Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
J Phys Chem B ; 128(20): 4996-5007, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38747451

RESUMO

Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.


Assuntos
Colesterol , Simulação de Dinâmica Molecular , Receptores de Glicina , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Colesterol/química , Colesterol/metabolismo , Animais , Sítio Alostérico , Peixe-Zebra
2.
Science ; 379(6639): 1352-1358, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996198

RESUMO

Glycine is a major neurotransmitter involved in several fundamental neuronal processes. The identity of the metabotropic receptor mediating slow neuromodulatory effects of glycine is unknown. We identified an orphan G protein-coupled receptor, GPR158, as a metabotropic glycine receptor (mGlyR). Glycine and a related modulator, taurine, directly bind to a Cache domain of GPR158, and this event inhibits the activity of the intracellular signaling complex regulator of G protein signaling 7-G protein ß5 (RGS7-Gß5), which is associated with the receptor. Glycine signals through mGlyR to inhibit production of the second messenger adenosine 3',5'-monophosphate. We further show that glycine, but not taurine, acts through mGlyR to regulate neuronal excitability in cortical neurons. These results identify a major neuromodulatory system involved in mediating metabotropic effects of glycine, with implications for understanding cognition and affective states.


Assuntos
Glicina , Receptores Acoplados a Proteínas G , Receptores de Glicina , Glicina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glicina/química , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Transdução de Sinais , Humanos , Células HEK293 , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Domínios Proteicos
3.
Proteins ; 91(3): 400-411, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36271319

RESUMO

The recognition of Cannabis as a source of new compounds suitable for medical use has attracted strong interest from the scientific community in its research, and substantial progress has accumulated regarding cannabinoids' activity; however, a thorough description of their molecular mechanisms of action remains a task to complete. Highlighting their complex pharmacology, the list of cannabinoids' interactors has vastly expanded beyond the canonical cannabinoid receptors. Among those, we have focused our study on the glycine receptor (GlyR), an ion channel involved in the modulation of nervous system responses, including, to our interest, sensitivity to peripheral pain. Here, we report the use of computational methods to investigate possible binding modes between the GlyR and Δ9 -tetrahydrocannabinol (THC). After obtaining a first pose for the THC binding from a biased molecular docking simulation and subsequently evaluating it by molecular dynamic simulations, we found a dynamic system with an identifiable representative binding mode characterized by the specific interaction with two transmembrane residues (Phe293 and Ser296). Complementarily, we assessed the role of membrane cholesterol in this interaction and positively established its relevance for THC binding to GlyR. Lastly, the use of restrained molecular dynamics simulations allowed us to refine the description of the binding mode and of the cholesterol effect. Altogether, our findings contribute to the current knowledge about the GlyR-THC mode of binding and propose a new starting point for future research on how cannabinoids in general, and THC in particular, modulate pain perception in view of its possible clinical applications.


Assuntos
Canabinoides , Cannabis , Dronabinol/metabolismo , Dronabinol/farmacologia , Receptores de Glicina/química , Simulação de Acoplamento Molecular , Canabinoides/química , Canabinoides/farmacologia , Cannabis/metabolismo
4.
Neuroscientist ; 29(6): 767-781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35754344

RESUMO

Startle disease (SD) is characterized by enhanced startle responses, generalized muscle stiffness, unexpected falling, and fatal apnea episodes due to disturbed feedback inhibition in the spinal cord and brainstem of affected individuals. Mutations within the glycine receptor (GlyR) subunit and glycine transporter 2 (GlyT2) genes have been identified in individuals with SD. Impaired inhibitory neurotransmission in SD is due to pre- and/or postsynaptic GlyR or presynaptic GlyT2 dysfunctions. Previous research has focused on mutated GlyRs and GlyT2 that impair ion channel/transporter function or trafficking. With insights provided by recently solved cryo-electron microscopy and X-ray structures of GlyRs, a detailed picture of structural transitions important for receptor gating has emerged, allowing a deeper understanding of SD at the molecular level. Moreover, studies on novel SD mutations have demonstrated a higher complexity of SD, with identification of additional clinical signs and symptoms and interaction partners representing key players for fine-tuning synaptic processes. Although our knowledge has steadily improved during the last years, changes in synaptic localization and GlyR or GlyT2 homeostasis under disease conditions are not yet completely understood. Combined proteomics, interactomics, and high-resolution microscopy techniques are required to reveal alterations in receptor dynamics at the synaptic level under disease conditions.


Assuntos
Doenças do Sistema Nervoso , Receptores de Glicina , Humanos , Microscopia Crioeletrônica , Receptores de Glicina/genética , Receptores de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Mutação/genética
5.
Nature ; 599(7885): 513-517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555840

RESUMO

Glycine receptors (GlyRs) are pentameric, 'Cys-loop' receptors that form chloride-permeable channels and mediate fast inhibitory signalling throughout the central nervous system1,2. In the spinal cord and brainstem, GlyRs regulate locomotion and cause movement disorders when mutated2,3. However, the stoichiometry of native GlyRs and the mechanism by which they are assembled remain unclear, despite extensive investigation4-8. Here we report cryo-electron microscopy structures of native GlyRs from pig spinal cord and brainstem, revealing structural insights into heteromeric receptors and their predominant subunit stoichiometry of 4α:1ß. Within the heteromeric pentamer, the ß(+)-α(-) interface adopts a structure that is distinct from the α(+)-α(-) and α(+)-ß(-) interfaces. Furthermore, the ß-subunit contains a unique phenylalanine residue that resides within the pore and disrupts the canonical picrotoxin site. These results explain why inclusion of the ß-subunit breaks receptor symmetry and alters ion channel pharmacology. We also find incomplete receptor complexes and, by elucidating their structures, reveal the architectures of partially assembled α-trimers and α-tetramers.


Assuntos
Microscopia Crioeletrônica , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animais , Tronco Encefálico , Modelos Moleculares , Fenilalanina/química , Fenilalanina/metabolismo , Picrotoxina/química , Picrotoxina/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de Glicina/ultraestrutura , Medula Espinal , Suínos
6.
Neuron ; 109(17): 2707-2716.e6, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473954

RESUMO

The strychnine-sensitive pentameric glycine receptor (GlyR) mediates fast inhibitory neurotransmission in the mammalian nervous system. Only heteromeric GlyRs mediate synaptic transmission, as they contain the ß subunit that permits clustering at the synapse through its interaction with scaffolding proteins. Here, we show that α2 and ß subunits assemble with an unexpected 4:1 stoichiometry to produce GlyR with native electrophysiological properties. We determined structures in multiple functional states at 3.6-3.8 Å resolutions and show how 4:1 stoichiometry is consistent with the structural features of α2ß GlyR. Furthermore, we show that one single ß subunit in each GlyR gives rise to the characteristic electrophysiological properties of heteromeric GlyR, while more ß subunits render GlyR non-conductive. A single ß subunit ensures a univalent GlyR-scaffold linkage, which means the scaffold alone regulates the cluster properties.


Assuntos
Simulação de Dinâmica Molecular , Multimerização Proteica , Receptores de Glicina/química , Potenciais de Ação , Animais , Células HEK293 , Humanos , Bicamadas Lipídicas/metabolismo , Subunidades Proteicas , Receptores de Glicina/metabolismo , Células Sf9 , Spodoptera
7.
Biomolecules ; 11(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204137

RESUMO

Diminished inhibitory control of spinal nociception is one of the major culprits of chronic pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach explored by several pharmaceutical companies. A particular challenge arises from the need for site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help reduce these side effects. Selective targeting of the α3 subtype of glycine receptors (GlyRs), which is highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing, may help to further narrow down pharmacological intervention on the nociceptive system and increase tolerability. This review provides an update on the physiological properties and functions of α3 subtype GlyRs and on the present state of related drug discovery programs.


Assuntos
Nociceptividade/fisiologia , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Endocanabinoides/farmacologia , Humanos , Nociceptividade/efeitos dos fármacos , Propofol/farmacologia , Estrutura Secundária de Proteína , Receptores de Glicina/química , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Zonisamida/farmacologia
8.
PLoS Comput Biol ; 17(2): e1007856, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571182

RESUMO

Pentameric ligand-gated ion channels (pLGICs) are receptor proteins that are sensitive to their membrane environment, but the mechanism for how lipids modulate function under physiological conditions in a state dependent manner is not known. The glycine receptor is a pLGIC whose structure has been resolved in different functional states. Using a realistic model of a neuronal membrane coupled with coarse-grained molecular dynamics simulations, we demonstrate that some key lipid-protein interactions are dependent on the receptor state, suggesting that lipids may regulate the receptor's conformational dynamics. Comparison with existing structural data confirms known lipid binding sites, but we also predict further protein-lipid interactions including a site at the communication interface between the extracellular and transmembrane domain. Moreover, in the active state, cholesterol can bind to the binding site of the positive allosteric modulator ivermectin. These protein-lipid interaction sites could in future be exploited for the rational design of lipid-like allosteric drugs.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Sítio Alostérico , Animais , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Biologia Computacional , Humanos , Ivermectina/química , Ivermectina/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Receptores de Glicina/química , Receptores de Glicina/metabolismo
9.
Cell Res ; 31(3): 312-325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33139925

RESUMO

Inhibitory synapses are also known as symmetric synapses due to their lack of prominent postsynaptic densities (PSDs) under a conventional electron microscope (EM). Recent cryo-EM tomography studies indicated that inhibitory synapses also contain PSDs, albeit with a rather thin sheet-like structure. It is not known how such inhibitory PSD (iPSD) sheet might form. Here, we demonstrate that the key inhibitory synapse scaffold protein gephyrin, when in complex with either glycine or GABAA receptors, spontaneously forms highly condensed molecular assemblies via phase separation both in solution and on supported membrane bilayers. Multivalent and specific interactions between the dimeric E-domain of gephyrin and the glycine/GABAA receptor multimer are essential for the iPSD condensate formation. Gephyrin alone does not form condensates. The linker between the G- and E-domains of gephyrin inhibits the iPSD condensate formation via autoinhibition. Phosphorylation of specific residues in the linker or binding of target proteins such as dynein light chain to the linker domain regulates gephyrin-mediated glycine/GABAA receptor clustering. Thus, analogous to excitatory PSDs, iPSDs are also formed by phase separation-mediated condensation of scaffold protein/neurotransmitter receptor complexes.


Assuntos
Glicina/metabolismo , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/química , Densidade Pós-Sináptica/metabolismo , Multimerização Proteica/genética , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Animais , Microscopia Crioeletrônica/métodos , Dineínas/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Ratos , Receptores de GABA-A/química , Receptores de Glicina/química , Proteínas Recombinantes/metabolismo , Soluções
10.
Sci Rep ; 10(1): 16569, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024136

RESUMO

The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel family (pLGIC), displays remarkable variations in the affinity and efficacy of the full agonist glycine and the partial agonist taurine depending on the cell system used. Despite detailed insights in the GlyR three-dimensional structure and activation mechanism, little is known about conformational rearrangements induced by these agonists. Here, we characterized the conformational states of the α1 GlyR upon binding of glycine and taurine by microscale thermophoresis expressed in HEK293 cells and Xenopus oocytes after solubilization in amphipathic styrene-maleic acid copolymer nanodiscs. Our results show that glycine and taurine induce different conformational transitions of the GlyR upon ligand binding. In contrast, the variability of agonist affinity is not mediated by an altered conformational change. Thus, our data shed light on specific agonist induced conformational features and mechanisms of pLGIC upon ligand binding determining receptor activation in native environments.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Nanoestruturas , Polímeros , Receptores de Glicina , Animais , Glicina/metabolismo , Células HEK293 , Humanos , Oócitos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Taurina/metabolismo , Xenopus
11.
Biomolecules ; 10(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967116

RESUMO

We report the results of our in silico study of approved drugs as potential treatments for COVID-19. The study is based on the analysis of normal modes of proteins. The drugs studied include chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and α-difluoromethylornithine (DMFO). We applied the tools we developed and standard tools used in the structural biology community. Our results indicate that small molecules selectively bind to stable, kinetically active residues and residues adjoining them on the surface of proteins and inside protein pockets, and that some prefer hydrophobic sites over other active sites. Our approach is not restricted to viruses and can facilitate rational drug design, as well as improve our understanding of molecular interactions, in general.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Pandemias , Pneumonia Viral/tratamento farmacológico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacologia , Enzima de Conversão de Angiotensina 2 , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Antivirais/química , Antivirais/uso terapêutico , Betacoronavirus , Sítios de Ligação , COVID-19 , Cloroquina/química , Cloroquina/farmacologia , Infecções por Coronavirus/prevenção & controle , Reposicionamento de Medicamentos , Eflornitina/química , Eflornitina/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ivermectina/química , Ivermectina/farmacologia , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Pandemias/prevenção & controle , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/efeitos dos fármacos , Pneumonia Viral/prevenção & controle , Prolina/análogos & derivados , Prolina/química , Prolina/farmacologia , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Receptores de Glicina/química , Receptores de Glicina/efeitos dos fármacos , SARS-CoV-2 , Saposinas/química , Saposinas/efeitos dos fármacos , Sofosbuvir/química , Sofosbuvir/farmacologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19
12.
Eur Biophys J ; 49(7): 591-607, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32940715

RESUMO

GABA and glycine act as inhibitory neurotransmitters in the CNS. Inhibitory neurotransmission is mediated via activation of ionotropic GABAA and glycine receptors. We used a modeling approach to explain the opposite effects of the general anesthetic etomidate (ETM) and fenamate mefenamic acid (MFA) on GABA- and glycine-activated currents recorded in isolated cerebellar Purkinje cells and hippocampal pyramidal neurons, respectively. These drugs potentiated GABAARs but blocked GlyRs. We built a homology model of α1ß GlyR based on the cryo-EM structure of open α1 GlyR, used the α1ß3γ2 GABAAR structure from the PDB, and applied Monte-Carlo energy minimization to optimize models of receptors and ligand-receptor complexes. In silico docking suggests that ETM/MFA bind at the transmembrane ß( +)/α( -) intersubunit interface in GABAAR. Our models predict that the bulky side chain of the highly conserved Arg19' residue at the plus interface side wedges the interface and maintains the conducting receptor state. We hypothesized that MFA/ETM binding at the ß( +)/α( -) interface leads to prolongation of receptor life-time in the open state. Having analyzed different GABAAR and GlyR structures available in the PDB, we found that mutual arrangement of the Arg19' and Gln-26' side chains at the plus and minus interface sides, respectively, plays an important role when the receptor switches from the open to closed state. We show that this process is accompanied by narrowing of the intersubunit interfaces, leading to extrusion of the Arg19' side chain from the interface. Our models allow us to explain the lack of GlyR potentiation in our electrophysiological experiments.


Assuntos
Etomidato/química , Ácido Mefenâmico/química , Neurônios/metabolismo , Proteínas Nucleares/química , Oxirredutases/química , Receptores de GABA-A/química , Anestésicos Gerais/farmacologia , Animais , Sítios de Ligação , Simulação por Computador , Bases de Dados de Proteínas , Eletrofisiologia , Fenamatos/química , Glicina/química , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Método de Monte Carlo , Ligação Proteica , Ratos , Ratos Wistar , Receptores de Glicina/química , Transmissão Sináptica
13.
Structure ; 28(6): 690-693.e3, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492413

RESUMO

The glycine receptor (GlyR) is by far the best-characterized pentameric ligand-gated ion channel, with several high-resolution structures from X-ray crystallography, cryoelectron microscopy (cryo-EM), and modeling. Nonetheless, the significance of the currently available open-pore conformations is debated due to their diversity in the pore geometry. Here, we discuss the physiological significance of existing models of the GlyR active state based on conductance and selectivity measurements by computational electrophysiology. The results support the conclusion that the original cryo-EM reconstruction of the active state obtained in detergents as well as its subsequent refinement by molecular dynamics simulations are likely to be non-physiological as they feature artificially dilated ion pores. In addition, the calculations indicate that a physiologically relevant open pore should be constricted within a radius of 2.5 and 2.8 Å, which is consistent with previous modeling, electrophysiology measurements, and the most recent cryo-EM structures obtained in a native lipid membrane environment.


Assuntos
Biologia Computacional/métodos , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica , Cristalografia por Raios X , Fenômenos Eletrofisiológicos , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Transmissão Sináptica
14.
J Neurosci ; 40(25): 4954-4969, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32354853

RESUMO

Glycine receptors (GlyRs) are the major mediators of fast synaptic inhibition in the adult human spinal cord and brainstem. Hereditary mutations to GlyRs can lead to the rare, but potentially fatal, neuromotor disorder hyperekplexia. Most mutations located in the large intracellular domain (TM3-4 loop) of the GlyRα1 impair surface expression levels of the receptors. The novel GLRA1 mutation P366L, located in the TM3-4 loop, showed normal surface expression but reduced chloride currents, and accelerated whole-cell desensitization observed in whole-cell recordings. At the single-channel level, we observed reduced unitary conductance accompanied by spontaneous opening events in the absence of extracellular glycine. Using peptide microarrays and tandem MS-based analysis methods, we show that the proline-rich stretch surrounding P366 mediates binding to syndapin I, an F-BAR domain protein involved in membrane remodeling. The disruption of the noncanonical Src homology 3 recognition motif by P366L reduces syndapin I binding. These data suggest that the GlyRα1 subunit interacts with intracellular binding partners and may therefore play a role in receptor trafficking or synaptic anchoring, a function thus far only ascribed to the GlyRß subunit. Hence, the P366L GlyRα1 variant exhibits a unique set of properties that cumulatively affect GlyR functionality and thus might explain the neuropathological mechanism underlying hyperekplexia in the mutant carriers. P366L is the first dominant GLRA1 mutation identified within the GlyRα1 TM3-4 loop that affects GlyR physiology without altering protein expression at the whole-cell and surface levels.SIGNIFICANCE STATEMENT We show that the intracellular domain of the inhibitory glycine receptor α1 subunit contributes to trafficking and synaptic anchoring. A proline-rich stretch in this receptor domain forms a noncanonical recognition motif important for the interaction with syndapin I (PACSIN1). The disruption of this motif, as present in a human patient with hyperekplexia led to impaired syndapin I binding. Functional analysis revealed that the altered proline-rich stretch determines several functional physiological parameters of the ion channel (e.g., faster whole-cell desensitization) reduced unitary conductance and spontaneous opening events. Thus, the proline-rich stretch from the glycine receptor α1 subunit represents a multifunctional intracellular protein motif.


Assuntos
Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Rigidez Muscular Espasmódica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Animais , Humanos , Mutação , Ligação Proteica/genética , Estrutura Quaternária de Proteína , Transporte Proteico/genética , Receptores de Glicina/química
15.
Sci Rep ; 10(1): 4804, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179786

RESUMO

Glycine receptors (GlyRs) are anion-permeable pentameric ligand-gated ion channels (pLGICs). The GlyR activation is critical for the control of key neurophysiological functions, such as motor coordination, respiratory control, muscle tone and pain processing. The relevance of the GlyR function is further highlighted by the presence of abnormal glycinergic inhibition in many pathophysiological states, such as hyperekplexia, epilepsy, autism and chronic pain. In this context, previous studies have shown that the functional inhibition of  GlyRs containing the α3 subunit is a pivotal mechanism of pain hypersensitivity. This pathway involves the activation of EP2 receptors and the subsequent PKA-dependent phosphorylation of α3GlyRs within the intracellular domain (ICD), which decrease the GlyR-associated currents and enhance neuronal excitability. Despite the importance of this mechanism of glycinergic dis-inhibition associated with dysfunctional α3GlyRs, our current understanding of the molecular events involved is limited. Here, we report that the activation of PKA signaling pathway decreases the unitary conductance of α3GlyRs. We show in addition that the substitution of the PKA-targeted serine with a negatively charged residue within the ICD of α3GlyRs and of chimeric receptors combining bacterial GLIC and α3GlyR was sufficient to generate receptors with reduced conductance. Thus, our findings reveal a potential biophysical mechanism of glycinergic dis-inhibition and suggest that post-translational modifications of the ICD, such as phosphorylation, may shape the conductance of other pLGICs.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Receptores de Glicina/metabolismo , Receptores de Glicina/fisiologia , Substituição de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Receptores de Glicina/química , Receptores de Prostaglandina E Subtipo EP2 , Transdução de Sinais
16.
Cell Rep ; 30(12): 4209-4219.e7, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209479

RESUMO

Cannabinoids are reported to rescue cocaine-induced seizures (CISs), a severe complication in cocaine users. However, the molecular targets for cannabinoid therapy of CISs remain unclear. Here, we report that the systemic administration of cannabinoids alleviates CISs in a CB1/CB2-receptor-independent manner. In HEK293 cells and cortical neurons, cocaine-induced dysfunction of the glycine receptor (GlyR) is restored by cannabinoids. Such restoration is blocked by GlyRα1S296A mutation. Consistently, the therapeutic effects of cannabinoids on CISs are also eliminated in GlyRα1S296A mutant mice. Based on molecular dynamic simulation, the hydrogen-bonding interaction between cocaine and the GlyR is weakened by cannabinoid docking. Without altering cocaine distribution across the brain, cannabinoids significantly suppress cocaine-exaggerated neuronal excitability in the prefrontal cortex (PFC) and hippocampus by rehabilitating extra-synaptic GlyR function. Microinjection of cannabinoids into the PFC and hippocampus restores cocaine-puzzled neural activity and alleviates CISs. These findings suggest that using GlyR-hypersensitive cannabinoids may represent a potential therapeutic strategy for treating CISs.


Assuntos
Encéfalo/fisiopatologia , Canabinoides/farmacologia , Cocaína/efeitos adversos , Receptores de Glicina/metabolismo , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Animais , Encéfalo/metabolismo , Canabidiol/farmacologia , Cocaína/química , Dronabinol/farmacologia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Ligação de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Receptores de Glicina/química , Sinapses/metabolismo
17.
Structure ; 28(1): 130-139.e2, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31753620

RESUMO

Pentameric ligand-gated ion channels are key players in mediating fast neurotransmission. Glycine receptors are chloride-selective members of this receptor family that mediate inhibitory synaptic transmission and are implicated in neurological disorders including autism and hyperekplexia. They have been structurally characterized by both X-ray crystallography and cryoelectron microscopy (cryo-EM) studies, with the latter giving rise to what was proposed as a possible open state. However, recent work has questioned the physiological relevance of this open state structure, since it rapidly collapses in molecular dynamics simulations. Here, we show that the collapse can be avoided by a careful equilibration protocol that reconciles the more problematic regions of the original density map and gives a stable open state that shows frequent selective chloride permeation. The protocol developed in this work provides a means to refine open-like structures of the whole pentameric ligand-gated ion channel superfamily and reconciles the previous issues with the cryo-EM structure.


Assuntos
Receptores de Glicina/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica
18.
Rev. méd. Maule ; 34(2): 8-13, dic. 2019. tab
Artigo em Inglês | LILACS | ID: biblio-1371186

RESUMO

INTRODUCTION: Increasing evidence suggests that changes in the balance of excitatory/inhibitory neurotransmission are involved in the development of the majority of chronic pain forms. In this context, impairment in glycine mediated inhibitory neurotransmission is thought to play a critical role in the disinhibition that accounts for the development and maintenance of central pain hypersensitivity. AIMS: The goal of this study was to evaluate the Glycine Receptor α3 subunit (α3GlyR) expression in neuropathic (Chronic Constriction Injury, CCI) and inflammatory (Zymosan A injected) animal models of chronic pain. RESULTS AND CONCLUSION: RT-qPCR analysis of spinal cord samples showed that glra3 gene expression does not change after 3 days of CCI and 4 hours of Zymosan A injection. However, we found that protein levels evaluated by Western blot increased after inflammatory pain. These data suggest that central sensitization is differentially regulated depending on the type of pain. α3GlyR protein expression plays an important role in the first step of inflammatory pain establishment.


Assuntos
Animais , Receptores de Glicina/metabolismo , Receptores de Glicina/agonistas , Sensibilização do Sistema Nervoso Central/fisiologia , Dor/diagnóstico , Dor/fisiopatologia , Zimosan/administração & dosagem , Medição da Dor/métodos , Análise de Variância , Receptores de Glicina/química , Reação em Cadeia da Polimerase em Tempo Real/métodos
19.
J Steroid Biochem Mol Biol ; 192: 105388, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31176751

RESUMO

Glycine is a major inhibitory neurotransmitter in the CNS, where it modulates both sensory and motor transduction throughout its binding to glycine receptors (GlyRs), pentameric chloride channels that share structural and functional properties with type A γ-aminobutyric acid receptors (GABAAR). A large number of structurally diverse organic compounds have been identified as GlyR and GABAAR allosteric modulators, making these receptors attractive pharmacological targets. Taking into account the recent resolved crystal structures of GABAAR/neurosteroid complexes, and due to the high sequence identity between the GABAAR and GlyR transmembrane domains, in this work we applied molecular modeling methods to explore the neurosteroid binding to GlyR. Our results indicated that neurosteroid binding sites of GABAARs are also conserved in the GlyRs. Furthermore, docking and molecular dynamics simulations predicted that neurosteroids are stably recognized at these sites, providing precise information on the molecular basis of the neurosteroid binding mode to GlyR. The comparison of how allopregnanolone and pregnanolone 3-OH moieties are recognized by the GlyR binding pocket revealed significant differences that may be associated to opposite effects of these isomers on the GlyR response.


Assuntos
Neuroesteroides/química , Neuroesteroides/metabolismo , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Homologia de Sequência
20.
Structure ; 26(11): 1555-1562.e4, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30220542

RESUMO

Glycine receptors (GlyR) mediate fast inhibitory neurotransmission by switching between discrete states in response to ligand-binding events. Recent high-resolution structures from cryoelectron microscopy (cryo-EM) and X-ray crystallography have provided atomistic models for the open and closed states. Notably, the cryo-EM structure in complex with glycine illuminated a previously unreported wide-open state, whose physiological significance is debated. Here, we present the structure of an ion-conducting state of GlyR α1 captured by molecular dynamics and validate its physiological relevance with computational electrophysiology and polyatomic anion permeation simulations. Our analysis suggests that none of the experimental structures is a true representation of the physiologically active state, although previously characterized open channels in GLIC at pH 4, or GluCl/GlyR with ivermectin bound, provide reasonable models. These results open the door to an original functional annotation and support the conclusion that pore closing by desensitization versus deactivation involves the reorientation of the pore-lining helices in opposite directions.


Assuntos
Biologia Computacional/métodos , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animais , Domínio Catalítico , Microscopia Crioeletrônica , Cristalografia por Raios X , Fenômenos Eletrofisiológicos , Humanos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA