Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Vet Res ; 55(1): 120, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334337

RESUMO

Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that induces an NLRP3-dependent cytokine storm. NLRP3 inflammasome activation triggers not only an inflammatory response but also pyroptosis. However, the exact mechanism underlying S. suis-induced macrophage pyroptosis is not clear. Our results showed that SS2 induced the expression of pyroptosis-associated factors, including lactate dehydrogenase (LDH) release, propidium iodide (PI) uptake and GSDMD-N expression, as well as NLRP3 inflammasome activation and IL-1ß secretion. However, GSDMD deficiency and NLRP3 inhibition using MCC950 attenuated the SS2-induced expression of pyroptosis-associated factors, suggesting that SS2 induces NLRP3-GSDMD-dependent pyroptosis. Furthermore, RACK1 knockdown also reduced the expression of pyroptosis-associated factors. In addition, RACK1 knockdown downregulated the expression of NLRP3 and Pro-IL-1ß as well as the phosphorylation of P65. Surprisingly, the interaction between RACK1 and P65 was detected by co-immunoprecipitation, indicating that RACK1 induces macrophage pyroptosis by mediating the phosphorylation of P65 to promote the transcription of NLRP3 and pro-IL-1ß. Similarly, NEK7 knockdown decreased the expression of pyroptosis-associated factors and ASC oligomerization. Moreover, the results of co-immunoprecipitation revealed the interaction of NEK7-RACK1-NLRP3 during SS2 infection, demonstrating that NEK7 mediates SS2-induced pyroptosis via the regulation of NLRP3 inflammasome assembly and activation. These results demonstrate the important role of RACK1 and NEK7 in SS2-induced pyroptosis. Our study provides new insight into SS2-induced cell death.


Assuntos
Macrófagos , Quinases Relacionadas a NIMA , Piroptose , Receptores de Quinase C Ativada , Infecções Estreptocócicas , Streptococcus suis , Animais , Macrófagos/microbiologia , Macrófagos/metabolismo , Camundongos , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/fisiologia , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Endogâmicos C57BL , Inflamassomos/metabolismo , Inflamassomos/genética , Gasderminas
2.
PLoS Biol ; 22(8): e3002779, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159283

RESUMO

Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.


Assuntos
Queratina-17 , Queratinócitos , Infiltração de Neutrófilos , Neutrófilos , Proteína Quinase C-alfa , Pele , Animais , Humanos , Masculino , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Queratina-17/metabolismo , Queratina-17/genética , Queratinócitos/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Proteína Quinase C-alfa/metabolismo , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Pele/metabolismo , Pele/patologia , Estresse Fisiológico , Acetato de Tetradecanoilforbol/farmacologia , Raios Ultravioleta/efeitos adversos
3.
Free Radic Biol Med ; 222: 478-492, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942092

RESUMO

Aerobic glycolysis has been recognized as a hallmark of human cancer. G protein pathway suppressor 2 (GPS2) is a negative regulator of the G protein-MAPK pathway and a core subunit of the NCoR/SMRT transcriptional co-repressor complex. However, how its biological properties intersect with cellular metabolism in breast cancer (BC) development remains poorly elucidated. Here, we report that GPS2 is low expressed in BC tissues and negatively correlated with poor prognosis. Both in vitro and in vivo studies demonstrate that GPS2 suppresses malignant progression of BC. Moreover, GPS2 suppresses aerobic glycolysis in BC cells. Mechanistically, GPS2 destabilizes HIF-1α to reduce the transcription of its downstream glycolytic regulators (PGK1, PGAM1, ENO1, PKM2, LDHA, PDK1, PDK2, and PDK4), and then suppresses cellular aerobic glycolysis. Notably, receptor for activated C kinase 1 (RACK1) is identified as a key ubiquitin ligase for GPS2 to promote HIF-1α degradation. GPS2 stabilizes the binding of HIF-1α to RACK1 by directly binding to RACK1, resulting in polyubiquitination and instability of HIF-1α. Amino acid residues 70-92 aa of the GPS2 N-terminus bind RACK1. A 23-amino-acid-long GPS2-derived peptide was developed based on this N-terminal region, which promotes the interaction of RACK1 with HIF-1α, downregulates HIF-1α expression and significantly suppresses BC tumorigenesis in vitro and in vivo. In conclusion, our findings indicate that GPS2 decreases the stability of HIF-1α, which in turn suppresses aerobic glycolysis and tumorigenesis in BC, suggesting that targeting HIF-1α degradation and treating with peptides may be a promising approach to treat BC.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas de Neoplasias , Receptores de Quinase C Ativada , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Feminino , Animais , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteólise , Proliferação de Células , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Ubiquitinação , Prognóstico
4.
J Integr Plant Biol ; 66(5): 956-972, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558526

RESUMO

Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Hipocótilo , Receptores de Quinase C Ativada , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Transdução de Sinais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Transdução de Sinal Luminoso , Fosforilação
5.
J Exp Bot ; 75(13): 3932-3945, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602261

RESUMO

ABSCISIC ACID INSENSITIVE5 (ABI5), a key regulator of the abscisic acid (ABA) signalling pathway, plays a fundamental role in seed germination and post-germinative development. However, the molecular mechanism underlying the repression function of ABI5 remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein Receptor for Activated C Kinase 1 (RACK1) is a novel negative regulator of ABI5 in Arabidopsis. The RACK1 loss-of-function mutant is hypersensitive to ABA, while this phenotype is rescued by a mutation in ABI5. Moreover, overexpression of RACK1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes. RACK1 may also physically interact with ABI5 and facilitate its degradation. Furthermore, we found that RACK1 and the two substrate receptors CUL4-based E3 ligases (DWA1 and DWA2) function together to mediate the turnover of ABI5, thereby efficiently reducing ABA signalling in seed germination and post-germinative growth. In addition, molecular analyses demonstrated that ABI5 may bind to the promoter of RACK1 to repress its expression. Collectively, our findings suggest that RACK1 and ABI5 might form a feedback loop to regulate the homeostasis of ABA signalling in acute seed germination and early plant development.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Germinação , Receptores de Quinase C Ativada , Sementes , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/fisiologia , Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
6.
Cell Commun Signal ; 22(1): 247, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689280

RESUMO

BACKGROUND: Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS: To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS: In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS: Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.


Assuntos
Fibroblastos , Fibrose , Miofibroblastos , Proteínas Proto-Oncogênicas c-abl , Receptores de Quinase C Ativada , Transdução de Sinais , Animais , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Humanos , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Rim/patologia , Rim/metabolismo , Masculino , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
7.
Insect Biochem Mol Biol ; 169: 104125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616030

RESUMO

Voltage-dependent anion channel 2 (VDAC2) is an important channel protein that plays a crucial role in the host response to viral infection. The receptor for activated C kinase 1 (RACK1) is also a key host factor involved in viral replication. Our previous research revealed that Bombyx mori VDAC2 (BmVDAC2) and B. mori RACK1 (BmRACK1) may interact with Bombyx mori nucleopolyhedrovirus (BmNPV), though the specific molecular mechanism remains unclear. In this study, the interaction between BmVDAC2 and BmRACK1 in the mitochondria was determined by various methods. We found that BmNPV p35 interacts directly with BmVDAC2 rather than BmRACK1. BmNPV infection significantly reduced the expression of BmVDAC2, and activated the mitochondrial apoptosis pathway. Overexpression of BmVDAC2 in BmN cells inhibited BmNPV-induced cytochrome c (cyto c) release, decrease in mitochondrial membrane potential as well as apoptosis. Additionally, the inhibition of cyto c release by BmVDAC2 requires the involvement of BmRACK1 and protein kinase C. Interestingly, overexpression of p35 inhibited cyto c release during mitochondrial apoptosis in a RACK1 and VDAC2-dependent manner. Even the mutant p35, which loses Caspase inhibitory activity, could still bind to VDAC2 and inhibit cyto c release. In summary, our results indicated that BmNPV p35 interacts with the VDAC2-RACK1 complex to regulate apoptosis by inhibiting cyto c release. These findings confirm the interaction between BmVDAC2 and BmRACK1, the interaction between p35 and the VDAC2-RACK1 complex, and a novel target that BmNPV p35 regulates apoptosis in Bombyx mori via interaction with the BmVDAC2-BmRACK1 complex. The result provide an initial exploration of the function of this interaction in the BmNPV-induced mitochondrial apoptosis pathway.


Assuntos
Apoptose , Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Receptores de Quinase C Ativada , Animais , Bombyx/virologia , Bombyx/metabolismo , Bombyx/genética , Nucleopoliedrovírus/fisiologia , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/genética , Mitocôndrias/metabolismo
8.
Cell Prolif ; 57(7): e13618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523594

RESUMO

Anorectal malformation (ARM), a common congenital anomaly of the digestive tract, is a result of insufficient elongation of the urorectal septum. The cytoplasmic protein Receptor of Activated C-Kinase 1 (Rack1) is involved in embryonic neural development; however, its role in embryonic digestive tract development and ARM formation is unexplored. Our study explored the hindgut development and cell death mechanisms in ARM-affected rats using spatial transcriptome analysis. We induced ARM in rats by administering ethylenethiourea via gavage on gestational day (GD) 10. On GDs 14-16, embryos from both normal and ARM groups underwent spatial transcriptome sequencing, which identified key genes and signalling pathways. Rack1 exhibited significant interactions among differentially expressed genes on GDs 15 and 16. Reduced Rack1 expression in the ARM-affected hindgut, verified by Rack1 silencing in intestinal epithelial cells, led to increased P38 phosphorylation and activation of the MAPK signalling pathway. The suppression of this pathway downregulated Nqo1 and Gpx4 expression, resulting in elevated intracellular levels of ferrous ions, reactive oxygen species (ROS) and lipid peroxides. Downregulation of Gpx4 expression in the ARM hindgut, coupled with Rack1 co-localisation and consistent mitochondrial morphology, indicated ferroptosis. In summary, Rack1, acting as a hub gene, modulates ferrous ions, lipid peroxides, and ROS via the P38-MAPK/Nqo1/Gpx4 axis. This modulation induces ferroptosis in intestinal epithelial cells, potentially influencing hindgut development during ARM onset.


Assuntos
Malformações Anorretais , Ferroptose , Receptores de Quinase C Ativada , Transcriptoma , Animais , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Ratos , Malformações Anorretais/genética , Malformações Anorretais/metabolismo , Malformações Anorretais/patologia , Feminino , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Etilenotioureia , Transdução de Sinais
9.
Cell Oncol (Dordr) ; 47(4): 1233-1252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38386231

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA), a primary hepatobiliary malignancy, is characterized by a poor prognosis and a lack of effective treatments. Therefore, the need to explore novel therapeutic approaches is urgent. While the role of Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (PIN1) has been extensively studied in various tumor types, its involvement in CCA remains poorly understood. METHODS: In this study, we employed tissue microarray (TMA), reverse transcription-polymerase chain reaction (RT-PCR), and The Cancer Genome Atlas (TCGA) database to assess the expression of PIN1. Through in vitro and in vivo functional experiments, we investigated the impact of PIN1 on the adhesion and metastasis of CCA. Additionally, we explored downstream molecular pathways using RNA-seq, western blotting, co-immunoprecipitation, immunofluorescence, and mass spectrometry techniques. RESULTS: Our findings revealed a negative correlation between PIN1 overexpression and prognosis in CCA tissues. Furthermore, high PIN1 expression promoted CCA cell proliferation and migration. Mechanistically, PIN1 functioned as an oncogene by regulating ANXA2 phosphorylation, thereby promoting CCA adhesion. Notably, the interaction between PIN1 and ANXA2 was facilitated by RACK1. Importantly, pharmacological inhibition of PIN1 using the FDA-approved drug all-trans retinoic acid (ATRA) effectively suppressed the metastatic potential of CCA cells in a nude mouse lung metastasis model. CONCLUSION: Overall, our study emphasizes the critical role of the PIN1/RACK1/ANXA2 complex in CCA growth and functionality, highlighting the potential of targeting PIN1 as a promising therapeutic strategy for CCA.


Assuntos
Anexina A2 , Neoplasias dos Ductos Biliares , Proliferação de Células , Colangiocarcinoma , Camundongos Nus , Peptidilprolil Isomerase de Interação com NIMA , Metástase Neoplásica , Receptores de Quinase C Ativada , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Linhagem Celular Tumoral , Animais , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Fosforilação , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Camundongos , Movimento Celular/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Adesão Celular , Feminino , Camundongos Endogâmicos BALB C , Prognóstico , Pessoa de Meia-Idade
10.
Cell Oncol (Dordr) ; 47(3): 987-1004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38315284

RESUMO

BACKGROUND: Dysregulated ubiquitination modification occupies a pivotal role in hepatocellular carcinoma (HCC) tumorigenesis and progression. The ubiquitin aldehyde binding 1 (OTUB1) was aberrantly upregulated and exhibited the pro-tumorigenic function in HCC. However, the underlying mechanisms and responsible targets of OTUB1 remain unclear. METHODS: First, bioinformatics analysis, western blot and immunohistochemistry staining were applied to analyze OTUB1 expression in HCC specimens. Then, immunoprecipitation assay-tandem mass spectrometry (MS) combined with the gene set enrichment analysis (GSEA) was used to explore the downstream target of OTUB1. Co-immunoprecipitation and ubiquitination assays were used to identify the mechanisms involved. Finally, we explored the regulatory effect of MAZ on OTUB1 through ChIP-qPCR and dual-luciferase reporter assay. RESULTS: OTUB1 was broadly elevated in HCC tissues and promoted the proliferation and metastasis of HCC in vitro and in vivo. The receptor for activated C kinase 1 (RACK1) performed as a functional partner of OTUB1 and its hyperactivation was associated with aggressive development and other malignant features in HCC by activating oncogenes transcription. Mechanistically, OTUB1 directly bound to RACK1 at its C-terminal domain and decreased the K48-linked ubiquitination of RACK1 through its non-canonical suppression of ubiquitination activity, which stabilized RACK1 protein levels in HCC cells. Therefore, OTUB1 significantly increased multiple oncogenes expression and activated PI3K/AKT and FAK/ERK signaling in a RACK1-dependent manner in HCC. Moreover, the transcription factor MAZ upregulated OTUB1 expression through identifying a putative response element of OTUB1 promoter area. CONCLUSIONS: Our findings might provide a new therapeutic strategy for HCC by modifying the MAZ-OTUB1-RACK1 axis.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Proteínas de Neoplasias , Receptores de Quinase C Ativada , Ubiquitinação , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Feminino , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Pessoa de Meia-Idade , Camundongos , Transdução de Sinais , Camundongos Endogâmicos BALB C , Estabilidade Proteica , Enzimas Desubiquitinantes
11.
J Biol Chem ; 300(3): 105719, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311171

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by dysregulation of the expression and processing of the amyloid precursor protein (APP). Protein quality control systems are dedicated to remove faulty and deleterious proteins to maintain cellular protein homeostasis (proteostasis). Identidying mechanisms underlying APP protein regulation is crucial for understanding AD pathogenesis. However, the factors and associated molecular mechanisms regulating APP protein quality control remain poorly defined. In this study, we show that mutant APP with its mitochondrial-targeting sequence ablated exhibited predominant endoplasmic reticulum (ER) distribution and led to aberrant ER morphology, deficits in locomotor activity, and shortened lifespan. We searched for regulators that could counteract the toxicity caused by the ectopic expression of this mutant APP. Genetic removal of the ribosome-associated quality control (RQC) factor RACK1 resulted in reduced levels of ectopically expressed mutant APP. By contrast, gain of RACK1 function increased mutant APP level. Additionally, overexpression of the ER stress regulator (IRE1) resulted in reduced levels of ectopically expressed mutant APP. Mechanistically, the RQC related ATPase VCP/p97 and the E3 ubiquitin ligase Hrd1 were required for the reduction of mutant APP level by IRE1. These factors also regulated the expression and toxicity of ectopically expressed wild type APP, supporting their relevance to APP biology. Our results reveal functions of RACK1 and IRE1 in regulating the quality control of APP homeostasis and mitigating its pathogenic effects, with implications for the understanding and treatment of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Proteínas de Drosophila , Endorribonucleases , Receptores de Quinase C Ativada , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Drosophila melanogaster , Modelos Animais de Doenças , Endorribonucleases/genética , Endorribonucleases/metabolismo
12.
J Clin Lab Anal ; 38(4): e25012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305509

RESUMO

BACKGROUND: RACK1 has been identified as a multifunctional cytosolic protein, and plays a pivotal role in multiple biological responses involved in several kinds of tumors, while its effect in cervical cancer has not been well elucidated yet. The study aimed to investigate the role of RACK1 in cervical cancer occurrence and progression. METHODS: The expression of RACK1 in cervical specimens was measured by immunohistochemical staining and Western blot assay. Transgenic mice were used to detect the role of RACK1 in modulating tumorigenesis in vivo. Cervical carcinoma cell lines were used to explore the underlying mechanisms of RACK1 on the behaviors of tumor cells in vitro. RESULTS: We found that RACK1 expression was upregulated in cancer tissues compared with adjacent tissues, and its expression was gradually increased from cervictis, and cervical intraepithelial neoplasis (CIN) to carcinoma. Genetic overexpression of RACK1 facilitated tumor formation and growth in nude mice. Mechanism studies disclosed that RACK1 over-expression prolonged the G0 /G1 phase by up-regulating the expression of cyclinD1, down-regulating p21 and p27 probably by modulating the phosphorylation of AKT. CONCLUSIONS: Taken together, we concluded that RACK1 stimulates tumorigenesis and progression of cervical cancer via modulating the proliferation of tumor cells, implying that targeting RACK1 may serve as a promising method for cervical cancer therapy.


Assuntos
Neoplasias do Colo do Útero , Humanos , Camundongos , Feminino , Animais , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/farmacologia
13.
Acta Trop ; 251: 107112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157925

RESUMO

Toxoplasma gondii (T. gondii) surface antigen 1 (SAG1) is crucial for tachyzoite invasion into host cells. However, the role of SAG1 in interaction with host cells remains unknown. The primary objective of this study was to analyze and validate the interaction between SAG1 and host cells. RACK1, an intracellular multifunctional protein, was identified as a SAG1 binding partner in host cells. Furthermore, the expression of RACK1 is manipulated by SAG1, and depletion of RACK1 negatively regulated host cell viability. These results imply that through interaction with RACK1, SAG1 preserves the viability of host cells to satisfy the survival needs of T. gondii. Our findings suggest a novel role for SAG1 in intracellular parasitism.


Assuntos
Proteínas de Protozoários , Toxoplasma , Antígenos de Protozoários/genética , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Antígenos de Superfície/metabolismo , Anticorpos Antiprotozoários
14.
Acta Neuropathol Commun ; 11(1): 200, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111057

RESUMO

TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma/Translocated in Sarcoma (FUS) are ribonucleoproteins associated with pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under physiological conditions, TDP-43 and FUS are predominantly localized in the nucleus, where they participate in transcriptional regulation, RNA splicing and metabolism. In disease, however, they are typically mislocalized to the cytoplasm where they form aggregated inclusions. A number of shared cellular pathways have been identified that contribute to TDP-43 and FUS toxicity in neurodegeneration. In the present study, we report a novel pathogenic mechanism shared by these two proteins. We found that pathological FUS co-aggregates with a ribosomal protein, the Receptor for Activated C-Kinase 1 (RACK1), in the cytoplasm of spinal cord motor neurons of ALS, as previously reported for pathological TDP-43. In HEK293T cells transiently transfected with TDP-43 or FUS mutant lacking a functional nuclear localization signal (NLS; TDP-43ΔNLS and FUSΔNLS), cytoplasmic TDP-43 and FUS induced co-aggregation with endogenous RACK1. These co-aggregates sequestered the translational machinery through interaction with the polyribosome, accompanied by a significant reduction of global protein translation. RACK1 knockdown decreased cytoplasmic aggregation of TDP-43ΔNLS or FUSΔNLS and alleviated associated global translational suppression. Surprisingly, RACK1 knockdown also led to partial nuclear localization of TDP-43ΔNLS and FUSΔNLS in some transfected cells, despite the absence of NLS. In vivo, RACK1 knockdown alleviated retinal neuronal degeneration in transgenic Drosophila melanogaster expressing hTDP-43WT or hTDP-43Q331K and improved motor function of hTDP-43WT flies, with no observed adverse effects on neuronal health in control knockdown flies. In conclusion, our results revealed a novel shared mechanism of pathogenesis for misfolded aggregates of TDP-43 and FUS mediated by interference with protein translation in a RACK1-dependent manner. We provide proof-of-concept evidence for targeting RACK1 as a potential therapeutic approach for TDP-43 or FUS proteinopathy associated with ALS and FTLD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Sarcoma , Animais , Humanos , Esclerose Lateral Amiotrófica/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Neurônios Motores/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Biossíntese de Proteínas , Sarcoma/metabolismo , Sarcoma/patologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Proteínas de Neoplasias/genética
15.
Biomolecules ; 13(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136569

RESUMO

The Ras GTPase-activating protein SH3 domain-binding protein (G3BP) belongs to the highly conserved family of RNA-binding proteins, which has been well-investigated in humans and animals. However, limited study of plant G3BP has been reported, and the precise biological function of the G3BP family has not been elucidated yet. In this study, the Arabidopsis G3BP family, comprising seven members, was comparatively analyzed. Transcriptome analysis showed that most G3BP genes are ubiquitously expressed in various tissues/organs. Transient expression analysis revealed that all G3BPs were presented in the cytoplasm, among which G3BP6 was additionally found in the nucleus. Further study revealed a conserved NLS motif required for the nuclear localization of G3BP6. Additionally, phenotypic analysis revealed that loss-of-function g3bp6 presented late-flowering phenotypes. RNA-sequencing analysis and qRT-PCR assays demonstrated that the expressions of abundant floral genes were significantly altered in g3bp6 plants. We also discovered that overexpression of G3BP6 in the nucleus, rather than in the cytoplasm, propelled bolting. Furthermore, we revealed that the scaffold protein Receptor for Activated C Kinase 1 (RACK1) interacted with and modulated the nuclear localization of G3BP6. Altogether, this study sheds new light on G3BP6 and its specific role in regulating the flowering transition in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Receptores de Quinase C Ativada/genética
16.
Commun Biol ; 6(1): 1056, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853189

RESUMO

Neuroligins are transmembrane cell adhesion proteins well-known for their genetic links to autism spectrum disorders. Neuroligins can function by regulating the actin cytoskeleton, however the factors and mechanisms involved are still largely unknown. Here, using the Drosophila neuromuscular junction as a model, we reveal that F-Actin assembly at the Drosophila NMJ is controlled through Cofilin signaling mediated by an interaction between DNlg2 and RACK1, factors not previously known to work together. The deletion of DNlg2 displays disrupted RACK1-Cofilin signaling pathway with diminished actin cytoskeleton proteo-stasis at the terminal of the NMJ, aberrant NMJ structure, reduced synaptic transmission, and abnormal locomotion at the third-instar larval stage. Overexpression of wildtype and activated Cofilin in muscles are sufficient to rescue the morphological and physiological defects in dnlg2 mutants, while inactivated Cofilin is not. Since the DNlg2 paralog DNlg1 is known to regulate F-actin assembly mainly via a specific interaction with WAVE complex, our present work suggests that the orchestration of F-actin by Neuroligins is a diverse and complex process critical for neural connectivity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transdução de Sinais/fisiologia , Receptores de Quinase C Ativada/genética
17.
Am J Physiol Renal Physiol ; 325(6): F870-F884, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823194

RESUMO

Neuropilin 1 (NRP1) is a single-channel transmembrane glycoprotein whose role and mechanism in renal fibrosis remain incompletely elucidated. Therefore, we investigated the effect of NRP1 on renal fibrosis and its potential mechanism. NRP1 expression in the renal sections from patients with chronic kidney disease (CKD) and a unilateral ureteral obstruction (UUO) mouse model was detected. Nrp1 overexpression or knockdown plasmid was transfected into mice, TKPTS mouse kidney proximal tubular epithelial cells (TECs), and rat kidney fibroblasts, after which pathological injury evaluation and fibrosis marker detection were conducted. The direct interaction of the receptor of activated protein C kinase 1 (RACK1) with NRP1 was validated by immunoprecipitation and Western blot analysis. We found that the upregulated renal NRP1 expression in patients with CKD was located in proximal TECs, consistent with the degree of interstitial fibrosis. In the UUO mouse model, NRP1 expression was upregulated in the kidney, and overexpression of Nrp1 increased the mRNA and protein expression of fibronectin (Fn) and α-smooth muscle actin (α-SMA), whereas Nrp1 knockdown significantly reduced Fn and α-SMA expression and downregulated the inflammatory response. NRP1 promoted transforming growth factor ß1 (TGF-ß1)-induced profibrotic responses in the TKPTS cells and fibroblasts, and Nrp1 knockdown partially reversed these responses. Immunoprecipitation combined with liquid chromatography-tandem mass spectrometry verified that NRP1 can directly bind to RACK1, and Rack1 knockdown reversed the NRP1-induced fibrotic response. In summary, NRP1 may enhance the TGF-ß1 pathway by binding to RACK1, thus promoting renal fibrosis.NEW & NOTEWORTHY Although a few studies have confirmed the correlation between neuropilin 1 (NRP1) and renal diseases, the mechanism of NRP1 in renal fibrosis remains unclear. Here, we investigated the effects of NRP1 on renal fibrosis through in vitro and in vivo experiments and explored the possible downstream mechanisms. We found that NRP1 can stimulate the TGF-ß1 signaling pathway, possibly by binding to RACK1, thereby promoting renal fibrosis.


Assuntos
Nefropatias , Neuropilina-1 , Receptores de Quinase C Ativada , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Ratos , Células Epiteliais/metabolismo , Fibrose , Rim/metabolismo , Nefropatias/patologia , Proteínas de Neoplasias/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Insuficiência Renal Crônica/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia
18.
Cell Death Differ ; 30(11): 2382-2392, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37828084

RESUMO

Receptor for activated C kinase 1 (RACK1) has been confirmed to take part in multiple biological events and the mechanism supporting abnormal RACK1 expression in ovarian cancer (OC) remains to be characterized. Here, we identified Smad ubiquitin regulatory factor 2 (SMURF2) as a bona fide E3 ligase of RACK1 in OC. SMURF2 effectively added the K6, K33 and K48 ubiquitin chains to the RACK1, resulting in polyubiquitination and instability of RACK1. PCAF promoted acetylation of RACK1 at K130, leading to SMURF2-mediated RACK1 ubiquitination inhibited and promote OC progression. The expression levels of SMURF2 and RACK1 were negatively correlated. SMURF2 was abnormal low expression in human ovarian cancer, resulting in decreased ubiquitination of RACK1 and increased stability, which promoted OC progression, and strongly associated with poor patients' prognosis. In general, our results demonstrated that SMURF2 plays a pivotal role in stabilizing RACK1, which in turn facilitates tumorigenesis in OC, suggesting that SMURF2-RACK1 axis may prove to be potential targets for the treatment of OC.


Assuntos
Neoplasias Ovarianas , Ubiquitina , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Processamento de Proteína Pós-Traducional , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
19.
Int Immunopharmacol ; 124(Pt B): 111034, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820423

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. The molecular mechanisms underlying OA progression remain incompletely understood. In this study, we investigated the role of STEAP3 (Six Transmembrane Epithelial Antigen of the Prostate 3) in the development of OA. Our results demonstrated that STEAP3 was upregulated in OA cartilage tissues and contributes to the progression of the disease. To elucidate the mechanism, we employed transcriptomic and interaction proteomics analysis, and identified dysregulated genes and pathways associated with STEAP3 overexpression. Specifically, we found that STEAP3 interacted with Rab7A, a protein involved in intracellular trafficking and autophagy, and suppressed its activity. In addition, STEAP3 interacted with activated C kinase 1 (RACK1) and enhanced its activity. Furthermore, our data indicated that the suppression of Rab7A activity by STEAP3 promoted the activation of receptor tyrosine kinases (RTKs) and the promoting effects of RACK1 by STEAP3, both of which in turn activated the MAPK and JAK/STAT signaling pathways. In conclusion, our findings highlighted the role of STEAP3 in promoting OA progression. By inhibiting Rab7A activity and promoting RACK1 activity, STEAP3 enhanced inflammation through the activation of RTKs and subsequent activation of the MAPK and JAK/STAT signaling pathways. Targeting STEAP3 may provide a potential therapeutic strategy for the treatment of OA by modulating these interconnected pathways.


Assuntos
Osteoartrite , Transdução de Sinais , Animais , Masculino , Ratos , Cartilagem/metabolismo , Inflamação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteoartrite/genética , Receptores de Quinase C Ativada/genética
20.
Neuron ; 111(24): 3988-4005.e11, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37820724

RESUMO

Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Doenças Mitocondriais , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Transtorno do Espectro Autista/metabolismo , Neurônios/metabolismo , Neurogênese , Doenças Mitocondriais/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA