors. Our previous study showed that a PSD protein Arc/Arg3.1 (Arc) regulates endoplasmic reticulum (ER) stress and neuronal necroptosis in traumatic injury in vitro. AIM: In this study, we investigated the expression, regulation and biological function of Arc in both in vivo and in vitro experimental TBI models. RESULTS: Traumatic neuronal injury (TNI) induced a temporal upregulation of Arc in cortical neurons, while TBI resulted in sustained increase in Arc expression up to 24 h in rats. The increased expression of Arc was mediated by the activity of metabotropic glutamate receptor 5 (mGluR5), but not dependent on the intracellular calcium (Ca2+) release. By using inhibitors and antagonists, we found that TNI regulates Arc expression via Gq protein and protein turnover. In addition, overexpression of Arc protects against TBI-induced neuronal injury and motor dysfunction both in vivo and in vitro, whereas the long-term cognitive function was not altered. To determine the role of Arc in mGluR5-induced protection, lentivirus-mediated short hairpin RNA (shRNA) transfection was performed to knockdown Arc expression. The mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG)-induced protection against TBI was partially prevented by Arc knockdown. Furthermore, the CHPG-induced attenuation of Ca2+ influx after TNI was dependent on Arc activation and followed regulation of AMPAR subunits. The results of Co-IP and Ca2+ imaging showed that the Arc-Homer1 interaction contributes to the CHPG-induced regulation of intracellular Ca2+ release. CONCLUSION: In summary, the present data indicate that the mGluR5-mediated Arc activation is a protective mechanism that attenuates neurotoxicity following TBI through the regulation of intracellular Ca2+ hemostasis. The AMPAR-associated Ca2+ influx and ER Ca2+ release induced by Homer1-IP3R pathway might be involved in this protection.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas do Citoesqueleto , Proteínas de Arcabouço Homer , Proteínas do Tecido Nervoso , Neurônios , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/biossíntese , Ratos , Proteínas de Arcabouço Homer/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Córtex Cerebral/metabolismo , Cálcio/metabolismo , Glicina/análogos & derivados , Fenilacetatos
3.
Neuroscience ; 555: 83-91, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39019391

RESUMO

Potentiation of metabotropic glutamate receptor subtype 5 (mGluR5) function produces antipsychotic-like and pro-cognitive effects in animal models of schizophrenia and can reverse cognitive deficits induced by N-methyl-D-aspartate type glutamate receptor (NMDAR) antagonists. However, it is currently unknown if mGluR5 positive allosteric modulators (PAMs) can modulate NMDAR antagonist-induced alterations in extracellular glutamate levels in regions underlying these cognitive and behavioral effects, such as the medial prefrontal cortex (mPFC). We therefore assessed the ability of the mGluR5 PAM, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), to reduce elevated extracellular glutamate levels induced by the NMDAR antagonist, dizocilpine (MK-801), in the mPFC. Male Sprague-Dawley rats were implanted with a guide cannula aimed at the mPFC and treated for ten consecutive days with MK-801 and CDPPB or their corresponding vehicles. CDPPB or vehicle was administered thirty minutes before MK-801 or vehicle each day. On the final day of treatment, in vivo microdialysis was performed, and samples were collected every thirty minutes to analyze extracellular glutamate levels. Compared to animals receiving only vehicle, administration of MK-801 alone significantly increased extracellular levels of glutamate in the mPFC. This effect was not observed in animals administered CDPPB before MK-801, nor in those administered CDPPB alone, indicating that CDPPB decreased extracellular glutamate release stimulated by MK-801. Results indicate that CDPPB attenuates MK-801 induced elevations in extracellular glutamate in the mPFC. This effect of CDPPB may underlie neurochemical adaptations associated with the pro-cognitive effects of mGluR5 PAMs in rodent models of schizophrenia.


Assuntos
Benzamidas , Maleato de Dizocilpina , Antagonistas de Aminoácidos Excitatórios , Ácido Glutâmico , Córtex Pré-Frontal , Pirazóis , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Masculino , Maleato de Dizocilpina/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Ácido Glutâmico/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação Alostérica/efeitos dos fármacos , Benzamidas/farmacologia , Pirazóis/farmacologia , Ratos , Microdiálise
4.
Neurochem Int ; 178: 105786, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38843952

RESUMO

Our previous study has identified that glutamate in the red nucleus (RN) facilitates the development of neuropathic pain through metabotropic glutamate receptors (mGluR). Here, we further explored the actions and possible molecular mechanisms of red nucleus mGluR Ⅰ (mGluR1 and mGluR5) in the development of neuropathic pain induced by spared nerve injury (SNI). Our data indicated that both mGluR1 and mGluR5 were constitutively expressed in the RN of normal rats. Two weeks after SNI, the expressions of mGluR1 and mGluR5 were significantly boosted in the RN contralateral to the nerve injury. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN contralateral to the nerve injury at 2 weeks post-SNI significantly ameliorated SNI-induced neuropathic pain. However, unilateral administration of mGluRⅠ agonist DHPG to the RN of normal rats provoked a significant mechanical allodynia, this effect could be blocked by LY367385 or MTEP. Further studies indicated that the expressions of TNF-α and IL-1ß in the RN were also elevated at 2 weeks post-SNI. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN at 2 weeks post-SNI significantly inhibited the elevations of TNF-α and IL-1ß. However, administration of mGluR Ⅰ agonist DHPG to the RN of normal rats significantly enhanced the expressions of TNF-α and IL-1ß, these effects were blocked by LY367385 or MTEP. These results suggest that activation of red nucleus mGluR1 and mGluR5 facilitate the development of neuropathic pain by stimulating the expressions of TNF-α and IL-1ß. mGluR Ⅰ maybe potential targets for drug development and clinical treatment of neuropathic pain.


Assuntos
Interleucina-1beta , Neuralgia , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico , Núcleo Rubro , Fator de Necrose Tumoral alfa , Animais , Neuralgia/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/agonistas , Masculino , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Interleucina-1beta/metabolismo , Interleucina-1beta/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Ratos , Núcleo Rubro/metabolismo , Núcleo Rubro/efeitos dos fármacos
5.
J Psychiatr Res ; 176: 23-32, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833749

RESUMO

Numerous findings confirm that the metabotropic glutamate receptors (mGluRs) are involved in the conditioned place preference (CPP) induced by morphine. Here we focused on the role of mGluR5 in the nucleus accumbens (NAc) as a main site of glutamate action on the rewarding effects of morphine. Firstly, we investigated the effects of intra-NAc administrating mGluR5 antagonist 3-((2-Methyl-1,3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP; 1, 3, and 10 µg/µl saline) on the extinction and the reinstatement phase of morphine CPP. Moreover, to determine the downstream signaling cascades of mGluR5 in morphine CPP, the protein levels of stromal interaction molecules (STIM1 and 2) in the NAc and hippocampus (HPC) were measured by western blotting. The behavioral data indicated that the mGluR5 blockade by MTEP at the high doses of 3 and 10 µg facilitated the extinction of morphine-induced CPP and attenuated the reinstatement to morphine in extinguished rats. Molecular results showed that the morphine led to increased levels of STIM proteins in the HPC and increased the level of STIM1 without affecting STIM2 in the NAc. Furthermore, intra-NAc microinjection of MTEP (10 µg) in the reinstatement phase decreased STIM1 in the NAc and HPC and reduced the STIM2 in the HPC. Collectively, our data show that morphine could facilitate brain reward function in part by increasing glutamate-mediated transmission through activation of mGluR5 and modulation of STIM proteins. Therefore, these results highlight the therapeutic potential of mGluR5 antagonists in morphine use disorder.


Assuntos
Extinção Psicológica , Morfina , Núcleo Accumbens , Piridinas , Receptor de Glutamato Metabotrópico 5 , Tiazóis , Animais , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Masculino , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Morfina/farmacologia , Morfina/administração & dosagem , Tiazóis/farmacologia , Tiazóis/administração & dosagem , Ratos , Piridinas/farmacologia , Piridinas/administração & dosagem , Ratos Sprague-Dawley , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Entorpecentes/farmacologia , Entorpecentes/administração & dosagem , Relação Dose-Resposta a Droga
6.
Talanta ; 275: 126167, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710128

RESUMO

The expression of metabotropic glutamate receptor 5 (mGluR5) is subject to developmental regulation and undergoes significant changes in neuropsychiatric disorders and diseases. Visualizing mGluR5 by fluorescence imaging is a highly desired innovative technology for biomedical applications. Nevertheless, there are substantial problems with the chemical probes that are presently accessible. In this study, we have successfully developed a two-photon fluorogenic probe, mGlu-5-TP, based on the structure of mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP). Due to this antagonist-based probe selectively recognizes mGluR5, high expression of mGluR5 on living SH-SY5Y human neuroblastoma cells has been detected during intracellular inflammation triggered by lipopolysaccharides (LPS). Of particular significance, the probe can be employed along with two-photon fluorescence microscopy to enable real-time visualization of the mGluR5 in Aß fiber-treated neuronal cells, thereby establishing a connection to the progression of Alzheimer's disease (AD). These results revealed that the probe can be a valuable imaging tool for studying mGluR5-related diseases in the nervous system.


Assuntos
Corantes Fluorescentes , Neurônios , Piridinas , Receptor de Glutamato Metabotrópico 5 , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Neurônios/metabolismo , Piridinas/química , Piridinas/farmacologia , Linhagem Celular Tumoral , Lipopolissacarídeos/farmacologia , Fótons , Imagem Óptica , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/análise
7.
Phytother Res ; 38(7): 3296-3306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619875

RESUMO

Bergamot essential oil shows anxiolytic-relaxant effects devoid of sedative action and motor impairment typical of benzodiazepines. Considering the potential for clinical of these effects, it is important to understand the underlying mechanisms of the phytocomplex. Modulation of glutamate group I and II metabotropic receptors is involved in stress and anxiety disorders, in cognition and emotions and increases locomotor activity and wakefulness. Interestingly, early data indicate that bergamot essential oil modulates glutamatergic transmission in specific manifestations of the central nervous system. The aim of this work is to investigate if selective antagonists of metabotropic glutamate 2/3 and 5 receptors affect behavioral parameters modulated by the phytocomplex. Male Wistar rats were used to measure behavioral parameters to correlate anxiety and motor activity using elevated plus maze (EPM), open field (OF), and rotarod tasks. Bergamot essential oil increases in EPM the time spent in open/closed arms and reduces total number of entries. The essential oil also increases immobility in EPM and OF and not affect motor coordination in rotarod. Pretreatment with the metabotropic glutamate antagonists does not affect the time spent in open/close arms, however, differently affects motor behavior measured after administration of phytocomplex. Particularly, glutamate 2/3 antagonist reverts immobility and glutamate 5 antagonist potentiates this parameter induced by the phytocomplex. Our data show that modulation of both metabotropic glutamate receptors is likely involved in some of behavioral effects of bergamot essential oil.


Assuntos
Atividade Motora , Óleos Voláteis , Óleos de Plantas , Ratos Wistar , Receptores de Glutamato Metabotrópico , Animais , Masculino , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Óleos Voláteis/farmacologia , Ratos , Atividade Motora/efeitos dos fármacos , Óleos de Plantas/farmacologia , Comportamento Animal/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos
8.
Pharmacol Rep ; 76(3): 504-518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38632187

RESUMO

BACKGROUND: Partial negative allosteric modulators (NAM) of the metabotropic glutamate 5 (mGlu5) receptor are an excellent alternative to full antagonists and NAMs because they retain therapeutic effects and have a much broader therapeutic window. Here, we investigated whether partial mGlu5 NAM, 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), induced a fast and sustained antidepressant-like effect, characteristic of rapid-acting antidepressant drugs (RAADs) like ketamine, in mice. METHODS: A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels. METHODS: A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels. CONCLUSION: Partial mGlu5 receptor NAM, M-5MPEP, induced rapid and sustained antidepressant-like effects in the BDNF-dependent mechanism and enhanced (R)-ketamine action in mice, indicating both substances' convergent mechanisms of action and the possibility of their practical use in treating depression as RAAD.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Elevação dos Membros Posteriores , Ketamina , Piridinas , Receptor de Glutamato Metabotrópico 5 , Animais , Masculino , Camundongos , Regulação Alostérica/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Ketamina/farmacologia , Ketamina/administração & dosagem , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
9.
Psychopharmacology (Berl) ; 241(7): 1399-1415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459971

RESUMO

RATIONALE: Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES: We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS: Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS: Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS: These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.


Assuntos
Ansiolíticos , Antidepressivos , Ketamina , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Masculino , Ratos , Ansiolíticos/farmacologia , Ansiolíticos/administração & dosagem , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Piridinas/farmacologia , Piridinas/administração & dosagem , Medo/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Sinergismo Farmacológico , Relação Dose-Resposta a Droga , Memória/efeitos dos fármacos , Benzamidas/farmacologia , Benzamidas/administração & dosagem , Tiazóis/farmacologia , Tiazóis/administração & dosagem , Depressão/tratamento farmacológico , Ansiedade/tratamento farmacológico , Pirazóis
10.
Clin Exp Pharmacol Physiol ; 49(5): 558-566, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35133684

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by cardiac remodelling. Glutaminolysis plays a crucial role in PAH-induced remodelling. The metabotropic glutamate receptor 5 (mGluR5) may mediate this process. This study investigated whether or not the blockade of mGluR5 may attenuate PAH-induced pathological cardiac remodelling. Pulmonary arterial hypertension was induced by intraperitoneally injecting male Sprague-Dawley (SD) rats with 60 mg/kg of monocrotaline (MCT). 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) (10 mg/kg intraperitoneally) was used as a therapeutic intervention to block mGluR5. Cardiac functions were assessed with right heart catheterization and electrocardiography. Alterations in protein expressions and inflammatory markers were investigated using western blot and enzyme-linked immunosorbent assay (ELISA), respectively. Increased right ventricular systolic pressure (RSVP), elevated protein expressions of mGluR5, collagen types I and III and cartilage intermediate layer protein 1 (CILP1), enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT and p38 mitogen-activated protein kinase (P38MAPK), increased angiopoietin 2 (Ang 2) and vascular endothelial growth factor-α (VEGF) protein expressions and elevated serum levels of interleukin 6 (IL-6) and tumour necrotic factor α (TNF-α) were observed in MCT-induced PAH rats. MTEP improved hemodynamics and right ventricular hypertrophy. MTEP also attenuated MCT-induced elevations in the protein expressions of mGluR5, collagen types I and III, CILP1, Ang 2 and VEGF and decreased PI3K, AKT and P38MAPK phosphorylations and inflammatory cytokine levels. Metabotropic glutamate receptor 5 blockade using MTEP ameliorates PAH-induced pathological right cardiac remodelling via inhibiting the signalling cascade involving PI3K/AKT, P38MAPK, Ang 2 and VEGF.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Masculino , Monocrotalina , Fosfatidilinositol 3-Quinases/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Fator A de Crescimento do Endotélio Vascular , Remodelação Ventricular
11.
Int J Mol Sci ; 23(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35008924

RESUMO

Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium-pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium-pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.


Assuntos
Epilepsia/metabolismo , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Convulsões , Tiazóis/farmacologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Lítio , Masculino , Neurônios/efeitos dos fármacos , Pilocarpina , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
12.
Cell Rep ; 36(9): 109648, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469715

RESUMO

Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Microscopia Crioeletrônica , Cristalografia por Raios X , Agonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Subunidades Proteicas , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/ultraestrutura , Relação Estrutura-Atividade
13.
Bioengineered ; 12(1): 7156-7164, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34546852

RESUMO

Tinnitus is deemed as the result of abnormal neural activities in the brain, and Homer proteins are expressed in the brain that convey nociception. The expression of Homer in tinnitus has not been studied. We hypothesized that expression of Homer in the auditory cortex was altered after tinnitus treatment. Mice were injected with sodium salicylate to induce tinnitus. Expression of Homer was detected by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry assays. We found that Homer1 expression was upregulated in the auditory cortex of mice with tinnitus, while expression of Homer2 or Homer3 exhibited no significant alteration. Effects of two inhibitors of metabolic glutamate receptor 5 (mGluR5), noncompetitive 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) and competitive α-methyl-4-carboxyphenylglycine (MCPG), on the tinnitus scores of the mice and on Homer1 expression were detected. MPEP significantly reduced tinnitus scores and suppressed Homer1 expression in a concentration dependent manner. MCPG had no significant effects on tinnitus scores or Homer1 expression. In conclusion, Homer1 expression was upregulated in the auditory cortex of mice after tinnitus, and was suppressed by noncompetitive mGluR5 inhibitor MPEP, but not competitive mGluR5 inhibitor MCPG.


Assuntos
Córtex Auditivo/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Zumbido/metabolismo , Animais , Córtex Auditivo/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Proteínas de Arcabouço Homer/genética , Masculino , Camundongos , Piridinas/farmacologia
14.
Mol Neurobiol ; 58(10): 4944-4958, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34227060

RESUMO

Stress contributes to major depressive disorder (MDD) and chronic pain, which affect a significant portion of the global population, but researchers have not clearly determined how these conditions are initiated or amplified by stress. The chronic social defeat stress (CSDS) model is a mouse model of psychosocial stress that exhibits depressive-like behavior and chronic pain. We hypothesized that metabotropic glutamate receptor 5 (mGluR5) expressed in the nucleus accumbens (NAc) normalizes the depressive-like behaviors and pain following CSDS. Here, we show that CSDS induced both pain and social avoidance and that the level of mGluR5 decreased in susceptible mice. Overexpression of mGluR5 in the NAc shell and core prevented the development of depressive-like behaviors and pain in susceptible mice, respectively. Conversely, depression-like behaviors and pain were exacerbated in mice with mGluR5 knockdown in the NAc shell and core, respectively, compared to control mice subjected to 3 days of social defeat stress. Furthermore, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), an mGluR5 agonist, reversed the reduction in the level of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the NAc of susceptible mice, an effect that was blocked by 3-((2-methyl-1, 3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP), an mGluR5 antagonist. In addition, the injection of CHPG into the NAc shell and core normalized depressive-like behaviors and pain, respectively, and these effects were inhibited by AM251, a cannabinoid type 1 receptor (CB1R) antagonist. Based on these results, mGluR5-mediated eCB production in the NAc relieves stress-induced depressive-like behaviors and pain.


Assuntos
Transtorno Depressivo Maior/metabolismo , Endocanabinoides/metabolismo , Núcleo Accumbens/metabolismo , Dor/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Estresse Psicológico/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/administração & dosagem , Doença Crônica , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/psicologia , Endocanabinoides/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções/métodos , Núcleo Accumbens/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/psicologia , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Derrota Social , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Tiazóis/administração & dosagem
15.
Neuropharmacology ; 196: 108692, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217776

RESUMO

Group II metabotropic glutamate receptors (mGlu2 and mGlu3 receptors) shape mechanisms of methamphetamine addiction, but the individual role played by the two subtypes is unclear. We measured methamphetamine-induced conditioned place preference (CPP) and motor responses to single or repeated injections of methamphetamine in wild-type, mGlu2-/-, and mGlu3-/-mice. Only mGlu3-/-mice showed methamphetamine preference in the CPP test. Motor response to the first methamphetamine injection was dramatically reduced in mGlu2-/-mice, unless these mice were treated with the mGlu5 receptor antagonist, MTEP. In contrast, methamphetamine-induced sensitization was increased in mGlu3-/-mice compared to wild-type mice. Only mGlu3-/-mice sensitized to methamphetamine showed increases in phospho-ERK1/2 levels in the nucleus accumbens (NAc) and free radical formation in the NAc and medial prefrontal cortex. These changes were not detected in mGlu2-/-mice. We also measured a series of biochemical parameters related to the mechanism of action of methamphetamine in naïve mice to disclose the nature of the differential behavioural responses of the three genotypes. We found a reduced expression and activity of dopamine transporter (DAT) and vesicular monoamine transporter-2 in the NAc and striatum of mGlu2-/-and mGlu3-/-mice, whereas expression of the DAT adaptor, syntaxin 1A, was selectively increased in the striatum of mGlu3-/-mice. Methamphetamine-stimulated dopamine release in striatal slices was largely reduced in mGlu2-/-, but not in mGlu3-/-, mice. These findings suggest that drugs that selectively enhance mGlu3 receptor activity or negatively modulate mGlu2 receptors might be beneficial in the treatment of methamphetamine addiction and associated brain damage.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Metanfetamina/farmacologia , Receptores de Glutamato Metabotrópico/genética , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Fosforilação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Sintaxina 1/efeitos dos fármacos , Sintaxina 1/metabolismo , Tiazóis/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
16.
Pharmacol Biochem Behav ; 208: 173227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224733

RESUMO

Many of the behavioral symptoms that define alcohol use disorder (AUD) are thought to be mediated by amplified glutamatergic activity. As a result, previous preclinical studies have investigated glutamate receptor inhibition as a potential pharmacotherapy for AUD, particularly the metabotropic glutamate receptor 5 (mGlu5). In rodents, mGlu5 negative allosteric modulators (NAMs) have been shown to decrease alcohol self-administration. However, their effect on non-human primates has not previously been explored. To bridge this gap, the effects of mGlu5 NAM pretreatment on sweetened alcohol (8% w/v in diluted KoolAid) self-administration in female baboons were evaluated. Two different mGlu5 NAMs were tested: 1) 3-2((-Methyl-4-thiazolyl) ethynyl) pyridine (MTEP) which was administered at a dose of 2 mg/kg IM; and 2) auglurant (N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide), a newly developed NAM, which was tested under two different routes (0.001, 0.01, 0.03, 0.1 mg/kg IM and 0.1, 0.3, 1.0 mg/kg PO). MTEP decreased both fixed ratio and progressive ratio responding for sweetened alcohol. Auglurant, administered IM, decreased alcohol self-administration at doses that did not affect self-administration of an alcohol-free sweet liquid reward (0.01 to 0.1 mg/kg). Oral administration of auglurant was not effective in decreasing alcohol self-administration. Our results extend positive findings from rodent studies on mGlu5 regulation of alcohol drinking to female baboons and further strengthen the rationale for targeting mGlu5 in clinical trials for AUD.


Assuntos
Alcoolismo/tratamento farmacológico , Aminopiridinas/farmacologia , Ácidos Picolínicos/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Tiazóis/farmacologia , Alcoolismo/metabolismo , Regulação Alostérica/efeitos dos fármacos , Aminopiridinas/administração & dosagem , Animais , Etanol/administração & dosagem , Feminino , Ácido Glutâmico/metabolismo , Humanos , Papio , Ácidos Picolínicos/administração & dosagem , Piridinas/administração & dosagem , Autoadministração , Tiazóis/administração & dosagem
17.
Neuropharmacology ; 196: 108687, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34175327

RESUMO

The discovery of robust antidepressant effects of ketamine in refractory patients has led to increasing focus on agents targeting glutamatergic signaling as potential novel antidepressant strategy. Among the agents targeting the glutamatergic system, compounds acting at metabotropic glutamate (mGlu) receptors are among the most promising agents under studies for depressive disorders. Further, the receptor diversity, distinct distribution in the CNS, and ability to modulate the glutamatergic neurotransmission in the brain areas implicated in mood disorders make them an exciting target for stress-related disorders. In preclinical models, antidepressant and anxiolytic effects of mGlu5 negative allosteric modulators (NAMs) have been reported. Interestingly, mGlu2/3 receptor antagonists show fast and sustained antidepressant-like effects similar to that of ketamine in rodents. Excitingly, they can also induce antidepressant effects in the animal models of treatment-resistant depression and are devoid of the side-effects associated with ketamine. Unfortunately, clinical trials of both mGlu5 and mGlu2/3 receptor NAMs have been inconclusive, and additional trials using other compounds with suitable preclinical and clinical properties are needed. Although group III mGlu receptors have gained less attention, mGlu7 receptor ligands have been shown to induce antidepressant-like effects in rodents. Collectively, compounds targeting mGlu receptors provide an alternative approach to fill the outstanding clinical need for safer and more efficacious antidepressants. This article is part of the special Issue on "Glutamate Receptors - mGluRs".


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Estresse Psicológico/tratamento farmacológico , Regulação Alostérica , Animais , Humanos , Ketamina/uso terapêutico , Terapia de Alvo Molecular , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
18.
J Psychiatry Neurosci ; 46(3): E402-E414, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34077150

RESUMO

Background: Bipolar disorder is characterized by cyclical alternation between mania and depression, often comorbid with psychosis and suicide. Compared with other medications, the mood stabilizer lithium is the most effective treatment for the prevention of manic and depressive episodes. However, the pathophysiology of bipolar disorder and lithium's mode of action are yet to be fully understood. Evidence suggests a change in the balance of excitatory and inhibitory activity, favouring excitation in bipolar disorder. In the present study, we sought to establish a holistic understanding of the neuronal consequences of lithium exposure in mouse cortical neurons, and to identify underlying mechanisms of action. Methods: We used a range of technical approaches to determine the effects of acute and chronic lithium treatment on mature mouse cortical neurons. We combined RNA screening and biochemical and electrophysiological approaches with confocal immunofluorescence and live-cell calcium imaging. Results: We found that only chronic lithium treatment significantly reduced intracellular calcium flux, specifically by activating metabotropic glutamatergic receptor 5. This was associated with altered phosphorylation of protein kinase C and glycogen synthase kinase 3, reduced neuronal excitability and several alterations to synapse function. Consequently, lithium treatment shifts the excitatory­inhibitory balance toward inhibition. Limitations: The mechanisms we identified should be validated in future by similar experiments in whole animals and human neurons. Conclusion: Together, the results revealed how lithium dampens neuronal excitability and the activity of the glutamatergic network, both of which are predicted to be overactive in the manic phase of bipolar disorder. Our working model of lithium action enables the development of targeted strategies to restore the balance of overactive networks, mimicking the therapeutic benefits of lithium but with reduced toxicity.


Assuntos
Córtex Cerebral/citologia , Compostos de Lítio/uso terapêutico , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Cálcio/metabolismo , Células Cultivadas , Compostos de Lítio/administração & dosagem , Compostos de Lítio/farmacologia , Camundongos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo
19.
Neuropharmacology ; 192: 108608, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33991565

RESUMO

An impairment of long-term synaptic plasticity is considered as a peculiar endophenotype of distinct forms of dystonia, a common, disabling movement disorder. Among the few therapeutic options, broad-spectrum antimuscarinic drugs are utilized, aimed at counteracting abnormal striatal acetylcholine-mediated transmission, which plays a crucial role in dystonia pathophysiology. We previously demonstrated a complete loss of long-term synaptic depression (LTD) at corticostriatal synapses in rodent models of two distinct forms of isolated dystonia, resulting from mutations in the TOR1A (DYT1), and GNAL (DYT25) genes. In addition to anticholinergic agents, the aberrant excitability of striatal cholinergic cells can be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). Here, we tested the efficacy of the negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) on striatal LTD. We show that, whereas acute treatment failed to rescue LTD, chronic dipraglurant rescued this form of synaptic plasticity both in DYT1 mice and GNAL rats. Our analysis of the pharmacokinetic profile of dipraglurant revealed a relatively short half-life, which led us to uncover a peculiar time-course of recovery based on the timing from last dipraglurant injection. Indeed, striatal spiny projection neurons (SPNs) recorded within 2 h from last administration showed full expression of synaptic plasticity, whilst the extent of recovery progressively diminished when SPNs were recorded 4-6 h after treatment. Our findings suggest that distinct dystonia genes may share common signaling pathway dysfunction. More importantly, they indicate that dipraglurant might be a potential novel therapeutic agent for this disabling disorder.


Assuntos
Corpo Estriado/fisiologia , Distonia/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Imidazóis/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Corpo Estriado/efeitos dos fármacos , Distonia/tratamento farmacológico , Distonia/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Imidazóis/uso terapêutico , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
20.
J Psychopharmacol ; 35(6): 652-667, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33899580

RESUMO

BACKGROUND: Sleep consolidates declarative memory by repeated replay linked to the cardinal oscillations of non-rapid eye movement (NonREM) sleep. However, there is so far little evidence of classical glutamatergic plasticity induced by this replay. Rather, we have previously reported that blocking N-methyl-D-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors does not affect sleep-dependent consolidation of declarative memory. AIMS: The aim of this study was to investigate the role of metabotropic glutamate receptor 5 (mGluR5) in memory processing during sleep. METHODS: In two placebo-controlled within-subject crossover experiments with 20 healthy humans each, we used fenobam to block mGluR5 during sleep. In Experiment I, participants learned word-pairs (declarative task) and a finger sequence (procedural task) in the evening, then received the drug and recall was tested the next morning. To cover possible effects on synaptic renormalization processes during sleep, in Experiment II participants learned new word-pairs in the morning after sleep. RESULTS/OUTCOMES: Surprisingly, fenobam neither reduced retention of memory across sleep nor new learning after sleep, although it severely altered sleep architecture and memory-relevant EEG oscillations. In NonREM sleep, fenobam suppressed 12-15 Hz spindles but augmented 2-4 Hz delta waves, whereas in rapid eye movement (REM) sleep it suppressed 4-8 Hz theta and 16-22 Hz beta waves. Notably, under fenobam NonREM spindles became more consistently phase-coupled to the slow oscillation. CONCLUSIONS/INTERPRETATIONS: Our findings indicate that mGluR5-related plasticity is not essential for memory processing during sleep, even though mGlurR5 are strongly implicated in the regulation of the cardinal sleep oscillations.


Assuntos
Imidazóis/farmacologia , Memória/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Sono/efeitos dos fármacos , Adolescente , Adulto , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia , Humanos , Masculino , Memória/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Sono/fisiologia , Sono REM , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA