Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur J Med Chem ; 252: 115271, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965226

RESUMO

Lysophosphatidylserine (LysoPS) is an endogenous pan-agonist of three G-protein coupled receptors (GPCRs): LPS1/GPR34, LPS2/P2Y10, and LPS3/GPR174, and we previously reported a series of LysoPS-based agonists of these receptors. Interestingly, we found that LPS1 agonist activity was very sensitive to structural change at the hydrophobic fatty acid moiety, whereas LPS2 agonist activity was not. Here, to probe the molecular basis of LPS2 agonist binding, we developed a new class of hydrophobic fatty acid surrogates having a biphenyl-ether scaffold. The LPS2 agonist activity of these compounds proved sensitive to molecular modification of the hydrophobic skeleton. Thus, we next constructed an LPS2 model by homology modeling and docking/molecular dynamics (MD) simulation, and validated it by means of SAR studies together with point mutations of selected receptor amino-acid residues. The putative ligand-binding site of LPS2 is Γ-shaped, with a hydrophilic site horizontally embedded in the receptor transmembrane helix bundles and a perpendicular hydrophobic groove adjoining transmembrane domains 4 and 5 that is open to the membrane bilayer. The binding poses of LPS2 agonists to this site are consistent with easy incorporation of various kinds of fatty acid surrogates. Structural development based on this model afforded a series of potent and selective LPS2 full agonists, which showed enhanced in vitro actin stress fiber formation effect.


Assuntos
Lipopolissacarídeos , Simulação de Dinâmica Molecular , Receptores de Lisofosfolipídeos/agonistas , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/metabolismo , Lipopolissacarídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sítios de Ligação , Ácidos Graxos , Ligantes
2.
Mol Biol Rep ; 49(4): 2629-2639, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997428

RESUMO

PURPOSE: G-protein coupled receptor (GPR 34) has been found to play important roles in some cancers and regulates the proliferation, apoptosis, and migration of these cancer cells. However, the mechanisms underlying how GPR34 functions to regulate growth and proliferation of colorectal cancer cells remains to be clarified. METHODS: We employed stable GPR34 knockdown LS174T cell models, GPR34 Mab blocking, a CCK-8 kit, and a colony formation assay to characterize the effect of GPR34 on the proliferation of LS174T in vitro and xenograft tumor growth in vivo. The mRNA level of GPR34 was detected by RT-PCR in tumor tissues and adjacent normal tissues from 34 CRC patients. RESULTS: Based on RT-PCR results, GPR34 exhibited high level in tumor samples compared with adjacent normal samples. Increased expression of GPR34 is more associated with poor prognosis of CRC as shown in The Cancer Genome Atlas (TCGA) dataset by Kaplan-Meier survival analysis. Furthermore, we showed that GPR34 knockdown inhibited the proliferation of LS174T colon cancer cells and related xenograft tumor growth. Searching for the distinct molecular mechanism, we identified several contributors to proliferation of LS174T colon cancer cells: PI3K subunits/PTEN, PDK1/AKT, and Src/Raf/Ras/ERK. GPR34 knockdown inhibited the proliferation of LS174T cells by upregulating expression of PTEN, and downregulating expression of PI3K subunits p110-beta. CONCLUSION: Our findings provide direct evidence that GPR34 regulates the proliferation of LS174T cells and the growth of LS174T tumor xenografts by regulating different pathways. High expression of GPR34 mRNA could then be used to predict poor prognosis of CRC.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Receptores de Lisofosfolipídeos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/metabolismo , Transdução de Sinais/genética
3.
Environ Toxicol Pharmacol ; 81: 103514, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33086148

RESUMO

MicroRNAs (miRNAs) have emerged as the vital post-transcriptional regulators and control the growth and progression of different cancers types. The current study aimed at exploration of the role of microRNA-381 (miRNA-381) in human cervical cancer with emphasis on the evaluation of the underlying molecular mechanism. The results revealed a significant (P < 0.05) downregulation of miRNA-381 was found in cervical cancer tissues and cancer cell lines. Overexpression of miRNA-381 in cervical cancer cells significantly (P < 0.05) inhibited their proliferation through the induction of cell apoptosis which was accompanied by depletion of Bcl-2 and increase in Bax expression. Additionally, the cleavage of caspase-3 and 9 was also activated upon miRNA-381 overexpression. The Overexpression of miRNA-381 further inhibited the migration and invasion of cervical cancer cells. In silico analysis together with dual luciferase assay revealed G protein-Coupled receptor 34 (GPR34) to be the target of miRNA-381. The expression of GPR34 was significantly (P < 0.05) upregulated in the cervical cancer tissues and cell lines. Nonetheless, miRNA-381 overexpression caused a remarkable decrease in the expression of GPR34. The GPR34 knockdown and overexpression proved that the tumor-suppressive effects of miRNA-381 are mediated via GPR34. The study elucidated the essence of miRNA-381/GPR34 molecular regulatory axis in cervical cancer and unraveled the possibility of targeting this molecular axis as an important therapeutic approach against human cervical cancer.


Assuntos
MicroRNAs , Receptores de Lisofosfolipídeos/genética , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colo do Útero/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Receptores de Lisofosfolipídeos/metabolismo , Neoplasias do Colo do Útero/patologia
4.
Biochemistry ; 59(11): 1173-1201, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32124599

RESUMO

When lipid mediators bind to G-protein-coupled receptors (GPCRs), the ligand first enters the lipid bilayer, then diffuses laterally in the cell membrane to make hydrophobic contact with the receptor protein, and finally enters the receptor's binding pocket. In this process, the location of the hydrophobic contact point on the surface of the receptor has been little discussed even in cases in which the crystal structure has been determined, because the ligand binding pocket is buried inside the transmembrane (TM) domains. Here, we coupled an activator ligand to a series of membrane phospholipid surrogates, which constrain the depth of entry of the ligand into the lipid bilayer. Consequently, via measurement of the receptor-activating activity as a function of the depth of entry into the membrane, these surrogates can be used as molecular rulers to estimate the location of the hydrophobic contact point on the surface of GPCR. We focused on lysophosphatidylserine (LysoPS) receptor GPR34 and prepared a series of simplified membrane-lipid-surrogate-conjugated lysophospholipid analogues by attaching alkoxy amine chains of varying lengths to the hydrophobic tail of a potent GPR34 agonist. As expected, the activity of these lipid-conjugated LysoPS analogues was dependent on chain length. The predicted contact position matches the position of the terminal benzene ring of a nonlipidic ligand that protrudes between TMs 4 and 5 of the receptor. We further found that the nature of the terminal hydrophilic functional group of the conjugated membrane lipid surrogate strongly influences the activity, suggesting that lateral hydrophilic contact of LysoPS analogues with the receptor's surface is also crucial for ligand-GPCR binding.


Assuntos
Membrana Celular/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Membrana Celular/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisofosfolipídeos/química , Ligação Proteica , Domínios Proteicos , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética
5.
J Neuroinflammation ; 16(1): 82, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975169

RESUMO

BACKGROUND: Neuropathic pain is caused by sensory nerve injury, but effective treatments are currently lacking. Microglia are activated in the spinal dorsal horn after sensory nerve injury and contribute to neuropathic pain. Accordingly, molecules expressed by these cells are considered potential targets for therapeutic strategies. Our previous gene screening study using a mouse model of motor nerve injury showed that the G-protein-coupled receptor 34 gene (GPR34) is induced by nerve injury. Because GPR34 is now considered a microglia-enriched gene, we explored the possibility that it might be involved in microglial activation in the dorsal horn in a mouse model of neuropathic pain. METHODS: mRNA expression of GPR34 and pro-inflammatory molecules was determined by quantitative real-time PCR in wild-type and GPR34-deficient mice with L4 spinal nerve injury. In situ hybridization was used to identify GPR34 expression in microglia, and immunohistochemistry with the microglial marker Iba1 was performed to examine microglial numbers and morphology. Mechanical sensitivity was evaluated by the von Frey hair test. Liquid chromatography-tandem mass spectrometry quantified expression of the ligand for GPR34, lysophosphatidylserine (LysoPS), in the dorsal horn, and a GPR34 antagonist was intrathecally administrated to examine the effect of inhibiting LysoPS-GPR34 signaling on mechanical sensitivity. RESULTS: GPR34 was predominantly expressed by microglia in the dorsal horn after L4 nerve injury. There were no histological differences in microglial numbers or morphology between WT and GPR34-deficient mice. However, nerve injury-induced pro-inflammatory cytokine expression levels in microglia and pain behaviors were significantly attenuated in GPR34-deficient mice. Furthermore, the intrathecal administration of the GPR34 antagonist reduced neuropathic pain. CONCLUSIONS: Inhibition of GPR34-mediated signal by GPR34 gene deletion reduced nerve injury-induced neuropathic pain by suppressing pro-inflammatory responses of microglia without affecting their morphology. Therefore, the suppression of GPR34 activity may have therapeutic potential for alleviating neuropathic pain.


Assuntos
Microglia/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Receptores de Lisofosfolipídeos/metabolismo , Medula Espinal/patologia , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Fatores Reguladores de Interferon/metabolismo , Lisofosfolipídeos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Medição da Dor , Limiar da Dor/fisiologia , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Receptores de Lisofosfolipídeos/antagonistas & inibidores , Receptores de Lisofosfolipídeos/genética , Fatores de Tempo
6.
Haematologica ; 103(8): 1329-1336, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674500

RESUMO

Mucosa-associated lymphoid tissue (MALT) lymphoma originates from a background of diverse chronic inflammatory disorders at various anatomic sites. The genetics underlying its development, particularly in those associated with autoimmune disorders, is poorly characterized. By whole exome sequencing of 21 cases of MALT lymphomas of the salivary gland and thyroid, we have identified recurrent somatic mutations in 2 G-protein coupled receptors (GPR34 and CCR6) not previously reported in human malignancies, 3 genes (PIK3CD, TET2, TNFRSF14) not previously implicated in MALT lymphoma, and a further 2 genes (TBL1XR1, NOTCH1) recently described in MALT lymphoma. The majority of mutations in GPR34 and CCR6 were nonsense and frameshift changes clustered in the C-terminal cytoplasmic tail, and would result in truncated proteins that lack the phosphorylation motif important for ß-arrestin-mediated receptor desensitization and internalization. Screening of these newly identified mutations, together with previously defined genetic changes, revealed distinct mutation profiles in MALT lymphoma of various sites, with those of salivary gland characterized by frequent TBL1XR1 and GPR34 mutations, thyroid by frequent TET2, TNFRSF14 and PIK3CD mutations, and ocular adnexa by frequent TNFAIP3 mutation. Interestingly, in MALT lymphoma of the salivary gland, there was a significant positive association between TBL1XR1 mutation and GPR34 mutation/translocation (P=0.0002). In those of ocular adnexa, TBL1XR1 mutation was mutually exclusive from TNFAIP3 mutation (P=0.049), but significantly associated with IGHV3-23 usage (P=0.03) and PIK3CD mutation (P=0.009). These findings unravel novel insights into the molecular mechanisms of MALT lymphoma and provide further evidence for potential oncogenic co-operation between receptor signaling and genetic changes.


Assuntos
Linfoma de Zona Marginal Tipo Células B/genética , Mutação , Receptores CCR6/genética , Receptores de Lisofosfolipídeos/genética , Perfil Genético , Humanos , Linfoma de Zona Marginal Tipo Células B/patologia , Neoplasias das Glândulas Salivares/genética , Neoplasias da Glândula Tireoide/genética , Sequenciamento do Exoma
7.
Br J Haematol ; 180(3): 412-419, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29270984

RESUMO

Haemostasis is a defence mechanism that has evolved to protect organisms from losing their circulating fluid. We have previously introduced zebrafish as a model to study the genetics of haemostasis to identify novel genes that play a role in haemostasis. Here, we identify a zebrafish mutant that showed prolonged time to occlusion (TTO) in the laser injury venous thrombosis assay. By linkage analysis and fine mapping, we found a mutation in the orphan G protein-coupled receptor 34 like gene (gpr34l) causing a change of Val to Glu in the third external loop of Gpr34l. We have shown that injection of zebrafish gpr34l RNA rescues the prolonged TTO defect. The thrombocytes from the mutant showed elevated levels of cAMP that supports the defective thrombocyte function. We also have demonstrated that knockdown of this gene by intravenous Vivo-Morpholino injections yielded a phenotype similar to the gpr34l mutation. These results suggest that the lack of functional Gpr34l leads to increased cAMP levels that result in defective thrombocyte aggregation.


Assuntos
Plaquetas/metabolismo , Mutação , Receptores de Lisofosfolipídeos/genética , Animais , Cruzamento , Análise Mutacional de DNA , Expressão Gênica , Fenótipo , Peixe-Zebra
8.
Biochem Biophys Res Commun ; 494(1-2): 332-338, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29017923

RESUMO

Lysophosphatidylserine (LysoPS) has been shown to have lipid mediator-like actions to induce mast cell degranulation and suppress T lymphocyte proliferation. Recently, three G protein-coupled receptors (GPCRs), LPS1/GPR34, LPS2/P2Y10, and LPS3/GPR174, were found to react specifically with LysoPS, raising the possibility that LysoPS exerts its roles through these receptors. In this study, we show that LPS3 is expressed in various T cell subtypes and is involved in suppression of Interleukin-2 (IL-2) production in CD4 T cells. We found that LysoPS suppressed the IL-2 production from activated T cells at the mRNA and protein levels. In addition, LysoPS did not have such an effect on the splenocytes and CD4 T cells isolated from LPS3-deficient mice. In LPS3-deficient splenocytes and CD4 T cells, anti-CD3/anti-CD28-triggered IL-2 production is somewhat increased. Interestingly, LysoPS with various fatty acids was up-regulated upon T cell activation. The present study raised the possibility that LysoPS exerts its immunosuppressive roles by down-regulating IL-2 production through a LysoPS-LPS3 axis in T cells.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Interleucina-2/genética , Lisofosfolipídeos/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores de Lisofosfolipídeos/genética , Receptores Purinérgicos P2/genética , Animais , Anticorpos/farmacologia , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/genética , Antígenos CD28/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Separação Celular , Regulação da Expressão Gênica , Interleucina-2/imunologia , Lisofosfolipídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Receptores Acoplados a Proteínas G/imunologia , Receptores de Lisofosfolipídeos/imunologia , Receptores Purinérgicos P2/imunologia , Transdução de Sinais , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia
10.
Domest Anim Endocrinol ; 59: 90-99, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28040605

RESUMO

Abundance of G protein-coupled receptor 34 (GPR34) mRNA is greater in granulosa cells (GCs) of cystic vs normal follicles of cattle. The present experiments were designed to determine if GPR34 mRNA in granulosa cell [GC] changes during selection and growth of dominant follicles in cattle as well as to investigate the hormonal regulation of GPR34 mRNA in bovine GC in vitro. In Exp. 1, estrous cycles of nonlactating cows were synchronized and then ovariectomized on either day 3-4 or 5-6 after ovulation. GPR34 mRNA abundance in GC was 2.8- to 3.8-fold greater (P < 0.05) in small (1-5 mm) and large (≥8 mm) estrogen-inactive dominant follicles than in large estrogen-active follicles. Also, GPR34 mRNA tended to be greater (P < 0.10) in F2 than F1 follicles on day 3-4 postovulation. In Exp. 2-7, ovaries were collected at an abattoir and GC were isolated and treated in vitro. Expression of GPR34 was increased (P < 0.05) 2.2-fold by IGF1. Tumor necrosis factor (TNF)-α decreased (P < 0.05) the IGF1-induced GPR34 mRNA abundance in small-follicle GC, whereas IGF1 decreased (P < 0.05) GPR34 expression by 45% in large-follicle GC. Treatment of small-follicle GC with either IL-2, prostaglandin E2 or angiogenin decreased (P < 0.05) GPR34 expression, whereas FSH, cortisol, wingless 3A, or hedgehog proteins did not affect (P > 0.10) GPR34 expression. In Exp. 6 and 7, 2 presumed ligands of GPR34, L-a-lysophosphatidylserine (LPPS) and LPP-ethanolamine, increased (P < 0.05) GC numbers and estradiol production by 2-fold or more in small-follicle GC, and this response was only observed in IGF1-treated GC. In conclusion, GPR34 is a developmentally and hormonally regulated gene in GC, and its presumed ligands enhance IGF1-induced proliferation and steroidogenesis of bovine GC.


Assuntos
Bovinos/fisiologia , Células da Granulosa/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Receptores de Lisofosfolipídeos/metabolismo , Animais , Células Cultivadas , Citocinas/farmacologia , Feminino , Regulação da Expressão Gênica/fisiologia , Células da Granulosa/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lisofosfolipídeos/genética
11.
Free Radic Biol Med ; 111: 6-24, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28027924

RESUMO

Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.


Assuntos
Aterosclerose/metabolismo , Endotélio/metabolismo , Neovascularização Patológica/metabolismo , Fosfolipídeos/metabolismo , Trombose/metabolismo , Animais , Aterosclerose/imunologia , Aterosclerose/patologia , Biomarcadores/metabolismo , Endotélio/imunologia , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Inflamação , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Oxirredução , Permeabilidade , Fosfolipídeos/química , Fosfolipídeos/classificação , Fosfolipídeos/imunologia , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/imunologia , Trombose/imunologia , Trombose/patologia
12.
J Cardiovasc Transl Res ; 9(4): 343-59, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230673

RESUMO

There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.


Assuntos
Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Transdução de Sinais , Animais , Biologia Computacional , Mineração de Dados , Bases de Dados Genéticas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Homeostase , Humanos , Inflamação/imunologia , Lisofosfolipídeos/imunologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/imunologia
13.
Biochim Biophys Acta ; 1863(7 Pt A): 1534-51, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27086875

RESUMO

Protein folding, topogenesis and intracellular targeting of G protein-coupled receptors (GPCRs) must be precisely coordinated to ensure correct receptor localization. To elucidate how different steps of GPCR biosynthesis work together, we investigated the process of membrane topology determination and how it relates to the acquisition of cell surface trafficking competence in human GPR34. By monitoring a fused FLAG-tag and a conformation-sensitive native epitope during the expression of GPR34 mutant panel, a tri-basic motif in the first intracellular loop was identified as the key topogenic signal that dictates the orientation of transmembrane domain-1 (TM1). Charge disruption of the motif perturbed topogenic processes and resulted in the conformational epitope loss, post-translational processing alteration, and trafficking arrest in the Golgi. The placement of a cleavable N-terminal signal sequence as a surrogate topogenic determinant overcame the effects of tri-basic motif mutations and rectified the TM1 orientation; thereby restored the conformational epitope, post-translational modifications, and cell surface trafficking altogether. Progressive N-tail truncation and site-directed mutagenesis revealed that a proline-rich segment of the N-tail and all four cysteines individually located in the four separate extracellular regions must simultaneously reside in the ER lumen to muster the conformational epitope. Oxidation of all four cysteines was necessary for the epitope formation, but the cysteine residues themselves were not required for the trafficking event. The underlying biochemical properties of the conformational epitope was therefore the key to understand mechanistic processes propelled by positive-inside rule that simultaneously regulate the topogenesis and intracellular trafficking of GPR34.


Assuntos
Membrana Celular/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Motivos de Aminoácidos , Anticorpos Monoclonais/imunologia , Retículo Endoplasmático/metabolismo , Epitopos , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Transfecção
14.
Chin Med J (Engl) ; 128(4): 545-9, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25673461

RESUMO

BACKGROUND: Overexpression of G-protein coupled receptor 34 (GPR34) affects the progression and prognosis of human gastric adenocarcinoma, however, the role of GPR34 in gastric cancer development and progression has not been well-determined. The current study aimed to investigate the effect of GPR34 knockdown on the proliferation, migration, and apoptosis of HGC-27 gastric cancer cells and the underlying mechanisms. METHODS: The expression of GPR34 in gastric cancer cell line HGC-27 was detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. HGC-27 cells were employed to construct the stable GPR34 knockdown cell model in this study. Real-time RT-PCR and Western blotting were applied to validate the effect of short hairpin RNA (ShRNA) on the expression of GPR34 in HGC-27 gastric cells. The proliferation, migration of these cells were examined by Cell Counting Kit-8 and transwell. We also measured expression profile of PI3K/PDK1/AKT and ERK using Western blotting. RESULTS: The ShRNA directed against GPR34 effectively inhibited both endogenous mRNA and protein expression levels of GPR34, and significantly down-regulated the expression of PIK3CB (P < 0.01), PIK3CD (P < 0.01), PDK1 (P < 0.01), phosphorylation of PDK1 (P < 0.01), Akt (P < 0.01), and ERK (P < 0.01). Furthermore, GPR34 knockdown resulted in an obvious reduction in HGC-27 cancer cell proliferation and migration activity (P < 0.01). CONCLUSIONS: GPR34 knockdown impairs the proliferation and migration of HGC-27 gastric cancer cells in vitro and provides a potential implication for therapy of gastric cancer.


Assuntos
Receptores de Lisofosfolipídeos/metabolismo , Neoplasias Gástricas/metabolismo , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Lisofosfolipídeos/genética , Neoplasias Gástricas/genética
15.
Glia ; 63(2): 206-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142016

RESUMO

GPR34 is a Gi/o protein-coupled receptor (GPCR) of the nucleotide receptor P2Y12 -like group. This receptor is highly expressed in microglia, however, the functional relevance of GPR34 in these glial cells is unknown. Previous results suggested an impaired immune response in GPR34-deficient mice infected with Cryptococcus neoformans. Here we show that GPR34 deficiency results in morphological changes in retinal and cortical microglia. RNA sequencing analysis of microglia revealed a number of differentially expressed transcripts involved in cell motility and phagocytosis. We found no differences in microglial motility after entorhinal cortex lesion and in response to laser lesion. However, GPR34-deficient microglia showed reduced phagocytosis activity in both retina and acutely isolated cortical slices. Our study identifies GPR34 as an important signaling component controlling microglial function, morphology and phagocytosis.


Assuntos
Regulação da Expressão Gênica/genética , Microglia/fisiologia , Fagocitose/genética , Receptores de Lisofosfolipídeos/deficiência , Animais , Encéfalo/citologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Movimento Celular/genética , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores de Lisofosfolipídeos/genética , Retina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Leuk Lymphoma ; 56(7): 2170-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25363403

RESUMO

Tyrosine 177 and the Src homology 2 (SH2) domain play important roles in linking p185Bcr-Abl to downstream pathways critical for cell growth and survival. However, a mutant p185(Y177FR552L) (p185(YR)), in which tyrosine 177 and arginine 552 in the SH2 domain are mutated, is still capable of transforming hematopoietic cells in vitro. Transplant of these cells into syngeneic mice also leads to leukemogenesis, albeit with a phenotype distinct from that produced by wild-type p185Bcr-Abl (p185(wt))-transformed cells. Here we show that G-protein coupled receptor 34 (Gpr34) expression is markedly up-regulated in p185(YR)-transformed cells compared to those transformed by p185(wt). Knockdown of Gpr34 in p185(YR) cells is sufficient to suppress growth factor-independent proliferation and survival in vitro and attenuate leukemogenesis in vivo. The Erk and phosphatidylinositol 3-kinase/Akt pathways are activated in p185(YR) cells and the activation is dependent on Gpr34 expression. These studies identify Gpr34 as an alternative pathway that may mediate p185Bcr-Abl-induced transformation and leukemogenesis.


Assuntos
Transformação Celular Neoplásica/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Leucemia/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Adulto , Animais , Apoptose , Western Blotting , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Proteínas de Fusão bcr-abl/genética , Humanos , Técnicas Imunoenzimáticas , Leucemia/genética , Leucemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Mutação/genética , Fosfatidilinositol 3-Quinase/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Lisofosfolipídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas
17.
Anticancer Res ; 34(10): 5465-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275042

RESUMO

BACKGROUND: Lysophosphatidylserine (lysoPS) is a type of lysophospholipid mediator, which is involved in allergic conditions and tumor progression. We investigated the physiological function of lysoPS on colorectal cancer (CRC) cell lines, as well as the involved receptor and signaling pathways. MATERIALS AND METHODS: Expression of lysoPS receptors on six cell lines was examined by reverse transcription-polymerase chain reaction (RT-PCR). The physiological functions of lysoPS were investigated, and experiments using small interfering RNA (siRNA) or inhibitors of the signaling pathways were conducted. RESULTS: Among the three lysoPS receptors, GPR34 was highly expressed on all cell lines. LysoPS stimulated the chemotactic migratory ability. Wortmannin inhibited the migratory ability, as well as the GPR34 knock-down, strongly suggestive of the involvement of this receptor in the PI3K/Akt pathway. CONCLUSION: The involved receptor and pathways in the migratory ability in response to lysoPS was demonstrated, which opens premises for targeting as a new strategy for prevention and treatment of colorectal cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Lisofosfolipídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Proteínas da Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Receptores de Lisofosfolipídeos/genética
18.
J Lipid Res ; 55(10): 1986-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24891334

RESUMO

It is now accepted that lysophospholipids (LysoGPs) have a wide variety of functions as lipid mediators that are exerted through G protein-coupled receptors (GPCRs) specific to each lysophospholipid. While the roles of some LysoGPs, such as lysophosphatidic acid and sphingosine 1-phosphate, have been thoroughly examined, little is known about the roles of several other LysoGPs, such as lysophosphatidylserine (LysoPS), lysophosphatidylthreonine, lysophosphatidylethanolamine, lysophosphatidylinositol (LPI), and lysophosphatidylglycerol. Recently, a GPCR was found for LPI (GPR55) and three GPCRs (GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3) were found for LysoPS. In this review, we focus on these newly identified GPCRs and summarize the actions of LysoPS and LPI as lipid mediators.


Assuntos
Lisofosfolipídeos , Receptores de Lisofosfolipídeos , Animais , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/metabolismo , Relação Estrutura-Atividade
19.
Life Sci ; 92(8-9): 453-7, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22820167

RESUMO

This review presents a summary of what is known about the G-protein coupled receptors GPR35 and GPR55 and their potential characterization as lysophospholipid or cannabinoid receptors, respectively. Both GPR35 and GPR55 have been implicated as important targets in pain and cancer, and additional diseases as well. While kynurenic acid was suggested to be an endogenous ligand for GPR35, so was 2-arachidonoyl lysophosphatidic acid (LPA). Similarly, GPR55 has been suggested to be a cannabinoid receptor, but is quite clearly also a receptor for lysophosphatidylinositol. Interestingly, 2-arachidonyl glycerol (2-AG), an endogenous ligand for cannabinoid receptors, can be metabolized to 2-arachidonoyl LPA through the action of a monoacylglycerol kinase; the reverse reaction has also been demonstrated. Thus, it appears that mutual interconversion is possible between 2-arachidonoyl LPA and 2-AG within a cell, though the direction of the reaction may be site-dependent. The GPR55 natural ligand, 2-arachidonoyl LPI, can be degraded either to 2-AG by phospholipase C or to 2-arachidonoyl LPA by phospholipase D. Thus, GPR35, GPR55 and CB receptors are linked together through their natural ligand conversions. Additional agonists and antagonists have been identified for both GPR35 and GPR55, which will facilitate the future study of these receptors with respect to their physiological function. Potential therapeutic targets include pain, cancer, metabolic diseases and drug addiction.


Assuntos
Receptores de Canabinoides/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Lisofosfolipídeos/fisiologia , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Expressão Gênica , Humanos , Ligantes , Receptores de Canabinoides/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores de Lisofosfolipídeos/efeitos dos fármacos , Receptores de Lisofosfolipídeos/genética
20.
Blood ; 120(19): 3949-57, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22966169

RESUMO

Genetic aberrations, including trisomies 3 and 18, and well-defined IGH translocations, have been described in marginal zone lymphomas (MZLs); however, these known genetic events are present in only a subset of cases. Here, we report the cloning of an IGH translocation partner on chromosome X, t(X;14)(p11.4;q32) that deregulates expression of an poorly characterized orphan G-protein-coupled receptor, GPR34. Elevated GPR34 gene expression was detected independent of the translocation in multiple subtypes of non-Hodgkin lymphoma and distinguished a unique molecular subtype of MZL. Increased expression of GPR34 was also detected in tissue from brain tumors and surface expression of GPR34 was detected on human MZL tumor cells and normal immune cells. Overexpression of GPR34 in lymphoma and HeLa cells resulted in phosphorylation of ERK, PKC, and CREB; induced CRE, AP1, and NF-κB-mediated gene transcription; and increased cell proliferation. In summary, these results are the first to identify a role for a GPR34 in lymphoma cell growth, provide insight into GPR34-mediated signaling, identify a genetically unique subset of MZLs that express high levels of GPR34, and suggest that MEK inhibitors may be useful for treatment of GPR34-expressing tumors.


Assuntos
Cromossomos Humanos Par 14 , Cromossomos Humanos X , Linfoma de Zona Marginal Tipo Células B/genética , Receptores de Lisofosfolipídeos/genética , Translocação Genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Pontos de Quebra do Cromossomo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ordem dos Genes , Células HeLa , Humanos , Linfoma de Zona Marginal Tipo Células B/metabolismo , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Receptores de Lisofosfolipídeos/metabolismo , Fatores de Transcrição SOXC/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA