Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.670
Filtrar
1.
FASEB J ; 38(19): e70083, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39373982

RESUMO

Drug-target binding affinity (DTA) prediction is vital for drug repositioning. The accuracy and generalizability of DTA models remain a major challenge. Here, we develop a model composed of BERT-Trans Block, Multi-Trans Block, and DTI Learning modules, referred to as Molecular Representation Encoder-based DTA prediction (MREDTA). MREDTA has three advantages: (1) extraction of both local and global molecular features simultaneously through skip connections; (2) improved sensitivity to molecular structures through the Multi-Trans Block; (3) enhanced generalizability through the introduction of BERT. Compared with 12 advanced models, benchmark testing of KIBA and Davis datasets demonstrated optimal performance of MREDTA. In case study, we applied MREDTA to 2034 FDA-approved drugs for treating non-small-cell lung cancer (NSCLC), all of which act on mutant EGFRT790M protein. The corresponding molecular docking results demonstrated the robustness of MREDTA.


Assuntos
Simulação de Acoplamento Molecular , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Reposicionamento de Medicamentos/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptores ErbB/genética , Ligação Proteica , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
ACS Appl Mater Interfaces ; 16(43): 58464-58476, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39418329

RESUMO

Protein cage nanoparticles, self-assembled from protein subunits, provide distinct exterior and interior spaces and can carry diagnostic and/or therapeutic cargo agents through chemical conjugation, in vitro disassembly/reassembly process, or assembly-mediated encapsulation. Here, we developed porous SpyCatcher-mi3 (SC-mi3) as modular delivery nanoplatforms, capable of loading cargos through pores and displaying targeting ligands using SpyCatchers (SC) as anchors for SpyTagged (ST) ligands. Fluorescent dyes (F5M and A647) and a pH-sensitive prodrug (Aldox) were conjugated to the interior surface cysteines of SC-mi3, forming F5M@SC-mi3, A647@SC-mi3, and Aldox@SC-mi3. Subsequently, EGFR-binding affibody molecules (EGFRAfb) were displayed on the exterior surface of F5M@SC-mi3 and Aldox@SC-mi3 using the SC/ST protein ligation system, forming F5M@mi3/EGFRAfb and Aldox@mi3/EGFRAfb, respectively. F5M@mi3/EGFRAfb selectively bound to EGFR-overexpressing MDA-MB-468 cells, visualizing the target cancer cells, while Aldox@mi3/EGFRAfb selectively delivered doxorubicin, leading to target-specific cancer cell death. To encapsulate large proteins within SC-mi3, biotins were initially conjugated to the interior surface (BPM@SC-mi3) and mSA2-fused protein cargo molecules (mSA2-HaloTag and mSA2-yCD) were successfully introduced through the pores and securely encapsulated, forming TMR-H@SC-mi3 and yCD@SC-mi3, respectively. Subsequent display of EGFRAfb on their surface allowed the visualization of target cancer cells using fluorescent HaloTag ligand labeling and facilitated the killing of target cancer cells by converting the prodrug 5-FC to the cytotoxic drug 5-FU. Modular functionalization of the two distinct spaces in porous SC-mi3 may offer opportunities for developing target-specific functional cargo-delivery nanoplatforms in biomedical fields.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Porosidade , Ligantes , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Receptores ErbB/química , Corantes Fluorescentes/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química
3.
Proc Natl Acad Sci U S A ; 121(45): e2417144121, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39471218

RESUMO

Somatic mutations in the epidermal growth factor receptor (EGFR) are a major cause of non-small cell lung cancer. Among these structurally diverse alterations, exon 20 insertions represent a unique subset that rarely respond to EGFR tyrosine kinase inhibitors (TKIs). Therefore, there is a significant need to develop inhibitors that are active against this class of activating mutations. Here, we conducted biochemical analysis of the two most frequent exon 20 insertion variants, V769_D770insASV (insASV) and D770_N771insSVD (insSVD) to better understand their drug sensitivity and resistance. From kinetic studies, we found that EGFR insASV and insSVD are similarly active, but have lower Km, ATP values compared to the L858R variant, which contributes to their lack of sensitivity to 1st-3rd generation EGFR TKIs. Biochemical, structural, and cellular studies of a diverse panel of EGFR inhibitors revealed that the more recently developed compounds BAY-568, TAS6417, and TAK-788 inhibit EGFR insASV and insSVD in a mutant-selective manner, with BAY-568 being the most potent and selective versus wild-type (WT) EGFR. Cocrystal structures with WT EGFR reveal the binding modes of each of these inhibitors and of poziotinib, a potent but not mutantselective inhibitor, and together they define interactions shared by the mutant-selective agents. Collectively, our results show that these exon20 insertion variants are not inherently inhibitor resistant, rather they differ in their drug sensitivity from WT EGFR. However, they are similar to each other, indicating that a single inhibitor should be effective for several of the diverse exon 20 insertion variants.


Assuntos
Receptores ErbB , Éxons , Inibidores de Proteínas Quinases , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/química , Humanos , Éxons/genética , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Mutagênese Insercional , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
4.
ACS Appl Mater Interfaces ; 16(40): 53489-53498, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39348886

RESUMO

Traditionally, the use of DNA origami nanostructures (DONs) to study early cell signaling processes has been conducted using standard laboratory equipment with DONs typically utilized in solution. Surface-based technologies simplify the microscopic analysis of cells treated with DON agents by anchoring them to solid substrates, thus avoiding the complications of receptor-mediated endocytosis. A robust microfluidic platform for real-time monitoring and precise functionalization of surfaces with DONs was developed here. The combination of controlled flow conditions with an upright total internal reflection fluorescence microscope enabled the kinetic analysis of the immobilization of DONs on DNA-functionalized surfaces. The results revealed that DON morphology and binding tags influence the binding kinetics and that DON hybridization on surfaces is more effective in microfluidic devices with larger-than-standard dimensions, addressing the low diffusivity challenge of DONs. The platform enabled the decoration of DONs with protein-binding ligands and in situ investigation of ligand occupancy on DONs to produce high-quality bioactive surfaces. These surfaces were used to recruit and activate the epidermal growth factor receptor (EGFR) through clustering in the membranes of living cancer cells (MCF-7) using an antagonistic antibody (Panitumumab). The activation was quantified depending on the interligand distances of the EGFR-targeting antibody.


Assuntos
DNA , Receptores ErbB , Nanoestruturas , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/química , DNA/química , Nanoestruturas/química , Células MCF-7 , Propriedades de Superfície , Técnicas Analíticas Microfluídicas/instrumentação
5.
Protein Sci ; 33(10): e5141, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39275996

RESUMO

The epidermal growth factor (EGF) receptor (EGFR) is activated by the binding of one of seven EGF-like ligands to its ectodomain. Ligand binding results in EGFR dimerization and stabilization of the active receptor conformation subsequently leading to activation of downstream signaling. Aberrant activation of EGFR contributes to cancer progression through EGFR overexpression/amplification, modulation of its positive and negative regulators, and/or activating mutations within EGFR. EGFR targeted therapeutic antibodies prevent dimerization and interaction with endogenous ligands by binding the ectodomain of EGFR. However, these antibodies have had limited success in the clinic, partially due to EGFR ectodomain resistance mutations, and are only applicable to a subset of patients with EGFR-driven cancers. These limitations suggest that alternative EGFR targeted biologics need to be explored for EGFR-driven cancer therapy. To this end, we analyze the EGFR interfaces of known inhibitory biologics with determined structures in the context of endogenous ligands, using the Rosetta macromolecular modeling software to highlight the most important interactions on a per-residue basis. We use this analysis to identify the structural determinants of EGFR targeted biologics. We suggest that commonly observed binding motifs serve as the basis for rational design of new EGFR targeted biologics, such as peptides, antibodies, and nanobodies.


Assuntos
Receptores ErbB , Receptores ErbB/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Modelos Moleculares , Ligação Proteica , Sítios de Ligação , Desenho de Fármacos , Ligantes
6.
Protein Sci ; 33(10): e5171, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276020

RESUMO

Human epidermal growth factor receptors (HER)-also known as EGFR or ErbB receptors-are a subfamily of receptor tyrosine kinases (RTKs) that play crucial roles in cell growth, division, and differentiation. HER4 (ErbB4) is the least studied member of this family, partly because its expression is lower in later stages of development. Recent work has suggested that HER4 can play a role in metastasis by regulating cell migration and invasiveness; however, unlike EGFR and HER2, the precise role that HER4 plays in tumorigenesis is still unresolved. Early work on HER family proteins suggested that there are direct interactions between the four members, but to date, there has been no single study of all four receptors in the same cell line with the same biophysical method. Here, we quantitatively measure the degree of association between HER4 and the other HER family proteins in live cells with a time-resolved fluorescence technique called pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is sensitive to the oligomerization state of membrane proteins in live cells, while simultaneously measuring single-cell protein expression levels and diffusion coefficients. Our PIE-FCCS results demonstrate that HER4 interacts directly with all HER family members in the cell plasma membrane. The interaction between HER4 and other HER family members intensified in the presence of a HER4-specific ligand. Our work suggests that HER4 is a preferred dimerization partner for all HER family proteins, even in the absence of ligands.


Assuntos
Receptores ErbB , Multimerização Proteica , Receptor ErbB-4 , Receptor ErbB-4/metabolismo , Receptor ErbB-4/química , Receptor ErbB-4/genética , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptores ErbB/genética , Espectrometria de Fluorescência
7.
Phys Chem Chem Phys ; 26(35): 22853-22857, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39177248

RESUMO

Missense mutations in EGFR's catalytic domain alter its function, promoting cancer. SEIRA spectroscopy, supported by MD simulations, reveals structural differences in the compactness and hydration of helical motifs between active and inactive EGFR conformations models. These findings provide novel insights into the biophysical mechanisms driving EGFR activation and drug resistance, offering a robust method for studying emerging EGFR mutations and their structural impacts on TKIs' efficacy.


Assuntos
Receptores ErbB , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Mutação , Desenho de Fármacos , Conformação Proteica , Domínio Catalítico
8.
Int J Biol Macromol ; 277(Pt 2): 134198, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084419

RESUMO

Ovarian cancer, a malignant tumor that poses a significant threat to women's health, has seen a rise in incidence, prompting the urgent need for more effective treatment. This study primarily aimed to explore the potential of bovine collagen peptides in inhibiting ovarian cancer. The investigation in this study began with the identification of 268 peptide sequences through LC-MS/MS, followed by a screening process using molecular docking techniques to identify potential peptides capable of binding to EGFR. Subsequently, a series of experiments were performed, demonstrating the inhibitory effects of the peptide GPAGADGDRGEAGPAGPAGPAGPR on the proliferation of ovarian cancer cells. Transcriptomic analysis further revealed that this peptide can regulate cholesterol metabolism in ovarian cancer cells. Finally, a combination of time-resolved fluorescence resonance energy transfer, isothermal titration calorimetry, molecular docking, and molecular dynamics simulations were utilized to validate the ability of this peptide to bind to the epidermal growth factor receptor (EGFR) and impede the binding of epidermal growth factor (EGF) and EGFR.


Assuntos
Colágeno , Receptores ErbB , Simulação de Acoplamento Molecular , Neoplasias Ovarianas , Peptídeos , Animais , Bovinos , Feminino , Humanos , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colágeno/química , Colágeno/farmacologia , Receptores ErbB/química , Simulação de Dinâmica Molecular , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124864, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067358

RESUMO

In this work, molecular descriptors of N-(1-(2-bromobenzoyl)-4-cyano-1H-pyrazol-5-yl) halogenated benzamides (1a-h) have been computed using a quantum chemical technique through DFT. Prior work involved the synthesis of compounds (1a-h) and the assessment of their anticancer activity on breast, colon, and liver tumors: MCF-7, HCT-116, and HepG-2 cell lines respectively. Since 1a, 1b, and 1d showed the most potential anticancer impact, their ability to inhibit EGFRWT was investigated. Based on the biological data, 1b inhibited EGFRWT the most. According to the docking evaluation, an H-bond with the threonine residue was one of the main non-covalent contacts between 1b and the EGFRWT active site residues. PES, MESP, HOMOs, LUMOs, energy band gap, global reactivity indices [electron affinity (A), ionization energies (I), electrophilicity index (ω), nucleophilicity index (ε), chemical potential (µ), electronegativity (χ), hardness (η), and softness (S)], condensed Fukui functions, NBO, and NCIs are the molecular descriptors of 1a-h that were computed using DFT technique. According to the theoretical investigation results, compounds (1a-h) might have anticancer effects; these findings are consistent with the biological findings from our previous research. Compound 1b had the lowest binding energy, according to an assessment of the binding energies between the threonine and the three most active compounds (1a, 1b, and 1d). This is consistent with the outcomes of the docking study and the biological examination of the influence of 1a, 1b, and 1d on EGFRWT.


Assuntos
Antineoplásicos , Teoria da Densidade Funcional , Receptores ErbB , Simulação de Acoplamento Molecular , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptores ErbB/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Benzamidas/química , Benzamidas/farmacologia , Benzamidas/síntese química , Linhagem Celular Tumoral , Ligação de Hidrogênio
10.
ACS Chem Biol ; 19(8): 1705-1718, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39052621

RESUMO

Comparative, dose-dependent analysis of interactions between small molecule drugs and their targets, as well as off-target interactions, in complex proteomes is crucial for selecting optimal drug candidates. The affinity of small molecules for targeted proteins is largely dictated by interactions between amino acid side chains and these drugs. Thus, studying drug-protein interactions at an amino acid resolution provides a comprehensive understanding of the drug selectivity and efficacy. In this study, we further refined the site-specific activity-based protein profiling strategy (ABPP), PhosID-ABPP, on a timsTOF HT mass spectrometer. This refinement enables dual dose-dependent competition of inhibitors within a single cellular proteome. Here, a comparative analysis of two activity-based probes (ABPs), developed to selectively target the epidermal growth factor receptor (EGFR), namely, PF-06672131 (PF131) and PF-6422899 (PF899), facilitated the simultaneous identification of ABP-specific binding sites at a proteome-wide scale within a cellular proteome. Dose-dependent probe-binding preferences for proteinaceous cysteines, even at low nanomolar ABP concentrations, could be revealed. Notably, in addition to the intrinsic affinity of the electrophilic probes for specific sites in targeted proteins, the observed labeling intensity is influenced by several other factors. These include the efficiency of cellular uptake, the stability of the probes, and their intracellular distribution. While both ABPs showed comparable labeling efficiency for EGFR, PF131 had a broader off-target reactivity profile. In contrast, PF899 exhibited a higher labeling efficiency for the ERBB2 receptor and bound to catalytic cysteines in several other enzymes, which is likely to disrupt their catalytic activity. Notably, PF131 effectively labeled ADP/ATP translocase proteins at a concentration of just 1 nm, and we found this affected ATP transport. Analysis of the effect of PF131 and its parent inhibitor Afatinib on murine translocase SLC25A4 (ANT1)-mediated ATP transport strongly indicated that PF131 (10 µM) partially blocked ATP transport. Afatinib was less efficient at inhibiting ATP transport by SLC25A4 than PF131, and the reduction of ATP transport by Afatinib was not significant. Follow-up analysis is required to evaluate the affinity of these inhibitors for ADP/ATP translocase SLC25A4 in more detail. Additionally, the analysis of different binding sites within the EGF receptor and the voltage-dependent anion channel 2 revealed secondary binding sites of both probes and provided insights into the binding poses of inhibitors on these proteins. Insights from the PhosID-ABPP analysis of these two ABPs serve as a valuable resource for understanding drug on- and off-target engagement in a dose- and site-specific manner.


Assuntos
Receptores ErbB , Ligação Proteica , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Sítios de Ligação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Proteômica/métodos , Proteoma/metabolismo
11.
Anticancer Res ; 44(8): 3587-3591, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060048

RESUMO

BACKGROUND/AIM: Acetyl glucose adducts (UTX-114, -115, and -116) were prepared from gefitinib, and their characteristics (e.g., anticancer activity, structural property) were analyzed. MATERIALS AND METHODS: Cytotoxicity and radiosensitizing properties of the UTX-114 family were examined using A431 cells. Supramolecular associations between the UTX-114 family compounds and the tyrosine kinase domain of epidermal growth factor receptor (EGFR-tyk) were also examined. The interactive analyses of the UTX-114 family compounds with EGFR-tyk were performed using docking simulation technique. RESULTS: The UTX-114 family showed a similar cytotoxicity as gefitinib, yielding IC50 values of 31.2 µM (gefitinib), 34.3 µM (UTX-114), 36.8 µM (UTX-115), and 39.4 µM (UTX-116). The EGFR-tyk inhibition ratios (IR) of UTX-114, -115, and -116 to gefitinib were 1.515, 0.983, and 0.551, respectively. The EGFR-tyk inhibitory activity of UTX-114 was higher than that of gefitinib. UTX-114 also showed the highest radiosensitizing activity among the tested compounds. UTX-114 expressed 1841 conformers (-8.989~15.718 kcal/mol) with the solvation free energy (dGW) of UTX-114 decreasing with increasing conformational energy, ranging between -354.955~ -260.815 kJ/mol. Interactive energies of gefitinib, UTX-114, -115, and -116 with EGFR-tyk were -123.640, -144.053, -120.830, and -124.658 kcal/mol, respectively. CONCLUSION: UTX-114 yielded the lowest interaction energy with EGFR-tyk among tested compounds. Given the association behavior between UTX-114 and EGFR-tyk, along with its other observed properties, UTX-114 appears to be a viable therapeutic possibility.


Assuntos
Receptores ErbB , Gefitinibe , Simulação de Acoplamento Molecular , Gefitinibe/farmacologia , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Glicosilação , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química
12.
Protein J ; 43(4): 793-804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981944

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent cancer types in the world and accounts for the majority of cases of primary liver cancer. A crucial part of the carcinogenesis of HCC involves aberrant stimulation of the FGF19-FGFR4 signaling pathway. Therefore, FGFR4 inhibition has become a strategic therapeutic approach for the treatment of HCC. However, the clinical treatment procedure is significantly hampered by the prevalence of kinase inhibitors resistance. It was recently established that the activation of EGFR signaling was found to be one of the primary mechanisms mediating the acquired resistance to FGFR4 inhibitors, moreover, sensitivity to FGFR4 inhibitors was effectively restored by inhibiting EGFR. These results provide compelling evidence that dual inhibition of EGFR and FGFR4 could represent a viable therapeutic approach to overcome resistance, hence enhanced management of HCC. To this end, we proposed a dual irreversible inhibition strategy through covalent binding by naturally occurring electrophilic warhead-bearing compounds (curcumin, deoxyelephantopin, eupalmerin acetate, syringolin A and andrographolide) to covalently target both EGFR and FGFR4 through cysteine residues, Cys797 and Cys552, respectively. Covalent docking and covalent molecular dynamics (MM/MDcov) simulations combined with thermodynamic binding free energy calculations were performed, and the results were compared against known potent and selective covalent EGFR and FGFR4 inhibitors with available X-ray crystal structures, Afatinib and BLU9931, respectively. Curcumin, deoxyelephantopin, eupalmerin acetate, syringolin A, and andrographolide showed relative binding free energies of -22.85, -17.14, -12.98, -21.81, and - 19.00 kcal/mol against EGFR and - 41.06, -29.45, -24.76, -40.11, and - 37.55 kcal/mol against FGFR4, respectively. The mechanisms of binding were emphasized by hydrogen bonding and binding forces analysis as well as active site physicochemical profiling. The findings of this study identified that curcumin, syringolin A and andrographolide-but not eupalmerin acetate or deoxyelephantopin -could be viable dual EGFR and FGFR4 covalent irreversible inhibitors and could be implemented in HCC combination therapy protocols alone or in conjunction with other chemotherapeutic agents. Investigations of this study conclusively indicate dual blockade of EGFR and FGFR4 may be a promising future therapeutic strategy for enhanced management of HCC.


Assuntos
Carcinoma Hepatocelular , Receptores ErbB , Neoplasias Hepáticas , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
Structure ; 32(9): 1367-1380.e6, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908376

RESUMO

The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.


Assuntos
Receptores ErbB , Ligação Proteica , Anticorpos de Domínio Único , Receptores ErbB/química , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Cristalografia por Raios X , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Modelos Moleculares , Glioblastoma/metabolismo , Domínios Proteicos , Sítios de Ligação
14.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930865

RESUMO

The epidermal growth factor receptor (EGFR) is a pivotal target in cancer therapy due to its significance within the tyrosine kinase family. EGFR inhibitors like AG-1478 and PD153035, featuring a 4-anilinoquinazoline moiety, have garnered global attention for their potent therapeutic activities. While pre-clinical studies have highlighted the significant impact of halogen substitution at the C3'-anilino position on drug potency, the underlying mechanism remains unclear. This study investigates the influence of halogen substitution (X = H, F, Cl, Br, I) on the structure, properties, and spectroscopy of halogen-substituted 4-anilinoquinazoline tyrosine kinase inhibitors (TKIs) using time-dependent density functional methods (TD-DFT) with the B3LYP functional. Our calculations revealed that halogen substitution did not induce significant changes in the three-dimensional conformation of the TKIs but led to noticeable alterations in electronic properties, such as dipole moment and spatial extent, impacting interactions at the EGFR binding site. The UV-visible spectra show that more potent TKI-X compounds typically have shorter wavelengths, with bromine's peak wavelength at 326.71 nm and hydrogen, with the lowest IC50 nM, shifting its lambda max to 333.17 nm, indicating a correlation between potency and spectral characteristics. Further analysis of the four lowest-lying conformers of each TKI-X, along with their crystal structures from the EGFR database, confirms that the most potent conformer is often not the global minimum structure but one of the low-lying conformers. The more potent TKI-Cl and TKI-Br exhibit larger deviations (RMSD > 0.65 Å) from their global minimum structures compared to other TKI-X (RMSD < 0.15 Å), indicating that potency is associated with greater flexibility. Dipole moments of TKI-X correlate with drug potency (ln(IC50 nM)), with TKI-Cl and TKI-Br showing significantly higher dipole moments (>8.0 Debye) in both their global minimum and crystal structures. Additionally, optical spectral shifts correlate with potency, as TKI-Cl and TKI-Br exhibit blue shifts from their global minimum structures, in contrast to other TKI-X. This suggests that optical reporting can effectively probe drug potency and conformation changes.


Assuntos
Compostos de Anilina , Receptores ErbB , Halogênios , Inibidores de Proteínas Quinases , Quinazolinas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Quinazolinas/química , Quinazolinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Halogênios/química , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Humanos , Sítios de Ligação , Modelos Moleculares , Relação Estrutura-Atividade
15.
J Chem Theory Comput ; 20(13): 5528-5538, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38877999

RESUMO

Acrylamides are the most commonly used warheads of targeted covalent inhibitors (TCIs) directed at cysteines; however, the reaction mechanisms of acrylamides in proteins remain controversial, particularly for those involving protonated or unreactive cysteines. Using the combined semiempirical quantum mechanics (QM)/molecular mechanics (MM) free energy simulations, we investigated the reaction between afatinib, the first TCI drug for cancer treatment, and Cys797 in the EGFR kinase. Afatinib contains a ß-dimethylaminomethyl (ß-DMAM) substitution which has been shown to enhance the intrinsic reactivity and potency against EGFR for related inhibitors. Two hypothesized reaction mechanisms were tested. Our data suggest that Cys797 becomes deprotonated in the presence of afatinib, and the reaction proceeds via a classical Michael addition mechanism, with Asp800 stabilizing the ion-pair reactant state ß-DMAM+/C797- and the transition state of the nucleophilic attack. Our work elucidates an important structure-activity relationship of acrylamides in proteins.


Assuntos
Afatinib , Receptores ErbB , Simulação de Dinâmica Molecular , Teoria Quântica , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Afatinib/química , Afatinib/farmacologia , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Termodinâmica , Relação Estrutura-Atividade , Quinazolinas/química , Quinazolinas/farmacologia
16.
Biophys J ; 123(13): 1882-1895, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38845200

RESUMO

The cell membrane organization has an essential functional role through the control of membrane receptor confinement in micro- or nanodomains. Several mechanisms have been proposed to account for these properties, although some features have remained controversial, notably the nature, size, and stability of cholesterol- and sphingolipid-rich domains or lipid rafts. Here, we probed the effective energy landscape acting on single-nanoparticle-labeled membrane receptors confined in raft nanodomains- epidermal growth factor receptor (EGFR), Clostridium perfringens ε-toxin receptor (CPεTR), and Clostridium septicum α-toxin receptor (CSαTR)-and compared it with hop-diffusing transferrin receptors. By establishing a new analysis pipeline combining Bayesian inference, decision trees, and clustering approaches, we systematically classified single-protein trajectories according to the type of effective confining energy landscape. This revealed the existence of only two distinct organization modalities: confinement in a quadratic energy landscape for EGFR, CPεTR, and CSαTR (A), and free diffusion in confinement domains resulting from the steric hindrance due to F-actin barriers for transferrin receptor (B). The further characterization of effective confinement energy landscapes by Bayesian inference revealed the role of interactions with the domain environment in cholesterol- and sphingolipid-rich domains with (EGFR) or without (CPεTR and CSαTR) interactions with F-actin to regulate the confinement energy depth. These two distinct mechanisms result in the same organization type (A). We revealed that the apparent domain sizes for these receptor trajectories resulted from Brownian exploration of the energy landscape in a steady-state-like regime at a common effective temperature, independently of the underlying molecular mechanisms. These results highlight that confinement domains may be adequately described as interaction hotspots rather than rafts with abrupt domain boundaries. Altogether, these results support a new model for functional receptor confinement in membrane nanodomains and pave the way to the constitution of an atlas of membrane protein organization.


Assuntos
Microdomínios da Membrana , Microdomínios da Membrana/metabolismo , Receptores da Transferrina/metabolismo , Receptores da Transferrina/química , Teorema de Bayes , Receptores ErbB/metabolismo , Receptores ErbB/química , Termodinâmica , Difusão
17.
Nano Lett ; 24(28): 8595-8601, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38869082

RESUMO

Protein imaging aids diagnosis and drug development by revealing protein-drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL-1 µg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Animais , Bovinos , Soroalbumina Bovina/química , Cor , Microfluídica , Receptores ErbB/química , Antígeno Carcinoembrionário/química , Modelos Moleculares , Conformação Molecular
18.
Chem Biol Drug Des ; 103(5): e14534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697951

RESUMO

Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor 2 (VEGFR2) are known as valid targets for cancer therapy. Overexpression of EGFR induces uncontrolled cell proliferation and VEGF expression triggering angiogenesis via VEGFR2 signaling. On the other hand, VEGF expression independent of EGFR signaling is already known as one of the mechanisms of resistance to anti-EGFR therapy. Therefore, drugs that act as dual inhibitors of EGFR and VEGFR2 can be a solution to the problem of drug resistance and increase the effectiveness of therapy. In this review, we summarize the relationship between EGFR and VEGFR2 signal transduction in promoting cancer growth and how their kinase domain structures can affect the selectivity of an inhibitor as the basis for designing dual inhibitors. In addition, several recent studies on the development of dual EGFR and VEGFR2 inhibitors involving docking simulations were highlighted in this paper to provide some references such as pharmacophore features of inhibitors and key residues for further research, especially in computer-aided drug design.


Assuntos
Antineoplásicos , Receptores ErbB , Neoplasias , Inibidores de Proteínas Quinases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular , Desenho de Fármacos
19.
J Phys Chem B ; 128(21): 5175-5187, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38747619

RESUMO

SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.


Assuntos
Receptores ErbB , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína p120 Ativadora de GTPase , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Fosforilação , Proteína p120 Ativadora de GTPase/metabolismo , Proteína p120 Ativadora de GTPase/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Ligação Proteica , Sítios de Ligação
20.
Sci Rep ; 14(1): 12218, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806555

RESUMO

Although the use of the tyrosine kinase inhibitors (TKIs) has been proved that it can save live in a cancer treatment, the currently used drugs bring in many undesirable side-effects. Therefore, the search for new drugs and an evaluation of their efficiency are intensively carried out. Recently, a series of eighteen imidazole[1,5-a]pyridine derivatives were synthetized by us, and preliminary analyses pointed out their potential to be an important platform for pharmaceutical development owing to their promising actions as anticancer agents and enzyme (kinase, HIV-protease,…) inhibitors. In the present theoretical study, we further analyzed their efficiency in using a realistic scenario of computational drug design. Our protocol has been developed to not only observe the atomistic interaction between the EGFR protein and our 18 novel compounds using both umbrella sampling and steered molecular dynamics simulations, but also determine their absolute binding free energies. Calculated properties of the 18 novel compounds were in detail compared with those of two known drugs, erlotinib and osimertinib, currently used in cancer treatment. Inspiringly the simulation results promote three imidazole[1,5-a]pyridine derivatives as promising inhibitors into a further step of clinical trials.


Assuntos
Receptores ErbB , Imidazóis , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Piridinas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA