Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.995
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1371837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994005

RESUMO

Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.


Assuntos
Enzima de Conversão de Angiotensina 2 , Receptores Virais , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Células A549 , Receptores Virais/metabolismo , Receptor Tirosina Quinase Axl , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Coloração e Rotulagem/métodos , Células HEK293 , Biotinilação , Mapeamento de Interação de Proteínas , Biotina/metabolismo
2.
Cancer Immunol Immunother ; 73(9): 180, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967649

RESUMO

TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Leucemia Mieloide Aguda , Receptores Imunológicos , Receptores Virais , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Receptores Imunológicos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores Virais/metabolismo , Citocinas/metabolismo , Masculino , Feminino
3.
Front Cell Infect Microbiol ; 14: 1394721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975331

RESUMO

Since 2019, Coronavirus Disease 2019(COVID-19) has affected millions of people worldwide. Except for acute respiratory distress syndrome, dysgeusis is also a common symptom of COVID-19 that burdens patients for weeks or permanently. However, the mechanisms underlying taste dysfunctions remain unclear. Here, we performed complete autopsies of five patients who died of COVID-19. Integrated tongue samples, including numerous taste buds, salivary glands, vessels, and nerves were collected to map the pathology, distribution, cell tropism, and receptor distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the tongue. Our results revealed that all patients had moderate lymphocyte infiltration around the salivary glands and in the lamina propria adjacent to the mucosa, and pyknosis in the epithelia of taste buds and salivary glands. This may be because the serous acini, salivary gland ducts, and taste buds are the primary sites of SARS-CoV-2 infection. Multicolor immunofluorescence showed that SARS-CoV-2 readily infects Keratin (KRT)7+ taste receptor cells in taste buds, secretory cells in serous acini, and inner epithelial cells in the ducts. The major receptors, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), were both abundantly expressed in these cells. Viral antigens and receptor were both rarely detected in vessels and nerves. This indicates that SARS-CoV-2 infection triggers pathological injury in the tongue, and that dysgeusis may be directly related to viral infection and cellular damage.


Assuntos
Enzima de Conversão de Angiotensina 2 , Autopsia , COVID-19 , SARS-CoV-2 , Serina Endopeptidases , Língua , Tropismo Viral , Humanos , COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Língua/virologia , Língua/patologia , Masculino , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino , Pessoa de Meia-Idade , Serina Endopeptidases/metabolismo , Glândulas Salivares/virologia , Glândulas Salivares/patologia , Idoso , Papilas Gustativas/virologia , Papilas Gustativas/patologia , Receptores Virais/metabolismo
4.
EMBO Rep ; 25(7): 3116-3136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877169

RESUMO

A novel pangolin-origin MERS-like coronavirus (CoV), MjHKU4r-CoV-1, was recently identified. It is closely related to bat HKU4-CoV, and is infectious in human organs and transgenic mice. MjHKU4r-CoV-1 uses the dipeptidyl peptidase 4 (DPP4 or CD26) receptor for virus entry and has a broad host tropism. However, the molecular mechanism of its receptor binding and determinants of host range are not yet clear. Herein, we determine the structure of the MjHKU4r-CoV-1 spike (S) protein receptor-binding domain (RBD) complexed with human CD26 (hCD26) to reveal the basis for its receptor binding. Measuring binding capacity toward multiple animal receptors for MjHKU4r-CoV-1, mutagenesis analyses, and homology modeling highlight that residue sites 291, 292, 294, 295, 336, and 344 of CD26 are the crucial host range determinants for MjHKU4r-CoV-1. These results broaden our understanding of this potentially high-risk virus and will help us prepare for possible outbreaks in the future.


Assuntos
Dipeptidil Peptidase 4 , Especificidade de Hospedeiro , Ligação Proteica , Receptores Virais , Glicoproteína da Espícula de Coronavírus , Tropismo Viral , Humanos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química , Camundongos , Sítios de Ligação , Internalização do Vírus , Modelos Moleculares , Domínios Proteicos , Tropismo ao Hospedeiro
5.
Emerg Infect Dis ; 30(7): 1361-1373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861554

RESUMO

In March 2024, the US Department of Agriculture's Animal and Plant Health Inspection Service reported detection of highly pathogenic avian influenza (HPAI) A(H5N1) virus in dairy cattle in the United States for the first time. One factor that determines susceptibility to HPAI H5N1 infection is the presence of specific virus receptors on host cells; however, little is known about the distribution of the sialic acid (SA) receptors in dairy cattle, particularly in mammary glands. We compared the distribution of SA receptors in the respiratory tract and mammary gland of dairy cattle naturally infected with HPAI H5N1. The respiratory and mammary glands of HPAI H5N1-infected dairy cattle are rich in SA, particularly avian influenza virus-specific SA α2,3-gal. Mammary gland tissues co-stained with sialic acids and influenza A virus nucleoprotein showed predominant co-localization with the virus and SA α2,3-gal. HPAI H5N1 exhibited epitheliotropism within the mammary gland, and we observed rare immunolabeling within macrophages.


Assuntos
Virus da Influenza A Subtipo H5N1 , Glândulas Mamárias Animais , Infecções por Orthomyxoviridae , Receptores de Superfície Celular , Animais , Bovinos , Glândulas Mamárias Animais/virologia , Feminino , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Receptores de Superfície Celular/metabolismo , Doenças dos Bovinos/virologia , Indústria de Laticínios , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Influenza Aviária/virologia
6.
Microbiol Spectr ; 12(7): e0422023, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864599

RESUMO

The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Internalização do Vírus , Replicação Viral , Humanos , Coronavirus Humano NL63/fisiologia , Coronavirus Humano NL63/genética , Coronavirus Humano 229E/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética , Linhagem Celular , Estações do Ano , Cinética , Receptores Virais/metabolismo , Receptores Virais/genética , Resfriado Comum/virologia , Resfriado Comum/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , COVID-19/virologia , COVID-19/metabolismo , Coronavirus/fisiologia , Coronavirus/genética
7.
Cell Host Microbe ; 32(6): 945-946, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870904

RESUMO

In this issue of Cell Host & Microbe, Shang et al. identify murine neuropilin 1 as a host factor that binds reovirus particles, directing cell entry and contributing to viral dissemination and neurovirulence. This study highlights the reovirus model system to investigate host receptors and their significance in viral pathogenesis.


Assuntos
Neurônios , Neuropilina-1 , Reoviridae , Internalização do Vírus , Animais , Camundongos , Neurônios/virologia , Neuropilina-1/metabolismo , Reoviridae/fisiologia , Reoviridae/genética , Reoviridae/patogenicidade , Humanos , Interações Hospedeiro-Patógeno , Infecções por Reoviridae/virologia , Receptores Virais/metabolismo
8.
Front Cell Infect Microbiol ; 14: 1388360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841111

RESUMO

Background: Alphaviruses are a diverse group of pathogens that have garnered considerable attention due to their impact on human health. By investigating alphavirus receptors, researchers can elucidate viral entry mechanisms and gain important clues for the prevention and treatment of viral diseases. This study presents an in-depth analysis of the research progress made in the field of alphavirus receptors through bibliometric analysis. Methods: This study encompasses various aspects, including historical development, annual publication trends, author and cited-author analysis, institutional affiliations, global distribution of research contributions, reference analysis with strongest citation bursts, keyword analysis, and a detailed exploration of recent discoveries in alphavirus receptor research. Results: The results of this bibliometric analysis highlight key milestones in alphavirus receptor research, demonstrating the progression of knowledge in this field over time. Additionally, the analysis reveals current research hotspots and identifies emerging frontiers, which can guide future investigations and inspire novel therapeutic strategies. Conclusion: This study provides an overview of the state of the art in alphavirus receptor research, consolidating the existing knowledge and paving the way for further advancements. By shedding light on the significant developments and emerging areas of interest, this study serves as a valuable resource for researchers, clinicians, and policymakers engaged in combating alphavirus infections and improving public health.


Assuntos
Alphavirus , Bibliometria , Humanos , Receptores Virais/metabolismo , Animais , Internalização do Vírus , Infecções por Alphavirus/virologia , Pesquisa Biomédica/tendências
9.
Nat Microbiol ; 9(7): 1764-1777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849624

RESUMO

Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.


Assuntos
Endocitose , Camundongos Knockout , Receptores de Glutamato Metabotrópico , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Camundongos , Humanos , Internalização do Vírus , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Clatrina/metabolismo , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/metabolismo , Células HEK293 , Actinas/metabolismo , Cães , Células Madin Darby de Rim Canino , Receptores Virais/metabolismo , Receptores Virais/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , Orthomyxoviridae/fisiologia , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo
10.
Nat Commun ; 15(1): 5352, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914547

RESUMO

Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.


Assuntos
Antígeno B7-H1 , Carcinoma de Células Escamosas , Plasticidade Celular , Transição Epitelial-Mesenquimal , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias Cutâneas , Animais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Camundongos , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Imunoterapia/métodos , Transição Epitelial-Mesenquimal/imunologia , Plasticidade Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/imunologia , Receptores Virais/metabolismo , Receptores Virais/genética , Antígeno B7-1/metabolismo , Receptores Imunológicos/metabolismo
11.
Nat Commun ; 15(1): 5175, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890325

RESUMO

The receptor-binding site of influenza A virus hemagglutinin partially overlaps with major antigenic sites and constantly evolves. In this study, we observe that mutations G186D and D190N in the hemagglutinin receptor-binding site have coevolved in two recent human H3N2 clades. X-ray crystallography results show that these mutations coordinately drive the evolution of the hemagglutinin receptor binding mode. Epistasis between G186D and D190N is further demonstrated by glycan binding and thermostability analyses. Immunization and neutralization experiments using mouse and human samples indicate that the evolution of receptor binding mode is accompanied by a change in antigenicity. Besides, combinatorial mutagenesis reveals that G186D and D190N, along with other natural mutations in recent H3N2 strains, alter the compatibility with a common egg-adaptive mutation in seasonal influenza vaccines. Overall, our findings elucidate the role of epistasis in shaping the recent evolution of human H3N2 hemagglutinin and substantiate the high evolvability of its receptor-binding mode.


Assuntos
Epistasia Genética , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Animais , Camundongos , Sítios de Ligação , Influenza Humana/virologia , Mutação , Cristalografia por Raios X , Vacinas contra Influenza , Ligação Proteica , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química , Feminino
12.
Cell Host Microbe ; 32(7): 1089-1102.e10, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38889725

RESUMO

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.


Assuntos
Patos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Antígenos de Histocompatibilidade Classe II , Vírus da Influenza A , Filogenia , Receptores Virais , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Receptores Virais/metabolismo , Receptores Virais/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Patos/virologia , Humanos , Internalização do Vírus , Influenza Aviária/virologia , Sítios de Ligação , Ligação Proteica , Cristalografia por Raios X , Linhagem Celular , Ácido N-Acetilneuramínico/metabolismo , Especificidade de Hospedeiro , Especificidade da Espécie
13.
PLoS Pathog ; 20(6): e1012317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900833

RESUMO

Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo. We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo. In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms.


Assuntos
Adenovírus Humanos , Tropismo Viral , alfa-Defensinas , alfa-Defensinas/metabolismo , Humanos , Adenovírus Humanos/fisiologia , Adenovírus Humanos/metabolismo , Animais , Camundongos , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Receptores Virais/metabolismo , Internalização do Vírus
14.
Nat Commun ; 15(1): 4906, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851803

RESUMO

Various low-density lipoprotein receptors (LPRs) have been identified as entry factors for alphaviruses, and structures of the corresponding virion-receptor complexes have been determined. Here, we analyze the similarities and differences in the receptor binding modes of multiple alphaviruses to understand their ability to infect a wide range of hosts. We further discuss the challenges associated with the development of broad-spectrum treatment strategies against a diverse range of alphaviruses.


Assuntos
Alphavirus , Antivirais , Receptores de LDL , Internalização do Vírus , Animais , Humanos , Alphavirus/efeitos dos fármacos , Alphavirus/fisiologia , Alphavirus/genética , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/virologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Ligação Proteica , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Receptores Virais/química , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos
15.
J Virol ; 98(6): e0164123, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690874

RESUMO

Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galß1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Polissacarídeos , Metapneumovirus/metabolismo , Metapneumovirus/fisiologia , Humanos , Polissacarídeos/metabolismo , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Ligação Viral , Ligação Proteica , Receptores Virais/metabolismo , Linhagem Celular
16.
J Mol Evol ; 92(3): 329-337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777906

RESUMO

The spike protein determines the host-range specificity of coronaviruses. In particular, the Receptor-Binding Motif in the spike protein from SARS-CoV-2 contains the amino acids involved in molecular recognition of the host Angiotensin Converting Enzyme 2. Therefore, to understand how SARS-CoV-2 acquired its capacity to infect humans it is necessary to reconstruct the evolution of this important motif. Early during the pandemic, it was proposed that the SARS-CoV-2 Receptor-Binding Domain was acquired via recombination with a pangolin infecting coronavirus. This proposal was challenged by an alternative explanation that suggested that the Receptor-Binding Domain from SARS-CoV-2 did not originated via recombination with a coronavirus from a pangolin. Instead, this alternative hypothesis proposed that the Receptor-Binding Motif from the bat coronavirus RaTG13, was acquired via recombination with an unidentified coronavirus. And as a consequence of this event, the Receptor-Binding Domain from the pangolin coronavirus appeared as phylogenetically closer to SARS-CoV-2. Recently, the genomes from coronaviruses from Cambodia (bat_RShST182/200) and Laos (BANAL-20-52/103/247) which are closely related to SARS-CoV-2 were reported. However, no detailed analysis of the evolution of the Receptor-Binding Motif from these coronaviruses was reported. Here we revisit the evolution of the Receptor-Binding Domain and Motif in the light of the novel coronavirus genome sequences. Specifically, we wanted to test whether the above coronaviruses from Cambodia and Laos were the source of the Receptor-Binding Domain from RaTG13. We found that the Receptor-Binding Motif from these coronaviruses is phylogenetically closer to SARS-CoV-2 than to RaTG13. Therefore, the source of the Receptor-Binding Domain from RaTG13 is still unidentified. In accordance with previous studies, our results are consistent with the hypothesis that the Receptor-Binding Motif from SARS-CoV-2 evolved by vertical inheritance from a bat-infecting population of coronaviruses.


Assuntos
Evolução Molecular , Filogenia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , Motivos de Aminoácidos , COVID-19/virologia , Ligação Proteica , Betacoronavirus/genética , Quirópteros/virologia , Pangolins/virologia , Sítios de Ligação , Genoma Viral , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/química
17.
Nature ; 630(8016): 501-508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778100

RESUMO

Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2-7. Earlier studies concluded that FLVCR1 may function as a haem exporter8-12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14-16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation-π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.


Assuntos
Colina , Etanolamina , Proteínas de Membrana Transportadoras , Humanos , Sítios de Ligação , Transporte Biológico , Cátions/química , Cátions/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Colina/metabolismo , Colina/química , Etanolamina/metabolismo , Etanolamina/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Conformação Proteica , Receptores Virais/metabolismo , Receptores Virais/química , Especificidade por Substrato , Triptofano/metabolismo , Triptofano/química , Tirosina/metabolismo , Tirosina/química , Mutação
18.
Cell Host Microbe ; 32(6): 980-995.e9, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38729153

RESUMO

Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.


Assuntos
Proteínas do Capsídeo , Neuropilina-1 , Orthoreovirus de Mamíferos , Receptores Virais , Infecções por Reoviridae , Internalização do Vírus , Animais , Camundongos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Orthoreovirus de Mamíferos/metabolismo , Infecções por Reoviridae/virologia , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo , Humanos , Capsídeo/metabolismo , Linhagem Celular , Células HEK293 , Ligação Proteica , Camundongos Endogâmicos C57BL
19.
PLoS Pathog ; 20(5): e1012204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709834

RESUMO

Since the COVID-19 outbreak, raccoon dogs have been suggested as a potential intermediary in transmitting SARS-CoV-2 to humans. To understand their role in the COVID-19 pandemic and the species barrier for SARS-CoV-2 transmission to humans, we analyzed how their ACE2 protein interacts with SARS-CoV-2 spike protein. Biochemical data showed that raccoon dog ACE2 is an effective receptor for SARS-CoV-2 spike protein, though not as effective as human ACE2. Structural comparisons highlighted differences in the virus-binding residues of raccoon dog ACE2 compared to human ACE2 (L24Q, Y34H, E38D, T82M, R353K), explaining their varied effectiveness as receptors for SARS-CoV-2. These variations contribute to the species barrier that exists between raccoon dogs and humans regarding SARS-CoV-2 transmission. Identifying these barriers can help assess the susceptibility of other mammals to SARS-CoV-2. Our research underscores the potential of raccoon dogs as SARS-CoV-2 carriers and identifies molecular barriers that affect the virus's ability to jump between species.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Cães Guaxinins , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , COVID-19/virologia , COVID-19/transmissão , COVID-19/metabolismo , Ligação Proteica , Cães Guaxinins/virologia , Receptores Virais/metabolismo , Receptores Virais/química , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
PLoS Pathog ; 20(5): e1012044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768238

RESUMO

Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes. This combinatorial sequence space between virus and host is poorly understood, as traditional experimental approaches lack the throughput to simultaneously test all possible combinations of protein sequences. Here, we created a pseudotyped virus infection assay where a multiplexed target-cell library of host receptor variants can be assayed simultaneously using a DNA barcode sequencing readout. We applied this assay to test a panel of 30 ACE2 orthologs or human sequence mutants for infectability by the original SARS-CoV-2 spike protein or the Alpha, Beta, Gamma, Delta, and Omicron BA1 variant spikes. We compared these results to an analysis of the structural shifts that occurred for each variant spike's interface with human ACE2. Mutated residues were directly involved in the largest shifts, although there were also widespread indirect effects altering interface structure. The N501Y substitution in spike conferred a large structural shift for interaction with ACE2, which was partially recreated by indirect distal substitutions in Delta, which does not harbor N501Y. The structural shifts from N501Y greatly influenced the set of animal orthologs the variant spike was capable of interacting with. Out of the thirteen non-human orthologs, ten exhibited unique patterns of variant-specific compatibility, demonstrating that spike sequence changes during human transmission can toggle ACE2 compatibility and potential susceptibility of other animal species, and cumulatively increase overall compatibilities as new variants emerge. These experiments provide a blueprint for similar large-scale assessments of protein compatibility during entry by diverse viruses. This dataset demonstrates the complex compatibility relationships that occur between variable interacting host and virus proteins.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , COVID-19/virologia , COVID-19/transmissão , Internalização do Vírus , Receptores Virais/metabolismo , Receptores Virais/genética , Células HEK293 , Pseudotipagem Viral , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA