Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.347
Filtrar
1.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731442

RESUMO

Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.


Assuntos
Anticonvulsivantes , Pentilenotetrazol , Receptores de GABA-A , Convulsões , Anticonvulsivantes/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Animais , Camundongos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Receptores de GABA-A/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/química , Quinazolinonas/síntese química , Simulação de Acoplamento Molecular , Masculino , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Estrutura Molecular , Sítio Alostérico
2.
CNS Neurosci Ther ; 30(5): e14716, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38698533

RESUMO

BACKGROUND: Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS: Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS: MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION: Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.


Assuntos
Anestésicos Inalatórios , Hipocampo , Transtornos da Memória , Receptores de GABA-A , Sevoflurano , Sevoflurano/toxicidade , Animais , Camundongos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Anestésicos Inalatórios/toxicidade , Receptores de GABA-A/metabolismo , Receptores de GABA-A/biossíntese , Receptores de GABA-A/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731820

RESUMO

A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 or knockdown of HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)-an antiseizure drug reported to upregulate HRD1-reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies.


Assuntos
Retículo Endoplasmático , Epilepsias Mioclônicas , Proteólise , Receptores de GABA-A , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Humanos , Convulsões Febris/metabolismo , Convulsões Febris/genética , Degradação Associada com o Retículo Endoplasmático , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Mutação , Células HEK293 , Chaperona BiP do Retículo Endoplasmático/metabolismo
4.
J Headache Pain ; 25(1): 75, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724972

RESUMO

BACKGROUND: GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS: Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS: Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION: Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.


Assuntos
Transtornos de Enxaqueca , Fenótipo , Ratos Wistar , Receptores de GABA-A , Animais , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/fisiopatologia , Ratos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Masculino , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/fisiopatologia , Nitroglicerina/farmacologia , Nitroglicerina/toxicidade , Fotofobia/etiologia , Fotofobia/fisiopatologia
5.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695719

RESUMO

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Assuntos
Microglia , Receptores de GABA-A , Sono de Ondas Lentas , Sinapses , Fator de Necrose Tumoral alfa , Animais , Masculino , Camundongos , Consolidação da Memória , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais , Sono/fisiologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Acta Neuropathol ; 147(1): 80, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714540

RESUMO

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Assuntos
Neurônios GABAérgicos , Interneurônios , Esclerose Tuberosa , Interneurônios/patologia , Interneurônios/metabolismo , Esclerose Tuberosa/patologia , Esclerose Tuberosa/metabolismo , Humanos , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/metabolismo , Masculino , Feminino , Eminência Mediana/patologia , Eminência Mediana/metabolismo , Somatostatina/metabolismo , Criança , Pré-Escolar , Receptores de GABA-A/metabolismo , Adolescente , Eminência Ganglionar
7.
PLoS One ; 19(4): e0298065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626211

RESUMO

Anoxia in the mammalian brain leads to hyper-excitability and cell death; however, this cascade of events does not occur in the anoxia-tolerant brain of the western painted turtle, Chrysemys picta belli. The painted turtle has become an important anoxia-tolerant model to study brain, heart, and liver function in the absence of oxygen, but being anoxia-tolerant likely means that decapitation alone is not a suitable method of euthanasia. Many anesthetics have long-term effects on ion channels and are not appropriate for same day experimentation. Using whole-cell electrophysiological techniques, we examine the effects of the anesthetic, Alfaxalone, on pyramidal cell action potential amplitude, threshold, rise and decay time, width, frequency, whole cell conductance, and evoked GABAA receptors currents to determine if any of these characteristics are altered with the use of Alfaxalone for animal sedation. We find that Alfaxalone has no long-term impact on action potential parameters or whole-cell conductance. When acutely applied to naïve tissue, Alfaxalone did lengthen GABAA receptor current decay rates by 1.5-fold. Following whole-animal sedation with Alfaxalone, evoked whole cell GABAA receptor current decay rates displayed an increasing trend with 1 and 2 hours after brain sheet preparation, but showed no significant change after a 3-hour washout period. Therefore, we conclude that Alfaxalone is a suitable anesthetic for same day use in electrophysiological studies in western painted turtle brain tissue.


Assuntos
Anestésicos , Hipóxia Encefálica , Pregnanodionas , Tartarugas , Animais , Tartarugas/fisiologia , Receptores de GABA-A/metabolismo , Células Piramidais/metabolismo , Hipóxia/metabolismo , Anestésicos/farmacologia , Mamíferos
8.
Cell Cycle ; 23(4): 448-465, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623967

RESUMO

Triple negative breast cancer (TNBC) is known for its heterogeneous nature and aggressive onset. The unresponsiveness to hormone therapies and immunotherapy and the toxicity of chemotherapeutics account for the limited treatment options for TNBC. Ion channels have emerged as possible therapeutic candidates for cancer therapy, but little is known about how ligand gated ion channels, specifically, GABA type A ligand-gated ion channel receptors (GABAAR), affect cancer pathogenesis. Our results show that the GABAA ß3 subunit is expressed at higher levels in TNBC cell lines than non-tumorigenic cells, therefore contributing to the idea that limiting the GABAAR via knockdown of the GABAA ß3 subunit is a potential strategy for decreasing the proliferation and migration of TNBC cells. We employed pharmacological and genetic approaches to investigate the role of the GABAA ß3 subunit in TNBC proliferation, migration, and cell cycle progression. The results suggest that pharmacological antagonism or genetic knockdown of GABAA ß3 subunit decreases TNBC proliferation and migration. In addition, GABAA ß3 subunit knockdown causes cell cycle arrest in TNBC cell lines via decreased cyclin D1 and increased p21 expression. Our findings suggest that membrane bound GABAA receptors containing the ß3 subunit can be further developed as a potential novel target for the treatment of TNBC.


Assuntos
Movimento Celular , Proliferação de Células , Receptores de GABA-A , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Feminino , Ciclo Celular/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética
9.
Life Sci ; 348: 122673, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679193

RESUMO

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Assuntos
Etanol , Técnicas de Introdução de Genes , Receptores de Glicina , Animais , Etanol/farmacologia , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Camundongos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Transgênicos , Receptores de GABA-A
10.
Brain Res ; 1835: 148929, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599510

RESUMO

Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4ßδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4ßδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4ßδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density âˆ¼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4ßδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.


Assuntos
Espinhas Dendríticas , Córtex Pré-Frontal , Receptores de GABA-A , Esquizofrenia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Receptores de GABA-A/metabolismo , Masculino , Esquizofrenia/metabolismo , Camundongos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Camundongos Endogâmicos C57BL , Isoxazóis/farmacologia , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Agonistas de Receptores de GABA-A/farmacologia , Transtorno do Espectro Autista/metabolismo , Reconhecimento Psicológico/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos
11.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604778

RESUMO

The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.


Assuntos
Potenciais da Membrana , Optogenética , Animais , Optogenética/métodos , Camundongos , Masculino , Feminino , Potenciais da Membrana/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Neurônios/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/genética , Camundongos Transgênicos
12.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
13.
Biochem Pharmacol ; 223: 116183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580167

RESUMO

In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1ß2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3ß2 â‰… α3ß4, indicating that ß2/ß4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Receptores de GABA-A/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Simulação de Acoplamento Molecular , Ácido gama-Aminobutírico
14.
Anesthesiology ; 140(6): 1192-1200, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38624275

RESUMO

Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.


Assuntos
Receptores de GABA-A , Animais , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Camundongos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Humanos , Sinapses/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Biomolecules ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672476

RESUMO

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Assuntos
Neuroesteroides , Núcleo Accumbens , Pregnanolona , Receptores de GABA-A , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Camundongos , Receptores de GABA-A/metabolismo , Neuroesteroides/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Masculino , Transmissão Sináptica/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
16.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580182

RESUMO

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Assuntos
Anestesia , Isoxazóis , Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Masculino , Ratos , Isoxazóis/farmacologia , Diazepam/farmacologia , Ratos Sprague-Dawley , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Núcleo Mediodorsal do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/fisiologia , Reflexo de Endireitamento/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
17.
Adv Med Sci ; 69(1): 176-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38561071

RESUMO

PURPOSE: Metabolic syndrome (MetS) is a common disorder associated with disturbed neurotransmitter homeostasis. Memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, was first used in Alzheimer's disease. Allopregnanolone (Allo), a potent positive allosteric modulator of the Gamma-Amino-Butyric Acid (GABA)-A receptors, decreases in neurodegenerative diseases. The study investigated the impact of Memantine versus Allo administration on the animal model of MetS to clarify whether the mechanism of abnormalities is related more to excitatory or inhibitory neurotransmitter dysfunction. MATERIALS AND METHODS: Fifty-six male rats were allocated into 7 groups: 4 control groups, 1 MetS group, and 2 treated MetS groups. They underwent assessment of cognition-related behavior by open field and forced swimming tests, electroencephalogram (EEG) recording, serum markers confirming the establishment of MetS model and hippocampal Glial Fibrillary Acidic Protein (GFAP) and Brain-Derived Neurotrophic Factor (BDNF). RESULTS: Allo improved anxiety-like behavior and decreased grooming frequency compared to Memantine. Both drugs increased GFAP and BDNF expression, improving synaptic plasticity and cognition-related behaviors. The therapeutic effect of Allo was more beneficial regarding lipid profile and anxiety. We reported progressive slowing of EEG waves in the MetS group with Memantine and Allo treatment with increased relative theta and decreased relative delta rhythms. CONCLUSIONS: Both Allo and Memantine boosted the outcome parameters in the animal model of MetS. Allo markedly improved the anxiety-like behavior in the form of significantly decreased grooming frequency compared to the Memantine-treated groups. Both drugs were associated with increased hippocampal GFAP and BDNF expression, indicating an improvement in synaptic plasticity and so, cognition-related behaviors.


Assuntos
Memantina , Síndrome Metabólica , Plasticidade Neuronal , Receptores de GABA-A , Receptores de N-Metil-D-Aspartato , Animais , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Ratos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacologia , Receptores de GABA-A/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Ratos Wistar , Modelos Animais de Doenças
18.
Exp Neurol ; 376: 114775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604438

RESUMO

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS: In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS: No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION: We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.


Assuntos
Receptores de GABA-A , Animais , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Camundongos , Fenótipo , Sono/fisiologia , Sono/genética , Masculino , Camundongos Transgênicos , Tálamo/metabolismo , Tálamo/patologia , Camundongos Endogâmicos C57BL , Eletroencefalografia , Técnicas de Introdução de Genes , Epilepsia/genética , Epilepsia/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Feminino
19.
Medicina (Kaunas) ; 60(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38674283

RESUMO

Background and Objectives: Drug resistant epilepsy (DRE) is a major hurdle in epilepsy, which hinders clinical care, patients' management and treatment outcomes. DRE may partially result from genetic variants that alter proteins responsible for drug targets and drug transporters in the brain. We aimed to examine the relationship between SCN1A, GABRA1 and ABCB1 polymorphism and drug response in epilepsy children in Vietnam. Materials and Methods: In total, 213 children diagnosed with epilepsy were recruited in this study (101 were drug responsive and 112 were drug resistant). Sanger sequencing had been performed in order to detect six single nucleotide polymorphisms (SNPs) belonging to SCN1A (rs2298771, rs3812718, rs10188577), GABRA1 (rs2279020) and ABCB1 (rs1128503, rs1045642) in study group. The link between SNPs and drug response status was examined by the Chi-squared test or the Fisher's exact test. Results: Among six investigated SNPs, two SNPs showed significant difference between the responsive and the resistant group. Among those, heterozygous genotype of SCN1A rs2298771 (AG) were at higher frequency in the resistant patients compared with responsive patients, playing as risk factor of refractory epilepsy. Conversely, the heterozygous genotype of SCN1A rs3812718 (CT) was significantly lower in the resistant compared with the responsive group. No significant association was found between the remaining four SNPs and drug response. Conclusions: Our study demonstrated a significant association between the SCN1A genetic polymorphism which increased risk of drug-resistant epilepsy in Vietnamese epileptic children. This important finding further supports the underlying molecular mechanisms of SCN1A genetic variants in the pathogenesis of drug-resistant epilepsy in children.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Anticonvulsivantes , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.1 , Polimorfismo de Nucleotídeo Único , Receptores de GABA-A , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Vietnã , Masculino , Feminino , Criança , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Pré-Escolar , Epilepsia/genética , Epilepsia/tratamento farmacológico , Receptores de GABA-A/genética , Anticonvulsivantes/uso terapêutico , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Lactente , Genótipo , Adolescente , População do Sudeste Asiático
20.
Artigo em Inglês | MEDLINE | ID: mdl-38681506

RESUMO

Background: Essential tremor patients may find that low alcohol amounts suppress tremor. A candidate mechanism is modulation of α6ß3δ extra-synaptic GABAA receptors, that in vitro respond to non-intoxicating alcohol levels. We previously found that low-dose alcohol reduces harmaline tremor in wild-type mice, but not in littermates lacking δ or α6 subunits. Here we addressed whether low-dose alcohol requires the ß3 subunit for tremor suppression. Methods: We tested whether low-dose alcohol suppresses tremor in cre-negative mice with intact ß3 exon 3 flanked by loxP, and in littermates in which this region was excised by cre expressed under the α6 subunit promotor. Tremor in the harmaline model was measured as a percentage of motion power in the tremor bandwidth divided by overall motion power. Results: Alcohol, 0.500 and 0.575 g/kg, reduced harmaline tremor compared to vehicle-treated controls in floxed ß3 cre- mice, but had no effect on tremor in floxed ß3 cre+ littermates that have ß3 knocked out. This was not due to potential interference of α6 expression by the insertion of the cre gene into the α6 gene since non-floxed ß3 cre+ and cre- littermates exhibited similar tremor suppression by alcohol. Discussion: As α6ß3δ GABAA receptors are sensitive to low-dose alcohol, and cerebellar granule cells express ß3 and are the predominant brain site for α6 and δ expression together, our overall findings suggest alcohol acts to suppress tremor by modulating α6ß3δ GABAA receptors on these cells. Novel drugs that target this receptor may potentially be effective and well-tolerated for essential tremor. Highlights: We previously found with the harmaline essential tremor model that GABAA receptors containing α6 and δ subunits mediate tremor suppression by alcohol. We now show that ß3 subunits in α6-expressing cells, likely cerebellar granule cells, are also required, indicating that alcohol suppresses tremor by modulating α6ß3δ extra-synaptic GABAA receptors.


Assuntos
Tremor Essencial , Etanol , Harmalina , Receptores de GABA-A , Animais , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Harmalina/farmacologia , Tremor Essencial/tratamento farmacológico , Tremor Essencial/genética , Camundongos , Etanol/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA