Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 287: 120110, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743945

RESUMO

For several years, scientists have recognized that vitamin D plays an important role in mineral and bone homeostasis. It was mostly used to treat osteoporosis and rickets in the past decades. Vitamin D has also been discovered to be modulator of the immune system and may play a role in a variety of diseases, including autoimmune diseases, in recent years. Vitamin D interaction with the vitamin D receptor (VDR), which has transcriptional imparts and is displayed on a variety of cell types, including those of the immune system, appears to be accountable for the immune-modulating effects. The action of tumor cells and vitamin D were the first to be investigated, but the spotlight is now on immunologic and purinergic systems. We conducted a systematic search in Pub Med as well as Google scholar for studies written in English. Vitamin D, cancer, purinergic signaling, and immune response were among the search words. Vitamin D has the potential to be a useful coadjuvant in cancer therapy and the purinergic system may be a potential treatment target to cancer therapy, according to our findings.


Assuntos
Antineoplásicos/uso terapêutico , Imunidade Celular/imunologia , Neoplasias/imunologia , Receptores de Calcitriol/imunologia , Receptores Purinérgicos/imunologia , Vitamina D/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Humanos , Imunidade Celular/efeitos dos fármacos , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Neoplasias/terapia , Receptores de Calcitriol/metabolismo , Receptores Purinérgicos/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
2.
Biochem Pharmacol ; 187: 114405, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406411

RESUMO

Purinergic signalling is an evolutionarily conserved signalling pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides released from host cells during intracellular pathogen infections activate plasma membrane purinergic type 2 receptors (P2 receptors) that stimulate microbicidal mechanisms in host innate immune cells. P2X ion channels and P2Y G protein-coupled receptors are involved in activating host innate immune defence mechanisms, phagocytosis, phagolysosomal fusion, production of reactive species, acidification of parasitophorous vacuoles, inflammasome activation, and the release of cytokines, chemokines, and other inflammatory mediators. In this review, as part of a special issue in tribute to Geoffrey Burnstock, we discuss advances in understanding the importance of P2 receptors in the host antimicrobial innate mechanisms against intracellular pathogen infections.


Assuntos
Trifosfato de Adenosina/metabolismo , Imunidade Inata/fisiologia , Líquido Intracelular/metabolismo , Líquido Intracelular/microbiologia , Receptores Purinérgicos/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/imunologia , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/imunologia , Agonistas Purinérgicos/administração & dosagem , Antagonistas Purinérgicos/administração & dosagem , Receptores Purinérgicos/imunologia , Transdução de Sinais/efeitos dos fármacos
3.
Curr Top Med Chem ; 21(3): 193-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32972342

RESUMO

Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.


Assuntos
Anti-Helmínticos/farmacologia , Receptores Purinérgicos/imunologia , Esquistossomose/tratamento farmacológico , Animais , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Schistosoma/efeitos dos fármacos , Schistosoma/imunologia , Esquistossomose/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
4.
Curr Top Med Chem ; 21(3): 205-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319661

RESUMO

Toxoplasmosis is a neglected disease caused by infection by the protozoan Toxoplasma gondii. One-third of the global population is expected to be by infected T. gondii. In Europe and North America, most infections do not induce disease, except in the context of immunosuppression. However, in endemic regions such Central and South America, infections induce severe ocular and potentially lethal disease, even in immunocompetent individuals. The immune response against T. gondii infection involves components of innate immunity even in the chronic phase of the disease, including dangerous signal molecules such as extracellular nucleotides. Purinergic signaling pathways include ionotropic and metabotropic receptors activated by extracellular nucleotides that are divided into P2X, P2Y, and A1 receptor families. The activation of purinergic signaling impacts biological systems by modulating immune responses to intracellular pathogens such as T. gondii. Ten years ago, purinergic signaling in the T. gondii infection was reported for the first time. In this review, we update and summarize the main findings regarding the role of purinergic signaling in T. gondii infection; these include in vitro findings: the microbicidal effect of P2Y and P2X7 activation phagocytic cells and parasite control by P2X7 activation in non-phagocytic cells; and in vivo findings: the promotion of early pro-inflammatory events that protect the host in acute and chronic models.


Assuntos
Receptores Purinérgicos/imunologia , Toxoplasmose/imunologia , Humanos , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Toxoplasmose/diagnóstico
5.
J Neurosci Res ; 98(11): 2317-2332, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32799373

RESUMO

Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naïve astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca2+ increase in astrocytes by promoting glial release of ATP. ATP propagated Ca2+ elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca2+ increase is specifically triggered by the autoreactive CD4+ T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca2+ signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Imunidade Celular , Receptores Purinérgicos/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Neuroglia/metabolismo , Ratos , Receptores Purinérgicos P2X7/imunologia , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/imunologia
6.
Front Immunol ; 11: 1339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733449

RESUMO

Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.


Assuntos
Eosinófilos/imunologia , Eosinófilos/metabolismo , Transdução de Sinais/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Receptores Purinérgicos/imunologia , Receptores Purinérgicos/metabolismo
7.
Pharmacol Rev ; 71(3): 345-382, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235653

RESUMO

Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.


Assuntos
Inflamação/tratamento farmacológico , Inflamação/imunologia , Agonistas Purinérgicos/farmacologia , Antagonistas Purinérgicos/farmacologia , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Terapia de Alvo Molecular , Purinas/imunologia , Receptores Purinérgicos/imunologia , Transdução de Sinais/efeitos dos fármacos
8.
Curr Opin Pharmacol ; 47: 90-96, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30952060

RESUMO

The inflammatory response is regulated by the production of different extracellular mediators, including lipids and extracellular nucleotides. In the extracellular environment, intermediate lipids activate specific G-protein-coupled receptors (GPCRs) in target cells and promote cell recruitment and activation. Extracellular nucleotides activate two types of receptors, the ionotropic purinergic P2X and the metabotropic purinergic P2Y receptors, inducing the release of cytokines and promoting cell recruitment. Several P2X receptors are associated with an increase in the production of immunoactive lipids mediators, which in turn are able to interfere with the activation of different P2Y receptors, establishing a tight signalling link between purinergic receptors and lipid mediators. In this review, we summarise recent studies indicating signalling crosstalk between purinergic P2X and P2Y receptor activation and lipid mediators with a focus on inflammatory diseases. Novel concepts arising from this crosstalk would result in the development of combinatorial therapies targeting lipid synthesis together with individual P2 receptors for the management of inflammatory diseases.


Assuntos
Inflamação/imunologia , Lipídeos/imunologia , Receptores Purinérgicos/imunologia , Animais , Humanos , Imunomodulação
9.
Neurobiol Aging ; 58: 41-53, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28697378

RESUMO

As the immunocompetent cells of the central nervous system, microglia accumulate at amyloid beta plaques in Alzheimer's disease (AD) and acquire a morphological phenotype of activated microglia. Recent functional studies, however, indicate that in mouse models of amyloidosis and AD, these cells are rather dysfunctional indicated by a reduced phagocytic activity. Here, we report that this reduction in phagocytic activity is associated with perturbed purinergic receptor signaling, since phagocytosis could be stimulated by P2Y6 receptor activation in control, but not in 5xFAD transgenic animals, an animal model of amyloid deposition. Impaired phagocytosis is not innate, and develops only at later stages of amyloidosis. Furthermore, we show that membrane currents induced by uridine diphosphate, a ligand activating P2Y6 receptors, are altered in response rate and amplitude in microglia in close vicinity to plaques, but not in plaque-free areas of 5xFAD animals. These changes were accompanied by changes in membrane properties and potassium channel activity of plaque-associated microglia in early and late stages of amyloidosis. As a conclusion, the physiological properties of plaque-associated microglia are altered with a strong impact on purinergic signaling.


Assuntos
Doença de Alzheimer/imunologia , Microglia/imunologia , Fagocitose/imunologia , Canais de Potássio/imunologia , Receptores Purinérgicos/imunologia , Transdução de Sinais/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo
10.
Artigo em Russo | MEDLINE | ID: mdl-27228680

RESUMO

Purine receptors are located on immune and somatic cells of animal and human organisms. Summation of signals from purine and TOLL-like receptors takes place on the level of inflammasome formation and results in summation of the first and second signals of innate immunity. The first signal--from PAMPs (pathogen associated molecular patterns), the second--from DAMPs (danger associated molecular patterns). Adenosine triphosphate (ATP) is the most studied DAMP. ATP connects with purine receptors which include P2 (P2X7 receptors are the best described), that results in opening of channels of these receptors and transit of ATP into the cell. In parallel exit of K⁺ from cells and entrance of Ca²âº and Na⁺ into the cells is observed, that is associated with activation of the immune competent cell. Damaged cells dying via necrosis or apoptosis are the source of extracellular ATP, as well as activated immunocytes. Signals from P2 and TOLL-like receptors are summarized in effectors of immune response, and activation of P2 receptors in lymphocytes makes a contribution into activation of cells, mediated by T-cell receptor. Negative side of purine receptor activation is a stimulating effect on proliferation and metastasis of malignant cells. The practical output of knowledge on functioning of purine receptors for clinical immunology is the application of agonists and antagonists of purine receptors, as well as explanation of effect of immune modulators from the position of launch of K⁺/Na⁺-pump; resulting in prolonged activation of immune competent cells.


Assuntos
Imunidade Inata , Moléculas com Motivos Associados a Patógenos/metabolismo , Receptores Purinérgicos/metabolismo , Receptores Toll-Like/metabolismo , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Apoptose/imunologia , Cálcio/metabolismo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Potássio/metabolismo , Receptores Purinérgicos/classificação , Receptores Purinérgicos/imunologia , Transdução de Sinais/imunologia , Sódio/metabolismo , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA