Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Immunol ; 12: 793918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956227

RESUMO

Interleukin-15, produced by hematopoietic and parenchymal cells, maintains immune cell homeostasis and facilitates activation of lymphoid and myeloid cell subsets. IL-15 interacts with the ligand-binding receptor chain IL-15Rα during biosynthesis, and the IL-15:IL-15Rα complex is trans-presented to responder cells that express the IL-2/15Rßγc complex to initiate signaling. IL-15-deficient and IL-15Rα-deficient mice display similar alterations in immune cell subsets. Thus, the trimeric IL-15Rαßγc complex is considered the functional IL-15 receptor. However, studies on the pathogenic role of IL-15 in inflammatory and autoimmune diseases indicate that IL-15 can signal independently of IL-15Rα via the IL-15Rßγc dimer. Here, we compared the ability of mice lacking IL-15 (no signaling) or IL-15Rα (partial/distinct signaling) to control Listeria monocytogenes infection. We show that IL-15-deficient mice succumb to infection whereas IL-15Rα-deficient mice clear the pathogen as efficiently as wildtype mice. IL-15-deficient macrophages did not show any defect in bacterial uptake or iNOS expression in vitro. In vivo, IL-15 deficiency impaired the accumulation of inflammatory monocytes in infected spleens without affecting chemokine and pro-inflammatory cytokine production. The inability of IL-15-deficient mice to clear L. monocytogenes results from impaired early IFNγ production, which was not affected in IL-15Rα-deficient mice. Administration of IFNγ partially enabled IL-15-deficient mice to control the infection. Bone marrow chimeras revealed that IL-15 needed for early bacterial control can originate from both hematopoietic and non-hematopoietic cells. Overall, our findings indicate that IL-15-dependent IL-15Rα-independent signaling via the IL-15Rßγc dimeric complex is necessary and sufficient for the induction of IFNγ from sources other than NK/NKT cells to control bacterial pathogens.


Assuntos
Interferon gama/metabolismo , Interleucina-15/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/imunologia , Receptores de Interleucina-15/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interferon gama/genética , Interleucina-15/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Receptores de Interleucina-15/genética , Transdução de Sinais , Quimeras de Transplante
2.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638566

RESUMO

Natural killer (NK) cells, members of the innate immune system, play an important role in the rejection of HLA class I negative tumor cells. Hence, a therapeutic vaccine, which can activate NK cells in addition to cells of the adaptive immune system might induce a more comprehensive cellular response, which could lead to increased tumor elimination. Dendritic cells (DCs) are capable of activating and expanding NK cells, especially when the NFκB pathway is activated in the DCs thereby leading to the secretion of the cytokine IL-12. Another prominent NK cell activator is IL-15, which can be bound by the IL-15 receptor alpha-chain (IL-15Rα) to be transpresented to the NK cells. However, monocyte-derived DCs do neither secrete IL-15, nor express the IL-15Rα. Hence, we designed a chimeric protein consisting of IL-15 and the IL-15Rα. Upon mRNA electroporation, the fusion protein was detectable on the surface of the DCs, and increased the potential of NFκB-activated, IL-12-producing DC to activate NK cells in an autologous cell culture system with ex vivo-generated cells from healthy donors. These data show that a chimeric IL-15/IL-15Rα molecule can be expressed by monocyte-derived DCs, is trafficked to the cell surface, and is functional regarding the activation of NK cells. These data represent an initial proof-of-concept for an additional possibility of further improving cellular DC-based immunotherapies of cancer.


Assuntos
Células Dendríticas/imunologia , Interleucina-15/biossíntese , Células Matadoras Naturais/imunologia , Receptores de Interleucina-15/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Células Dendríticas/efeitos dos fármacos , Eletroporação , Humanos , Quinase I-kappa B/biossíntese , Quinase I-kappa B/genética , Imunoterapia , Interleucina-15/química , Interleucina-15/genética , Células Matadoras Naturais/efeitos dos fármacos , Leucócitos Mononucleares , NF-kappa B/farmacologia , Cultura Primária de Células , Receptores de Interleucina-15/química , Receptores de Interleucina-15/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
3.
J Immunol ; 207(3): 837-848, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282004

RESUMO

Dendritic cells (DCs) are critical for pathogen recognition and Ag processing/presentation. Human monocyte-derived DCs (moDCs) have been extensively used in experimental studies and DC-based immunotherapy approaches. However, the extent of human moDC and peripheral DCs heterogeneity and their interrelationship remain elusive. In this study, we performed single-cell RNA sequencing of human moDCs and blood DCs. We identified seven subtypes within moDCs: five corresponded to type 2 conventional DCs (cDC2s), and the other two were CLEC10A+CD127+ cells with no resemblance to any peripheral DC subpopulations characterized to date. Moreover, we defined five similar subtypes in human cDC2s, revealed the potential differentiation trajectory among them, and unveiled the transcriptomic differences between moDCs and cDC2s. We further studied the transcriptomic changes of each moDC subtype during maturation, demonstrating SLAMF7 and IL15RA as maturation markers and CLEC10A and SIGLEC10 as markers for immature DCs. These findings will enable more accurate functional/developmental analyses of human cDC2s and moDCs.


Assuntos
Células Dendríticas/fisiologia , Monócitos/fisiologia , Análise de Célula Única/métodos , Adulto , Diferenciação Celular/genética , Células Cultivadas , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lectinas/genética , Lectinas Tipo C/genética , Masculino , Receptores de Superfície Celular/genética , Receptores de Interleucina-15/genética , Análise de Sequência de RNA , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Células Th2/imunologia , Adulto Jovem
4.
EBioMedicine ; 68: 103390, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34127431

RESUMO

BACKGROUND: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our healthcare system. Here we sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. METHOD: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic goals, and finding therapeutic solutions. FINDINGS: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine prognosticated disease severity. INTERPRETATION: The ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. FUNDING: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and GM138385 (to DS) and AI141630 (to P.G), DK107585-05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-AI142742 (to S. C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office (RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. ONE SENTENCE SUMMARY: The host immune response in COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Antivirais/administração & dosagem , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Interleucina-15/genética , Receptores de Interleucina-15/genética , Viroses/genética , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Inteligência Artificial , Autopsia , COVID-19/imunologia , Cricetinae , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Redes Reguladoras de Genes/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Interleucina-15/sangue , Pulmão/imunologia , Mesocricetus , Pandemias , Receptores de Interleucina-15/sangue , Viroses/imunologia , Tratamento Farmacológico da COVID-19
5.
Mol Ther ; 29(10): 2949-2962, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34091051

RESUMO

Advances in immunostimulatory and anti-immunosuppressive therapeutics have revolutionized cancer treatment. However, novel immunotherapeutics with these dual functions are not frequently reported. Here we describe the creation of a heterodimeric bifunctional fusion molecule, HCW9218, constructed using our soluble tissue factor (TF)-based scaffold technology. This complex comprises extracellular domains of the human transforming growth factor-ß (TGF-ß) receptor II and a human interleukin-15 (IL-15)/IL-15 receptor α complex. HCW9218 can be readily expressed in CHO cells and purified using antibody-based affinity chromatography in a large-scale manufacturing setting. HCW9218 potently activates mouse natural killer (NK) cells and CD8+ T cells in vitro and in vivo to enhance cell proliferation, metabolism, and antitumor cytotoxic activities. Similarly, human immune cells become activated with increased cytotoxicity following incubation with HCW9218. This fusion complex also exhibits TGF-ß neutralizing activity in vitro and sequesters plasma TGF-ß in vivo. In a syngeneic B16F10 melanoma model, HCW9218 displayed strong antitumor activity mediated by NK cells and CD8+ T cells and increased their infiltration into tumors. Repeat-dose subcutaneous administration of HCW9218 was well tolerated by mice, with a half-life sufficient to provide long-lasting biological activity. Thus, HCW9218 may serve as a novel therapeutic to simultaneously provide immunostimulation and lessen immunosuppression associated with tumors.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Interleucina-15/genética , Células Matadoras Naturais/metabolismo , Melanoma Experimental/tratamento farmacológico , Receptor do Fator de Crescimento Transformador beta Tipo II/química , Receptores de Interleucina-15/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Injeções Subcutâneas , Interleucina-15/metabolismo , Melanoma Experimental/imunologia , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Interleucina-15/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Crescimento Transformador beta/sangue , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Immunol ; 227: 108752, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33945873

RESUMO

Eosinophilic esophagitis (EoE) is often misdiagnosed as GERD; therefore, the goal of the current study is to establish a non-invasive diagnostic and monitoring biomarker that differentiated GERD from EoE. Reports indicates that IL-15 responsive iNKT cells and tissue specific IgE have a critical in EoE pathogenesis, not in GERD. Therefore, we tested the hypothesis that the panel of IL-15-responsive T cell and IgE receptors may be novel non-invasive biomarkers for EoE. Accordingly, the receptors of IL-15 responsive T cells (Vα24, Jα18, γδT, αßT) and IgE (FcεRI & FcεRII) were examined. The data indicates that blood mRNA levels of Vα24, Jα18, γδ T, αß T and FcεRI are significantly reduced in EoE compared to the GERD patients and normal individuals. The ROC curve analysis indicated FcεRII, Jα18 and δ TCR are the positive predictors that discriminate EoE from GERD. Thus, these molecules will be a novel non-invasive diagnostic biomarker for EoE.


Assuntos
Esofagite Eosinofílica/sangue , Refluxo Gastroesofágico/sangue , RNA Mensageiro/sangue , Receptores de Antígenos de Linfócitos T/genética , Receptores de IgE/genética , Receptores de Interleucina-15/genética , Adolescente , Criança , Pré-Escolar , Diagnóstico Diferencial , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/patologia , Feminino , Refluxo Gastroesofágico/diagnóstico , Humanos , Masculino , Células T Matadoras Naturais/metabolismo , Curva ROC , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Adulto Jovem
7.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34001523

RESUMO

BACKGROUND: NKTR-255 is a novel polyethylene glycol-conjugate of recombinant human interleukin-15 (rhIL-15), which was designed to retain all known receptor binding interactions of the IL-15 molecule. We explored the biologic and pharmacologic differences between endogenous IL-15 receptor α (IL-15Rα)-dependent (NKTR-255 and rhIL-15) and IL-15Rα-independent (precomplexed rhIL-15/IL-15Rα) cytokines. METHODS: In vitro pharmacological properties of rhIL-15, NKTR-255 and precomplex cytokines (rhIL-15/IL-15Rα and rhIL-15 N72D/IL-15Rα Fc) were investigated in receptor binding, signaling and cell function. In vivo pharmacokinetic (PK) and pharmacodynamic profile of the cytokines were evaluated in normal mice. Finally, immunomodulatory effect and antitumor activity were assessed in a Daudi lymphoma model. RESULTS: NKTR-255 and rhIL-15 exhibited similar in vitro properties in receptor affinity, signaling and leukocyte degranulation, which collectively differed from precomplexed cytokines. Notably, NKTR-255 and rhIL-15 stimulated greater granzyme B secretion in human peripheral blood mononuclear cells versus precomplexed cytokines. In vivo, NKTR-255 exhibited a PK profile with reduced clearance and a longer half-life relative to rhIL-15 and demonstrated prolonged IL-15R engagement in lymphocytes compared with only transient engagement observed for rhIL-15 and precomplexed rhIL-15 N72D/IL-15Rα Fc. As a consequent, NKTR-255 provided a durable and sustained proliferation and activation of natural killer (NK) and CD8+ T cells. Importantly, NKTR-255 is more effective than the precomplexed cytokine at inducing functionally competent, cytotoxic NK cells in the tumor microenvironment and the properties of NKTR-255 translated into superior antitumor activity in a B-cell lymphoma model versus the precomplexed cytokine. CONCLUSIONS: Our results show that the novel immunotherapeutic, NKTR-255, retains the full spectrum of IL-15 biology, but with improved PK properties, over rhIL-15. These findings support the ongoing phase 1 first-in-human trial (NCT04136756) of NKTR-255 in participants with relapsed or refractory hematologic malignancies, potentially advancing rhIL-15-based immunotherapies for the treatment of cancer.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Interleucina-15/uso terapêutico , Linfócitos/efeitos dos fármacos , Polietilenoglicóis/uso terapêutico , Receptores de Interleucina-15/agonistas , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linfoma de Burkitt/patologia , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Interleucina-15/farmacocinética , Interleucina-15/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo , Transdução de Sinais , Microambiente Tumoral
9.
Front Immunol ; 12: 623280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732245

RESUMO

Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.


Assuntos
Células Epiteliais/metabolismo , Imunidade Inata , Interleucina-15/metabolismo , Receptores de Interleucina-15/metabolismo , Subpopulações de Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Animais , Comunicação Celular , Microambiente Celular , Bases de Dados Genéticas , Células Epiteliais/imunologia , Humanos , Interleucina-15/genética , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores de Interleucina-15/genética , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Timócitos/imunologia , Timo/citologia , Timo/imunologia
10.
Front Immunol ; 11: 1385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793194

RESUMO

Objective: Interleukin-15 (IL-15) is a pro-inflammatory cytokine that is increased in joint fluids of early-stage osteoarthritis (OA) patients, and has been associated with expression of proteases that can damage cartilage, and the development of neuropathic pain-like symptoms (NP) after nerve injury. The objective of this study was to further explore the role of IL-15 in the pathogenesis of OA cartilage degeneration and test genetic variation in the IL-15 receptor α gene (IL15RA) for an association with OA with radiographic severity and symptoms. Methods: Cartilage samples from donors (n = 10) were analyzed for expression of the IL15 receptor α-chain using immunohistochemistry, and for responses to IL-15 in vitro using explant cultures. Data from two independent Nottinghamshire-based studies (n = 795 and n = 613) were used to test genetic variants in the IL15RA gene (rs2228059 and rs7097780) for an association with radiographic severity, symptomatic vs. asymptomatic OA and NP. Results: IL-15Rα was expressed in chondrocytes from cartilage obtained from normal and degenerative knees. IL-15 significantly increased the release of matrix metalloproteinase-1 and -3 (MMP-1 and -3), but did not affect loss of proteoglycan from the articular matrix. Genetic variants in the IL15RA gene are associated with risk of symptomatic vs. asymptomatic OA (rs7097780 OR = 1.48 95% 1.10-1.98 p < 0.01) and with the risk of NP post-total joint replacement (rs2228059 OR = 0.76 95% 0.63-0.92 p < 0.01) but not with radiographic severity. Conclusions: In two different cohorts of patients, we show an association between genetic variation at the IL15 receptor and pain. Although ex vivo cartilage explants could respond to IL-15 with increased protease production, we found no effect of IL-15 on cartilage matrix loss and no association between IL15RA variants and radiographic severity. Together, these results suggest that IL-15 signaling may be a target for pain, but may not impact structural progression, in OA.


Assuntos
Interleucina-15/metabolismo , Osteoartrite , Peptídeo Hidrolases/metabolismo , Receptores de Interleucina-15/genética , Adolescente , Adulto , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Dor/etiologia , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-15/metabolismo , Adulto Jovem
11.
Gastroenterology ; 158(3): 625-637.e13, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622625

RESUMO

BACKGROUND & AIMS: Gamma chain (γc) cytokines (interleukin [IL]2, IL4, IL7, IL9, IL15, and IL21) signal via a common γc receptor. IL2 regulates the immune response, whereas IL21 and IL15 contribute to development of autoimmune disorders, including celiac disease. We investigated whether BNZ-2, a peptide designed to inhibit IL15 and IL21, blocks these cytokines selectively and its effects on intraepithelial cytotoxic T cells. METHODS: We obtained duodenal biopsies from 9 patients with potential celiac disease (positive results from tests for anti-TG2 but no villous atrophy), 30 patients with untreated celiac disease (with villous atrophy), and 5 patients with treated celiac disease (on a gluten-free diet), as well as 43 individuals without celiac disease (controls). We stimulated primary intestinal intraepithelial CD8+ T-cell lines, or CD8+ T cells directly isolated from intestinal biopsies, with γc cytokines in presence or absence of BNZ-2. Cells were analyzed by immunoblots, flow cytometry, or RNA-sequencing analysis for phosphorylation of signaling molecules, gene expression profiles, proliferation, and levels of granzyme B. RESULTS: Duodenal tissues from patients with untreated celiac disease had increased levels of messenger RNAs encoding IL15 receptor subunit alpha (IL15RA) and IL21 compared with tissues from patients with potential celiac disease and controls. Activation of intraepithelial cytotoxic T cells with IL15 or IL21 induced separate signaling pathways; incubation of the cells with IL15 and IL21 cooperatively increased their transcriptional activity, proliferation, and cytolytic properties. BNZ-2 specifically inhibited the effects of IL15 and IL21, but not of other γc cytokines. CONCLUSIONS: We found increased expression of IL15RA and IL21 in duodenal tissues from patients with untreated celiac disease compared with controls. IL15 and IL21 cooperatively activated intestinal intraepithelial cytotoxic T cells. In particular, they increased their transcriptional activity, proliferation, and cytolytic activity. The peptide BNZ-2 blocked these effects, but not those of other γc cytokines, including IL2. BNZ-2 might be used to prevent cytotoxic T-cell-mediated tissue damage in complex immune disorders exhibiting upregulation of IL15 and IL21.


Assuntos
Benzodiazepinas/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/fisiologia , Subunidade gama Comum de Receptores de Interleucina/antagonistas & inibidores , Interleucina-15/farmacologia , Interleucinas/farmacologia , Estudos de Casos e Controles , Doença Celíaca/imunologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Duodeno/patologia , Humanos , Interleucina-15/genética , Interleucinas/genética , Cultura Primária de Células , RNA Mensageiro , Receptores de Interleucina-15/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
12.
J Immunother Cancer ; 7(1): 355, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856922

RESUMO

Cytokines of the common γ-chain receptor family such as IL-15 are vital with respect to activating immune cells, sustaining healthy immune functions, and augmenting the anti-tumor activity of effector cells, making them ideal candidates for cancer immunotherapy. IL-15, either in its soluble form (IL-15sol) or complexed with IL-15Rα (IL-15Rc), has been shown to exhibit potent anti-tumor activities in various experimental cancer studies. Here we describe the impact of intraperitoneal IL-15 in a cancer cell-delivered IL-15 immunotherapy approach using the 70Z/3-L leukemia mouse model. Whereas both forms of IL-15 led to significantly improved survival rates compared to the parent cell line, there were striking differences in the extent of the improved survival: mice receiving cancer cells secreting IL-15sol showed significantly longer survival and protective long-term immunity compared to those producing IL-15Rc. Interestingly, injection of leukemia cells secreting IL-15sol lead to heightened expansion of CD4+ and CD8+ T-cell populations in the peritoneum compared to IL-15Rc. Cell-secreted IL-15Rc resulted in an influx and/or expansion of NK1.1+ cells in the peritoneum which was much less pronounced in the IL-15sol model. Furthermore, IL-15Rc but not IL-15sol lead to T-cell exhaustion and disease progression. To our knowledge, this is the first study detailing a significantly different biological effect of cell-delivered IL-15sol versus IL-15Rc in a mouse cancer immunotherapy study.


Assuntos
Imunomodulação , Imunoterapia , Interleucina-15/metabolismo , Leucemia/etiologia , Leucemia/metabolismo , Receptores de Interleucina-15/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Interleucina-15/sangue , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia/patologia , Leucemia/terapia , Melanoma Experimental , Camundongos , Ligação Proteica , Receptores de Interleucina-15/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução Genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Immunol Immunother ; 68(8): 1379-1389, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31338557

RESUMO

Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide and epidermal growth factor receptor (EGFR) is overexpressed in greater than 90% of patient tumors. Cetuximab is a monoclonal antibody that binds to EGFR and can activate immune cells, such as natural killer (NK) cells, that express receptors for the Fc (constant region) of immunoglobulin G. IL-15 (interleukin-15) is a critical factor for the development, proliferation and activation of effector NK cells. A novel IL-15 compound known as ALT-803 that consists of genetically modified IL-15 plus the IL-15 receptor alpha protein (IL15Rα) fused to the Fc portion of IgG1 has recently been developed. We hypothesized that treatment with ALT-803 would increase NK cell-mediated cytotoxicity of cetuximab-coated head and neck squamous cells. CD56+ NK cells from normal healthy donors were treated overnight with ALT-803 and tested for their ability to lyse cetuximab-coated tumor cells. Cytotoxicity was greater following NK cell ALT-803 activation, as compared to controls. ALT-803-treated NK cells secreted significantly higher levels of IFN-γ than control conditions. Additionally, NK cells showed increased levels of phospho-ERK and phospho-STAT5 when co-cultured with cetuximab-coated tumors and ALT-803. Administration of both cetuximab and ALT-803 to mice harboring Cal27 SCCHN tumors resulted in significantly decreased tumor volume when compared to controls and compared to single-agent treatment alone. Overall, the present data suggest that cetuximab treatment in combination with ALT-803 in patients with EGFR-positive SCCHN may result in significant NK cell activation and have important anti-tumor activity.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Cetuximab/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Proteínas/uso terapêutico , Animais , Carcinoma de Células Escamosas/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Interferon gama/metabolismo , Interleucina-15/genética , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária , Camundongos , Proteínas/genética , Receptores de Interleucina-15/genética , Proteínas Recombinantes de Fusão/genética , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Free Radic Biol Med ; 139: 80-91, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078730

RESUMO

Oxidative stress and effector memory CD8+ T cells have been greatly implicated in vitiligo pathogenesis. However, the crosstalk between these two crucial pathogenic factors has been merely investigated. IL-15 has been regarded as an important cytokine exerting its facilitative effect on memory CD8+ T cells function in various autoimmune diseases. In the present study, we initially discovered that the IL-15 expression was significantly increased in vitiligo epidermis and highly associated with epidermal H2O2 content. In addition, epidermal IL-15 expression was mainly derived from keratinocytes. Then, we showed that oxidative stress promoted IL-15 and IL-15Rα expression as well as IL-15 trans-presentation by activating NF-κB signaling in keratinocytes. What's more, the trans-presented IL-15, rather than the secreted one, was accounted for the potentiation of CD8+ TEMs activation. We further investigated the mechanism underlying trans-presented IL-15 in potentiating CD8+ TEMs activation and found that the blockage of IL-15-JAK-STAT signaling could be a potent therapeutic approach. Taken together, our results demonstrate that oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to the activation of CD8+ TEMs, providing a novel mechanism by which oxidative stress initiates autoimmunity in vitiligo.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Interleucina-15/genética , Janus Quinase 1/genética , Queratinócitos/metabolismo , Fator de Transcrição STAT3/genética , Vitiligo/genética , Anti-Inflamatórios/farmacologia , Betametasona/análogos & derivados , Betametasona/farmacologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Técnicas de Cocultura , Combinação de Medicamentos , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Interleucina-15/metabolismo , Janus Quinase 1/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Ativação Linfocitária/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/patologia , Estresse Oxidativo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina-15/antagonistas & inibidores , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Vitiligo/metabolismo , Vitiligo/patologia
15.
Proc Natl Acad Sci U S A ; 116(2): 599-608, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587590

RESUMO

Previous studies have provided evidence that IL-15 expression within human tumors is crucial for optimal antitumor responses; however, the regulation of IL-15 within the tumor microenvironment (TME) is unclear. We report herein, in analyses of mice implanted with various tumor cell lines, soluble IL-15/IL-15Rα complexes (sIL-15 complexes) are abundant in the interstitial fluid of tumors with expression preceding the infiltration of tumor-infiltrating lymphocytes. Moreover, IL-15 as well as type I IFN, which regulates IL-15, was required for establishing normal numbers of CD8 T cells and natural killer cells in tumors. Depending on tumor type, both the tumor and the stroma are sources of sIL-15 complexes. In analyses of IL-15 reporter mice, most myeloid cells in the TME express IL-15 with CD11b+Ly6Chi cells being the most abundant, indicating there is a large source of IL-15 protein in tumors that lies sequestered within the tumor stroma. Despite the abundance of IL-15-expressing cells, the relative levels of sIL-15 complexes are low in advanced tumors but can be up-regulated by local stimulator of IFN genes (STING) activation. Furthermore, while treatment of tumors with STING agonists leads to tumor regression, optimal STING-mediated immunity and regression of distant secondary tumors required IL-15 expression. Overall, our study reveals the dynamic regulation of IL-15 in the TME and its importance in antitumor immunity. These findings provide insight into an unappreciated attribute of the tumor landscape that contributes to antitumor immunity, which can be manipulated therapeutically to enhance antitumor responses.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Interleucina-15/imunologia , Melanoma/imunologia , Proteínas de Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-15/genética , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/imunologia , Microambiente Tumoral/genética
16.
Cancer Immunol Res ; 6(7): 860-869, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29691234

RESUMO

Treatment of multiple myeloma (MM) cells with sublethal doses of genotoxic drugs leads to senescence and results in increased NK cell recognition and effector functions. Herein, we demonstrated that doxorubicin- and melphalan-treated senescent cells display increased expression of IL15, a cytokine involved in NK cell activation, proliferation, and maturation. IL15 upregulation was evident at the mRNA and protein level, both in MM cell lines and malignant plasma cells from patients' bone marrow (BM) aspirates. However, IL15 was detectable as a soluble cytokine only in vivo, thus indicating a functional role of IL15 in the BM tumor microenvironment. The increased IL15 was accompanied by enhanced expression of the IL15/IL15RA complex on the membrane of senescent myeloma cells, allowing the functional trans-presentation of this cytokine to neighboring NK cells, which consequently underwent activation and proliferation. We demonstrated that MM cell-derived exosomes, the release of which was augmented by melphalan treatment in senescent cells, also expressed IL15RA and IL15, and their interaction with NK cells in the presence of exogenous IL15 resulted in increased proliferation. Altogether, our data demonstrated that low doses of chemotherapeutic drugs, by inducing tumor cell senescence and a senescence-associated secretory phenotype, promoted IL15 trans-presentation to NK cells and, in turn, their activation and proliferation, thus enhancing NK cell-tumor immune surveillance and providing new insights for the exploitation of senescence-based cancer therapies. Cancer Immunol Res; 6(7); 860-9. ©2018 AACR.


Assuntos
Senescência Celular , Exossomos/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Senescência Celular/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo
17.
Cytokine ; 99: 73-79, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28738233

RESUMO

Celiac disease is a chronic autoimmune condition triggered by dietary gluten in genetically predisposed individuals and the treatment is a strict gluten-free diet. The major predisposing genes are HLA-DQA1 and HLA-DQB1, but these are not sufficient for disease development. One of the candidate genes worth studying is interleukin (IL)-15 gene, together with its specific receptor, IL-15Rα, as they participate in promoting lymphocyte signaling and survival, and the establishment of appropriate conditions for villous atrophy, then acting as key players in the immunopathogenesis of CD. Here we analyze IL-15 and IL-15Rα genes in samples from the Spanish Consortium for Genetics of Celiac Disease (CEGEC) collection, identifying two regulatory single-nucleotide polymorphisms (SNP) that might be associated with celiac disease: rs4956400 (p-value 0.0112, OR 1.21, 95% CI 1.04-1.40) and rs11100722 (p-value 0.0087, OR 1.24, 95% CI 1.06-1.45), both located upstream the IL15 gene. When the expression of both genes was assessed, these two SNPs were found to be correlated with IL-15 higher protein expression. Besides, rs8177655 from IL15RA was also associated to mRNA IL-15 expression in CD patients. Finally, three SNPs from IL15RA intronic regions, rs2296141, rs3136614 and rs3181148, and another from its 3'UTR region, rs2229135, could be related to the age of diagnosis of celiac disease patients.


Assuntos
Doença Celíaca/genética , Predisposição Genética para Doença , Interleucina-15/genética , Receptores de Interleucina-15/genética , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Técnicas de Genotipagem , Humanos , Lactente , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Estatísticas não Paramétricas , Adulto Jovem
18.
J Autoimmun ; 77: 96-103, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27899224

RESUMO

Th17 cells are principal mediators of many autoimmune conditions. Recently, memory Th17 cells have been revealed as crucial in mediating the chronicity of various refractory autoimmune disorders; however, the underlying mechanisms maintaining memory Th17 cells have remained elusive. Here, using a preclinical model of ocular autoimmune disease we show that both IL-7 and IL-15 are critical for maintaining pathogenic memory Th17 cells. Neutralization of these cytokines leads to substantial reduction of memory Th17 cells; both IL-7 and IL-15 provide survival signals via activating STAT5, and IL-15 provides additional proliferation signals via activating both STAT5 and Akt. Topical neutralization of ocular IL-7 or IL-15 effectively reduces memory Th17 cells at the inflammatory site and draining lymphoid tissues, while topical neutralization of IL-17 alone, the major pathogenic cytokine secreted by Th17 cells, does not diminish memory Th17 cells at the draining lymphoid tissues. Our results suggest that the effective removal of pathogenic memory Th17 cells via abolishing environmental IL-7 or IL-15 is likely to be a novel strategy in the treatment of autoimmune diseases.


Assuntos
Autoimunidade , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Apoptose , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Biomarcadores , Modelos Animais de Doenças , Síndromes do Olho Seco/imunologia , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Feminino , Memória Imunológica , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Clin Cancer Res ; 23(11): 2817-2830, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986749

RESUMO

Purpose: Adoptive cell transfer (ACT) is a promising immunotherapeutic approach for cancer. Host lymphodepletion is associated with favorable ACT therapy outcomes, but it may cause detrimental effects in humans. We tested the hypothesis that IL15 administration enhances ACT in the absence of lymphodepletion. We previously showed that bioactive IL15 in vivo comprises a stable complex of the IL15 chain with the IL15 receptor alpha chain (IL15Rα), termed heterodimeric IL15 (hetIL15).Experimental Design: We evaluated the effects of the combination regimen ACT + hetIL15 in the absence of lymphodepletion by transferring melanoma-specific Pmel-1 T cells into B16 melanoma-bearing mice.Results: hetIL15 treatment delayed tumor growth by promoting infiltration and persistence of both adoptively transferred Pmel-1 cells and endogenous CD8+ T cells into the tumor. In contrast, persistence of Pmel-1 cells was severely reduced following irradiation in comparison with mice treated with hetIL15. Importantly, we found that hetIL15 treatment led to the preferential enrichment of Pmel-1 cells in B16 tumor sites in an antigen-dependent manner. Upon hetIL15 administration, tumor-infiltrating Pmel-1 cells showed a "nonexhausted" effector phenotype, characterized by increased IFNγ secretion, proliferation, and cytotoxic potential and low level of PD-1. hetIL15 treatment also resulted in an improved ratio of Pmel-1 to Treg in the tumor.Conclusions: hetIL15 administration improves the outcome of ACT in lymphoreplete hosts, a finding with significant implications for improving cell-based cancer immunotherapy strategies. Clin Cancer Res; 23(11); 2817-30. ©2016 AACR.


Assuntos
Transferência Adotiva/métodos , Imunoterapia Adotiva , Melanoma Experimental/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Camundongos , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
20.
Clin Exp Immunol ; 186(2): 249-265, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27227483

RESUMO

The lack of persistence of infused T cells is a principal limitation of adoptive immunotherapy in man. Interleukin (IL)-15 can sustain memory T cell expansion when presented in complex with IL-15Rα (15Rα/15). We developed a novel in-vitro system for generation of stable 15Rα/15 complexes. Immunologically quantifiable amounts of IL-15 were obtained when both IL-15Rα and IL-15 genes were co-transduced in NIH 3T3 fibroblast-based artificial antigen-presenting cells expressing human leucocyte antigen (HLA) A:0201, ß2 microglobulin, CD80, CD58 and CD54 [A2-artificial antigen presenting cell (AAPC)] and a murine pro-B cell line (Baf-3) (A2-AAPC15Rα/15 and Baf-315Rα/15 ). Transduction of cells with IL-15 alone resulted in only transient expression of IL-15, with minimal amounts of immunologically detectable IL-15. In comparison, cells transduced with IL-15Rα alone (A2-AAPCRα ) demonstrated stable expression of IL-15Rα; however, when loaded with soluble IL-15 (sIL-15), these cells sequestered 15Rα/15 intracellularly and also demonstrated minimal amounts of IL-15. Human T cells stimulated in vitro against a viral antigen (CMVpp65) in the presence of 15Rα/15 generated superior yields of high-avidity CMVpp65 epitope-specific T cells [cytomegalovirus-cytotoxic T lymphocytes (CMV-CTLs)] responding to ≤ 10- 13 M peptide concentrations, and lysing targets cells at lower effector : target ratios (1 : 10 and 1 : 100), where sIL-15, sIL-2 or sIL-7 CMV-CTLs demonstrated minimal or no activity. Both soluble and surface presented 15Rα/15, but not sIL-15, sustained in-vitro expansion of CD62L+ and CCR7+ central memory phenotype CMV-CTLs (TCM ). 15Rα/15 complexes represent a potent adjuvant for augmenting the efficacy of adoptive immunotherapy. Such cell-bound or soluble 15Rα/15 complexes could be developed for use in combination immunotherapy approaches.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia Adotiva , Interleucina-15/metabolismo , Ativação Linfocitária/imunologia , Receptores de Interleucina-15/metabolismo , Apoptose/genética , Apoptose/imunologia , Biomarcadores , Linhagem Celular Transformada , Citocinas/metabolismo , Citomegalovirus/imunologia , Citotoxicidade Imunológica , Epitopos de Linfócito T/imunologia , Humanos , Memória Imunológica , Infecções/imunologia , Infecções/metabolismo , Infecções/terapia , Interleucina-15/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Ligação Proteica , Receptores de Interleucina-15/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA