Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042
Filtrar
1.
J Endocrinol ; 261(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614123

RESUMO

The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid-receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid-receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.


Assuntos
Colesterol , Receptores de Glucagon , Transdução de Sinais , Humanos , Receptores de Glucagon/metabolismo , Animais , Colesterol/metabolismo , Transdução de Sinais/fisiologia , Metabolismo dos Lipídeos/fisiologia
2.
Peptides ; 176: 171213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604379

RESUMO

Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.


Assuntos
Hormônio Adrenocorticotrópico , Glucagon , Glicopeptídeos , Humanos , Glicopeptídeos/metabolismo , Glucagon/metabolismo , Glucagon/sangue , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/metabolismo , Masculino , Adulto , Feminino , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Hidrocortisona/sangue , Receptores de Glucagon/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/sangue , Pessoa de Meia-Idade
3.
Peptides ; 176: 171219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615717

RESUMO

People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucagon , Obesidade , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo
4.
Biomed Pharmacother ; 174: 116485, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518602

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1)/glucagon (GCG) dual receptor agonists with different receptor selectivity are under investigation and have shown significant improvement in both weight loss and glycemic control, but the optimal potency ratio between the two receptors to balance efficacy and safety remains unclear. EXPERIMENTAL APPROACH: We designed and constructed several dual receptor agonists with different receptor potency ratios using Fc fusion protein technology. The long-term effects of the candidates on body weight and metabolic dysfunction-associated steatotic liver disease (MASLD) were evaluated in diet-induced obese (DIO) model mice, high-fat diet (HFD)-ob/ob mice and AMLN diet-induced MASLD mice. Repeat dose toxicity assays were performed to investigate the safety profile of the candidate (HEC-C070) in Sprague Dawley (SD) rats. KEY RESULTS: The high GCG receptor (GCGR) selectivity of HEC-C046 makes it more prominent than other compounds for weight loss and most MASLD parameters but may lead to safety concerns. The weight change of HEC-C052 with the lowest GCG agonism was inferior to that of selective GLP-1 receptor agonist (GLP-1RA) semaglutide in DIO model mice. The GLP-1R selectivity of HEC-C070 with moderate GCG agonism has a significant effect on weight loss and liver function in obese mice, and its lowest observed adverse effect level (LOAEL) was 30 nmol/kg in the repeat dose toxicity study. CONCLUSION: We compared the potential of the Fc fusion protein GLP-1/GCG dual receptor agonists with different receptor selectivity to provide the setting for future GLP-1/GCG dual receptor agonists to treat obesity and MASLD.


Assuntos
Dieta Hiperlipídica , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Fragmentos Fc das Imunoglobulinas , Obesidade , Receptores de Glucagon , Proteínas Recombinantes de Fusão , Animais , Humanos , Camundongos , Ratos , Dieta Hiperlipídica/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeos Semelhantes ao Glucagon/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos Sprague-Dawley , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Redução de Peso/efeitos dos fármacos
5.
Am J Physiol Endocrinol Metab ; 326(6): E747-E766, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477666

RESUMO

Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.


Assuntos
Incretinas , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/fisiopatologia , Incretinas/uso terapêutico , Incretinas/farmacologia , Animais , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Glucagon/metabolismo
7.
Br J Pharmacol ; 181(12): 1874-1885, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403793

RESUMO

BACKGROUND AND PURPOSE: Cotadutide is a dual GLP-1 and glucagon receptor agonist with balanced agonistic activity at each receptor designed to harness the advantages on promoting liver health, weight loss and glycaemic control. We characterised the effects of cotadutide on glucose, insulin, GLP-1, GIP, and glucagon over time in a quantitative manner using our glucose dynamics systems model (4GI systems model), in combination with clinical data from a multiple ascending dose/Phase 2a (MAD/Ph2a) study in overweight and obese subjects with a history of Type 2 diabetes mellitus (NCT02548585). EXPERIMENTAL APPROACH: The cotadutide PK-4GI systems model was calibrated to clinical data by re-estimating only food related parameters. In vivo cotadutide efficacy was scaled based on in vitro potency. The model was used to explore the effect of weight loss on insulin sensitivity and predict the relative contribution of the GLP-1 and glucagon receptor agonistic effects on glucose. KEY RESULTS: Cotadutide MAD/Ph2a clinical endpoints were successfully predicted. The 4GI model captured a positive effect of weight loss on insulin sensitivity and showed that the stimulating effect of glucagon on glucose production counteracts the GLP-1 receptor-mediated decrease in glucose, resulting in a plateau for glucose decrease around a 200-µg cotadutide dose. CONCLUSION AND IMPLICATIONS: The 4GI quantitative systems pharmacology model was able to predict the clinical effects of cotadutide on glucose, insulin, GLP-1, glucagon and GIP given known in vitro potency. The analyses demonstrated that the quantitative systems pharmacology model, and its successive refinements, will be a valuable tool to support the clinical development of cotadutide and related compounds.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Modelos Biológicos , Receptores de Glucagon , Humanos , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Masculino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Controle Glicêmico , Pessoa de Meia-Idade , Feminino , Adulto , Glucagon/farmacologia , Glucagon/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Relação Dose-Resposta a Droga , Peptídeos
8.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237602

RESUMO

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Assuntos
Receptores de Glucagon , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Receptores de Glucagon/metabolismo , Regulação para Baixo , Camundongos Knockout , Rim/metabolismo , Homeostase/fisiologia , Lipídeos
9.
Eur J Pharmacol ; 962: 176215, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056618

RESUMO

OBJECTIVE: Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS: The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS: OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION: These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores de Glucagon/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oxintomodulina/farmacologia , Oxintomodulina/uso terapêutico , Glucagon/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
10.
Am J Physiol Endocrinol Metab ; 325(5): E595-E609, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729025

RESUMO

Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists. Clinical efficacy studies of several UDRAs have demonstrated favorable results both as monotherapies and when combined with approved hypoglycemics. Although the additive insulinotropic effects of dual glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) agonism were anticipated based on the known actions of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP) alone, the additional benefits from GCGR were largely unexpected. Whether additional synergistic or antagonistic interactions among these G-protein receptor signaling pathways arise from simultaneous stimulation is not known. The signaling pathways affected by dual- and tri-agonism require more trenchant investigation before a comprehensive understanding of the cellular MOA. This knowledge will be essential for understanding the chronic efficacy and safety of these treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Incretinas/farmacologia , Incretinas/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
11.
Front Endocrinol (Lausanne) ; 14: 1217021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554763

RESUMO

Introduction: Oxyntomodulin (Oxm) hormone peptide has a number of beneficial effects on nutrition and metabolism including increased energy expenditure and reduced body weight gain. Despite its many advantages as a potential therapeutic agent, Oxm is subjected to rapid renal clearance and protease degradation limiting its clinical application. Previously, we have shown that subcutaneous administration of a fibrillar Oxm formulation can significantly prolong its bioactivity in vivo from a few hours to a few days. Methods: We used a protease resistant analogue of Oxm, Aib2-Oxm, to form nanfibrils depot and improve serum stability of released peptide. The nanofibrils and monomeric peptide in solution were characterized by spectroscopic, microscopic techniques, potency assay, QCM-D and in vivo studies. Results: We show that in comparison to Oxm, Aib2-Oxm fibrils display a slower elongation rate requiring higher ionic strength solutions, and a higher propensity to dissociate. Upon subcutaneous administration of fibrillar Aib2-Oxm in rodents, a 5-fold increase in bioactivity relative to fibrillar Oxm and a significantly longer bioactivity than free Aib2-Oxm were characterized. Importantly, a decrease in food intake was observed up to 72-hour post-administration, which was not seen for free Aib2-Oxm. Conclusion: Our findings provides compelling evidence for the development of long-lasting peptide fibrillar formulations that yield extended plasma exposure and enhanced in vivo pharmacological response.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glucagon , Ingestão de Alimentos/fisiologia , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Oxintomodulina/química , Oxintomodulina/farmacologia , Peptídeo Hidrolases , Peptídeos/farmacologia , Receptores de Glucagon/metabolismo , Animais
12.
J Diabetes ; 15(12): 1081-1094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596940

RESUMO

INTRODUCTION: The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS: The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS: Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid ß-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION: GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid ß-oxidation and mitochondrial fusion in CMECs.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos , Animais , Receptores de Glucagon/metabolismo , Células Endoteliais , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Dinâmica Mitocondrial , Proteômica , Anticorpos Monoclonais/farmacologia , Ácidos Graxos
13.
Nature ; 620(7975): 904-910, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558880

RESUMO

Arrestins have pivotal roles in regulating G protein-coupled receptor (GPCR) signalling by desensitizing G protein activation and mediating receptor internalization1,2. It has been proposed that the arrestin binds to the receptor in two different conformations, 'tail' and 'core', which were suggested to govern distinct processes of receptor signalling and trafficking3,4. However, little structural information is available for the tail engagement of the arrestins. Here we report two structures of the glucagon receptor (GCGR) bound to ß-arrestin 1 (ßarr1) in glucagon-bound and ligand-free states. These structures reveal a receptor tail-engaged binding mode of ßarr1 with many unique features, to our knowledge, not previously observed. Helix VIII, instead of the receptor core, has a major role in accommodating ßarr1 by forming extensive interactions with the central crest of ßarr1. The tail-binding pose is further defined by a close proximity between the ßarr1 C-edge and the receptor helical bundle, and stabilized by a phosphoinositide derivative that bridges ßarr1 with helices I and VIII of GCGR. Lacking any contact with the arrestin, the receptor core is in an inactive state and loosely binds to glucagon. Further functional studies suggest that the tail conformation of GCGR-ßarr governs ßarr recruitment at the plasma membrane and endocytosis of GCGR, and provides a molecular basis for the receptor forming a super-complex simultaneously with G protein and ßarr to promote sustained signalling within endosomes. These findings extend our knowledge about the arrestin-mediated modulation of GPCR functionalities.


Assuntos
Receptores de Glucagon , beta-Arrestina 1 , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Glucagon/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligantes , Fosfatidilinositóis/metabolismo , Receptores de Glucagon/química , Receptores de Glucagon/metabolismo , Ligação Proteica
14.
J Chem Inf Model ; 63(15): 4934-4947, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37523325

RESUMO

Peptides are sustainable alternatives to conventional therapeutics for G protein-coupled receptor (GPCR) linked disorders, promising biocompatible and tailorable next-generation therapeutics for metabolic disorders including type-2 diabetes, as agonists of the glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R). However, single agonist peptides activating GLP-1R to stimulate insulin secretion also suppress obesity-linked glucagon release. Hence, bioactive peptides cotargeting GCGR and GLP-1R may remediate the blood glucose and fatty acid metabolism imbalance, tackling both diabetes and obesity to supersede current monoagonist therapy. Here, we design and model optimized peptide sequences starting from peptide sequences derived from earlier phage-displayed library screening, identifying those with predicted molecular binding profiles for dual agonism of GCGR and GLP-1R. We derive design rules from extensive molecular dynamics simulations based on peptide-receptor binding. Our newly designed coagonist peptide exhibits improved predicted coupled binding affinity for GCGR and GLP-1R relative to endogenous ligands and could in the future be tested experimentally, which may provide superior glycemic and weight loss control.


Assuntos
Diabetes Mellitus , Glucagon , Humanos , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Peptídeos/farmacologia , Obesidade/metabolismo
15.
Mol Cell Endocrinol ; 577: 112029, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37495090

RESUMO

Diabetes mellitus is a metabolic disease that is characterized by elevated blood sugar. Although glucagon-like peptide-1 receptor agonists (GLP-1RA) lower blood glucose in a glucose-dependent manner, most of them are macromolecule polypeptides. Macromolecular peptides are relatively expensive and inconvenient compared with small molecules. Therefore, this study sought to identify the small molecules binding to GLP-1R via cell membrane chromatography (CMC), confirm their agonistic activity, and further study its beneficial effects in a mouse model of type 2 diabetes mellitus (T2DM) induced by a combination of high-fat diet and streptozotocin. We used CMC, calcium imaging and molecular docking techniques to screen and identify the potential small molecule Schisandrin B (Sch B), which exhibits a strong binding effect to GLP-1R, from the small molecule library of traditional Chinese medicine. Through in-vitro experiments, we found that Sch B stimulated insulin secretion in ß-TC-6 cells, while GLP-1R antagonist Exendin9-39, adenylate cyclase inhibitor SQ22536, and protein kinase A (PKA) inhibitor H89 could significantly inhibit the insulin secretion induced by Sch B. In vivo, Sch B significantly improved fasting blood glucose levels, intraperitoneal glucose tolerance test damage, and the status of pancreatic tissue damage, and reduced serum insulin levels, total cholesterol, triglyceride and low density lipoprotein in T2DM mice. These results indicate that Sch B alleviates T2DM by promoting insulin release through the GLP-1R/cAMP/PKA signaling pathway, suggesting that Sch B may be a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Secreção de Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia , Simulação de Acoplamento Molecular , Receptores de Glucagon/metabolismo , Insulina/metabolismo , Peptídeos/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
16.
Endocr Relat Cancer ; 30(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260318

RESUMO

Glucagon cell hyperplasia and neoplasia (GCHN) is the name of an endocrine receptor disease, whose morphology was first described in 2006. Three years later, this rare disease was found to be to be caused by an inactivating mutation of the glucagon receptor (GCGR) gene. Functionally, the genetic defect mainly affects glucagon signaling in the liver with changes in the metabolism of glycogen, fatty acids and amino acids. Recent results of several studies in GCGR knockout mice suggested that elevated serum amino acid levels probably stimulate glucagon cell hyperplasia with subsequent transformation into glucagon cell neoplasia. This process leads over time to numerous small and some large pancreatic neuroendocrine tumors which are potentially malignant. Despite high glucagon serum levels, the patients develop no glucagonoma syndrome. In 2015, GCHN was identified as an autosomal recessive hereditary disorder.


Assuntos
Células Secretoras de Glucagon , Neoplasias , Animais , Camundongos , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Neoplasias/metabolismo , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Humanos
17.
Drug Des Devel Ther ; 17: 1417-1432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197367

RESUMO

Purpose: The glucagon-like peptide-1 receptor (GLP-1R) is an effective therapeutic target for type 2 diabetes mellitus (T2DM) and non-alcoholic steatohepatitis (NASH). Research has focused on small-molecule GLP-1R agonists because of their ease of use in oral formulations and improved patient compliance. However, no small-molecule GLP-1R agonists are currently available in the market. We aimed to screen for a potential oral small-molecule GLP-1R agonist and evaluated its effect on blood glucose and NASH. Methods: The Connectivity map database was used to screen for candidate small-molecule compounds. Molecular docking was performed using SYBYL software. Rat pancreatic islets were incubated in different concentrations glucose solutions, with cinchonine or Exendin (9-39) added to determine insulin secretion levels. C57BL/6 mice, GLP-1R-/- mice and hGLP-1R mice were used to conduct oral glucose tolerance test. In addition, we fed ob/ob mice with the GAN diet to induce the NASH model. Cinchonine (50 mg/kg or 100 mg/kg) was administered orally twice daily to the mice. Serum liver enzymes were measured using biochemical analysis. Liver tissues were examined using Hematoxylin-eosin staining, Oil Red O staining and Sirius Red staining. Results: Based on the small intestinal transcriptome of geniposide, a recognized small-molecule GLP-1R agonist, we identified that cinchonine exerted GLP-1R agonist-like effects. Cinchonine had a good binding affinity for GLP-1R. Cinchonine promoted glucose-dependent insulin secretion, which could be attenuated significantly by Exendin (9-39), a specific GLP-1R antagonist. Moreover, cinchonine could reduce blood glucose in C57BL/6 and hGLP-1R mice, an effect that could be inhibited with GLP-1R knockout. In addition, cinchonine reduced body weight gain and food intake in ob/ob-GAN NASH mice dose-dependently. 100 mg/kg cinchonine significantly improved liver function by reducing the ALT, ALP and LDH levels. Importantly, 100 mg/kg cinchonine ameliorated hepatic steatosis and fibrosis in NASH mice. Conclusion: Cinchonine, a potential oral small-molecule GLP-1R agonist, could reduce blood glucose and ameliorate NASH, providing a strategy for developing small-molecule GLP-1R agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Glicemia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Simulação de Acoplamento Molecular , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Receptores de Glucagon/uso terapêutico , Camundongos Endogâmicos C57BL
18.
J Biol Chem ; 299(5): 104690, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037304

RESUMO

The pancreatic hormone glucagon activates the glucagon receptor (GCGR), a class B seven-transmembrane G protein-coupled receptor that couples to the stimulatory heterotrimeric G protein and provokes PKA-dependent signaling cascades vital to hepatic glucose metabolism and islet insulin secretion. Glucagon-stimulation also initiates recruitment of the endocytic adaptors, ßarrestin1 and ßarrestin2, which regulate desensitization and internalization of the GCGR. Unlike many other G protein-coupled receptors, the GCGR expressed at the plasma membrane is constitutively ubiquitinated and upon agonist-activation, internalized GCGRs are deubiquitinated at early endosomes and recycled via Rab4-containing vesicles. Herein we report a novel link between the ubiquitination status and signal transduction mechanism of the GCGR. In the deubiquitinated state, coupling of the GCGR to Gs is diminished, while binding to ßarrestin is enhanced with signaling biased to a ßarrestin1-dependent p38 mitogen activated protein kinase (MAPK) pathway. This ubiquitin-dependent signaling bias arises through the modification of lysine333 (K333) on the cytoplasmic face of transmembrane helix V. Compared with the GCGR-WT, the mutant GCGR-K333R has impaired ubiquitination, diminished G protein coupling, and PKA signaling but unimpaired potentiation of glucose-stimulated-insulin secretion in response to agonist-stimulation, which involves p38 MAPK signaling. Both WT and GCGR-K333R promote the formation of glucagon-induced ßarrestin1-dependent p38 signaling scaffold that requires canonical upstream MAPK-Kinase3, but is independent of Gs, Gi, and ßarrestin2. Thus, ubiquitination/deubiquitination at K333 in the GCGR defines the activation of distinct transducers with the potential to influence various facets of glucagon signaling in health and disease.


Assuntos
Glucagon , Receptores de Glucagon , Ubiquitinação , Glucagon/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Humanos , Células HEK293
19.
Cells ; 12(7)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048171

RESUMO

In order to investigate the mechanism of glucagon regulation of gluconeogenesis, primary hepatocytes of the Japanese flounder (Paralichthys olivaceus) were incubated with synthesized glucagon, and methods based on inhibitors and gene overexpression were employed. The results indicated that glucagon promoted glucose production and increased the mRNA levels of glucagon receptor (gcgr), guanine nucleotide-binding protein Gs α subunit (gnas), adenylate cyclase 2 (adcy2), protein kinase A (pka), cAMP response element-binding protein 1 (creb1), peroxisome proliferator-activated receptor-γ coactivator 1α (pgc-1α), phosphoenolpyruvate carboxykinase 1 (pck1), and glucose-6-phosphatase (g6pc) in the hepatocytes. An inhibitor of GCGR decreased the mRNA expression of gcgr, gnas, adcy2, pka, creb1, pgc-1α, pck1, g6pc, the protein expression of phosphorylated CREB and PGC-1α, and glucose production. The overexpression of gcgr caused the opposite results. An inhibitor of PKA decreased the mRNA expression of pgc-1α, pck1, g6pc, the protein expression of phosphorylated-CREB, and glucose production in hepatocytes. A CREB-targeted inhibitor significantly decreased the stimulation by glucagon of the mRNA expression of creb1, pgc-1α, and gluconeogenic genes, and glucose production decreased accordingly. After incubating the hepatocytes with an inhibitor of PGC-1α, the glucagon-activated mRNA expression of pck1 and g6pc was significantly down-regulated. Together, these results demonstrate that glucagon promotes gluconeogenesis through the GCGR/PKA/CREB/PGC-1α pathway in the Japanese flounder.


Assuntos
Linguado , Gluconeogênese , Animais , Gluconeogênese/genética , Glucagon/metabolismo , Linguado/genética , Receptores de Glucagon/metabolismo , Hepatócitos/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , RNA Mensageiro/metabolismo
20.
Peptides ; 165: 171003, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36997003

RESUMO

Within recent decades glucagon receptor (GcgR) agonism has drawn attention as a therapeutic tool for the treatment of type 2 diabetes and obesity. In both mice and humans, glucagon administration enhances energy expenditure and suppresses food intake suggesting a promising metabolic utility. Therefore synthetic optimization of glucagon-based pharmacology to further resolve the physiological and cellular underpinnings mediating these effects has advanced. Chemical modifications to the glucagon sequence have allowed for greater peptide solubility, stability, circulating half-life, and understanding of the structure-function potential behind partial and "super"-agonists. The knowledge gained from such modifications has provided a basis for the development of long-acting glucagon analogues, chimeric unimolecular dual- and tri-agonists, and novel strategies for nuclear hormone targeting into glucagon receptor-expressing tissues. In this review, we summarize the developments leading toward the current advanced state of glucagon-based pharmacology, while highlighting the associated biological and therapeutic effects in the context of diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucagon/agonistas , Glucagon/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Glucagon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA