Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Am J Chin Med ; 47(3): 675-689, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30966770

RESUMO

Pancreatic cancer cells overexpress the insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R). Activating these receptors, insulin and insulin-like growth factor-1 increase the growth and glycolysis of pancreatic cancer cells. The high glycolysis in pancreatic cancer cells increases whole-body energy expenditure and is therefore involved in the pathogenesis of cancer cachexia. The antagonism of IR and IGF1R may sabotage pancreatic cancer cells and attenuate cancer cachexia. Previous studies have shown that the intracellular regulating system of IR/IGF1R may be functionally interrelated to another intracellular system whose master regulator is hypoxia-inducible factor-1 (HIF-1). In this study, we investigated how the IR/IGF1R and HIF-1 systems are interrelated in pancreatic cancer cells. We also investigated whether a phytochemical, penta-O-galloyl- ß -D-glucose ( ß -PGG), antagonizes IR/IGF1R, sabotages pancreatic cancer cells and alleviates cancer cachexia. We found in MiaPaCa2 pancreatic cancer cells that IR/IGF1R activation increased both the α -subunit of HIF-1 and caveolin-1. This result suggests that IR/IGF1R, HIF-1 α , and caveolin-1 may constitute a feed-forward loop to mediate the effect of IR/IGF1R activation. ß -PGG inhibited IR/IGF1R activity and decreased glycolytic enzymes in MiaPaCa2 and Panc-1 pancreatic cancer cells. When MiaPaCa2 cells were transplanted in athymic mice, their growth was inhibited by ß -PGG or by a HIF-1 α inhibitor, rhein. ß -PGG and rhein also decreased glycolytic enzymes in the tumor grafts and reduced liver gluconeogenesis, skeletal-muscle proteolysis and fat lipolysis in the tumor carriers. Cancer-induced body-weight loss, however, was prevented by ß -PGG but not rhein. In conclusion, ß -PGG combats pancreatic cancer cells and cures cancer cachexia.


Assuntos
Caquexia/tratamento farmacológico , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/uso terapêutico , Neoplasias Pancreáticas/metabolismo , Animais , Caquexia/etiologia , Caveolina 1/metabolismo , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias Pancreáticas/complicações , Receptor IGF Tipo 1 , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/metabolismo , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/metabolismo , Células Tumorais Cultivadas
2.
J Biol Chem ; 294(21): 8664-8673, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30858179

RESUMO

Most cancer cells are dependent on a network of deregulated signaling pathways for survival and are insensitive, or rapidly evolve resistance, to selective inhibitors aimed at a single target. For these reasons, drugs that target more than one protein (polypharmacology) can be clinically advantageous. The discovery of useful polypharmacology remains serendipitous and is challenging to characterize and validate. In this study, we developed a non-genetic strategy for the identification of pathways that drive cancer cell proliferation and represent exploitable signaling vulnerabilities. Our approach is based on using a multitargeted kinase inhibitor, SM1-71, as a tool compound to identify combinations of targets whose simultaneous inhibition elicits a potent cytotoxic effect. As a proof of concept, we applied this approach to a KRAS-dependent non-small cell lung cancer (NSCLC) cell line, H23-KRASG12C Using a combination of phenotypic screens, signaling analyses, and kinase inhibitors, we found that dual inhibition of MEK1/2 and insulin-like growth factor 1 receptor (IGF1R)/insulin receptor (INSR) is critical for blocking proliferation in cells. Our work supports the value of multitargeted tool compounds with well-validated polypharmacology and target space as tools to discover kinase dependences in cancer. We propose that the strategy described here is complementary to existing genetics-based approaches, generalizable to other systems, and enabling for future mechanistic and translational studies of polypharmacology in the context of signaling vulnerabilities in cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/epidemiologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Receptores de Somatomedina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Antígenos CD/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Células HCT116 , Humanos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor IGF Tipo 1 , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo
3.
EBioMedicine ; 41: 597-609, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30852161

RESUMO

BACKGROUND: The fallopian tube fimbria is regarded as the main tissue of origin and incessant ovulation as the main risk factor of ovarian high-grade serous carcinoma. Previously, we discovered the tumorigenesis activity of human ovulatory follicular fluid (FF) upon injection to the mammary fat pad of Trp53-null mice. We also found a mutagenesis activity of FF-ROS and a apoptosis-rescuing activity of Hb from retrograde menstruation. However, neither of them can explain the tumorigenesis activities of FF. METHODS: From two cohorts of ovulatory FF retrieved from IVF patients, the main growth factor responsible for the transformation of human fimbrial epithelial cells was identified. Mechanism of activation, ways of signal transduction of the growth factor, as well as the cellular and genetic phenotypes of the malignant transformation was characterized. FINDINGS: In this study, we showed that insulin-like growth factor (IGF)-axis proteins, including IGFBP-bound IGF2 as well as the IGFBP-lytic enzyme PAPP-A, are abundantly present in FF. Upon engaging with glycosaminoglycans on the membrane of fimbrial epithelial cells, PAPP-A cleaves IGFBPs and releases IGF2 to bind with IGF-1R. Through the IGF-1R/AKT/mTOR and IGF-1R/AKT/NANOG pathways, FF-IGF leads to stemness and survival, and in the case of TP53/Rb or TP53/CCNE1 loss, to clonal expansion and malignant transformation of fimbrial epithelial cells. By depleting each IGF axis component from FF, we proved that IGF2, IGFBP2/6, and PAPP-A are all essential and confer the majority of the transformation and regeneration activities. INTERPRETATION: This study revealed that the FF-IGF axis functions to regenerate tissue damage after ovulation and promote the transformation of fimbrial epithelial cells that have been initiated by p53- and Rb-pathway disruptions. FUND: The study was supported by grants of the Ministry of Science and Technology, Taiwan (MOST 106-2314-B-303-001-MY2; MOST 105-2314-B-303-017-MY2; MOST 107-2314-B-303-013-MY3), and Buddhist Tzu Chi General Hospital, Taiwan (TCMMP104-04-01).


Assuntos
Líquido Folicular/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Animais , Carcinogênese , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/transplante , Tubas Uterinas/citologia , Feminino , Líquido Folicular/química , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Proteína Plasmática A Associada à Gravidez/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
4.
J Pediatr Hematol Oncol ; 41(2): 96-104, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30688831

RESUMO

OBJECTIVE: Hyperglycemia increases the risk of early recurrence and high mortality in some adult blood cancers. In response to increased glucose levels, insulin is secreted, and several studies have shown that insulin-induced AKT signaling can regulate tumor cell proliferation and apoptosis. The AKT pathway is aberrantly activated in adult acute lymphoblastic leukemia (ALL), but the mechanisms underlying this activation and its impact in pediatric patients with ALL are unclear. MATERIALS AND METHODS: We evaluated the insulin-induced chemoresistance and AKT pathway activation by measuring cell proliferation, apoptosis, and other parameters in ALL cell lines (Jurkat and Reh cells), as well as in primary pediatric leukemic cell samples, after culture with insulin, the chemotherapeutic drugs daunorubicin (DNR), vincristine (VCR), and L-asparaginase (L-Asp), or anti-insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibody. RESULTS: DNR, VCR, and L-Asp-induced toxicity in Jurkat and Reh cells was reduced in the presence of insulin. DNR promoted cell proliferation, whereas DNR, VCR, and L-Asp all reduced apoptosis in both cell lines cotreated with insulin compared with that in cell lines treated with chemotherapeutics alone (P<0.05). Furthermore, addition of an anti-IGF-1R monoclonal antibody promoted apoptosis, downregulated IGF-1R expression, and decreased the phosphorylation of AKT, P70S6K, and mTOR intracellular signaling pathway proteins in both cell lines, as well as in primary cultures (P<0.05). CONCLUSIONS: Our results suggest that insulin-induced chemoresistance and activation of the AKT signaling pathway in pediatric ALL cells.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Insulina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Antineoplásicos Imunológicos/farmacologia , Asparaginase/farmacologia , Criança , Pré-Escolar , Daunorrubicina/farmacologia , Feminino , Humanos , Células Jurkat , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/metabolismo , Vincristina/farmacologia
5.
Eye (Lond) ; 33(2): 191-199, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30610229

RESUMO

Recent new insights into the molecular basis of thyroid eye disease have led to the use of more specific therapies such as monoclonal antibodies This review explores the traditional immunosuppressant therapy for TED, highlighting the basis for emergent recent medications, possible treatment options and, eventually possible new general recommendation for management of TED. Data has been retrieved from the literature searching on Pubmed. Steroid therapy remains the first line therapy for moderate/severe and severe vision threatening TED The use of some traditional nonspecific immunosuppressant such as mycophenolate, cyclosporine and azathioprine seems useful in combination with steroid therapy to achieve stable results in the long term; methotrexate is useful as steroid-sparing medications and in steroid resistant or intolerant patients. In recent years, many scientific reports have showed the effectiveness of biological immunosuppressive agents in the management of TED. Etanercept, adalimumab, and tocilizumab have shown to be effective in reduction of the inflammatory signs with the possible advantage to prevent relapse of the disease. Particularly Tociliuzumab seems very effective as second line therapy, after steroid failure. Teprotumumab may control the disease activity and it seems to be very effective in preventing severity disease progression. Infliximab might be useful in severe TED with optic nerve compression resistant to steroid and decompression. Indeed, the actual incidence of adverse effects is not well assessed yet, therefore the use should be limited at those cases that really need an alternative therapy to steroid, handled by an expert multidisciplinary team.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Autoimunidade/efeitos dos fármacos , Linfócitos B/imunologia , Oftalmopatia de Graves/tratamento farmacológico , Imunossupressores/uso terapêutico , Linfócitos T/imunologia , Anticorpos Monoclonais Humanizados , Autoimunidade/imunologia , Congressos como Assunto , Oftalmopatia de Graves/imunologia , Humanos , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores
6.
Breast Cancer ; 26(3): 272-281, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30328006

RESUMO

BACKGROUND: Hormone therapy targeting the estrogen receptor (ER) pathway is the most common treatment used for ER-positive breast cancer. However, some patients experience de novo or acquired resistance, which becomes a critical problem. Activation of the insulin-like growth factor (IGF) pathway allows breast cancer cells to proliferate and is associated with the ER pathway. Little is known about the role of the IGF pathway in hormone therapy and resistance; therefore, we investigated whether the inhibition of this pathway may represent a novel therapeutic target for overcoming hormone therapy resistance in ER-positive breast cancers. METHODS: Crosstalk between the ER and IGF pathways was analyzed in breast cancer cell lines by inhibiting or stimulating either one or both pathways. We studied the effect of insulin-like growth factor one receptor (IGF1R) inhibition in aromatase inhibitor-resistant breast cancer cell lines and fulvestrant-resistant cell lines which were uniquely established in our laboratory. RESULTS: Under normal conditions, IGF signaling is controlled by ER signaling to promote cell growth. Temporary disruption of the estrogen supply results in attenuated ER signaling, and IGF-1 dramatically increased relative growth compared with normal conditions. In addition, IGF1R inhibitor strongly suppressd cell growth in hormone-resistant breast cancer cells where ER remains than cells where ER decreased or was almost lost. CONCLUSIONS: Our study suggests that inhibition of the IGF pathway may be an effective strategy for ER-positive breast cancer therapy, even in hormone therapy-resistant cases.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Estrogênios/deficiência , Estrogênios/farmacologia , Feminino , Humanos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/metabolismo , Células MCF-7 , Receptor Cross-Talk/efeitos dos fármacos , Receptor IGF Tipo 1 , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/genética
7.
Eye (Lond) ; 33(2): 200-205, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385883

RESUMO

BACKGROUND/OBJECTIVES: Thyroid-associated ophthalmopathy (TAO), an autoimmune component of Graves' disease, remains a disfiguring and potentially blinding condition. Here, the author reviews the role of insulin-like growth factor-I receptor pathway in TAO and how it might be therapeutically targeted. METHODS: The recent literature is reviewed. RESULTS: TAO involves reactivity of orbital connective tissues and their remodeling. While many of the details concerning the pathogenesis of TAO remain to be determined, several insights have come to light recently. Among them is the apparent involvement of IGF-IR. This receptor protein, a membrane-spanning tyrosine kinase receptor can form both physical and functional complexes with the thyrotropin receptor (TSHR). This is notable because TSHR is the established primary autoantigen in Graves' disease. IGF-IR activity is critical to signaling downstream from both IGF-IR and TSHR. In addition, antibodies against IGF-IR have been detected in patients with Graves' disease and in rodent models of TAO. Evidence has been put forward that these antibodies may act directly on IGF-IR, perhaps in some manner activating the receptor. These experimental observations have led to the development of a novel therapy for active TAO, utilizing a monoclonal anti-IGF-IR inhibitory antibody which had been produced originally as treatment for cancer. The agent, teprotumumab was recently evaluated in a clinical trial and found to be highly effective and relatively well-tolerated. It is currently undergoing assessment in a follow-up trial. CONCLUSIONS: Should the current study yield similarly encouraging results, it is possible that teprotumumab will emerge as a paradigm-shifting medical therapy for TAO.


Assuntos
Autoantígenos/imunologia , Oftalmopatia de Graves/imunologia , Receptores de Somatomedina/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Autoanticorpos/sangue , Congressos como Assunto , Tecido Conjuntivo/patologia , Oftalmopatia de Graves/tratamento farmacológico , Humanos , Órbita/patologia , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Receptores da Tireotropina/imunologia
8.
Gynecol Oncol ; 152(1): 185-193, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429055

RESUMO

OBJECTIVE: Inactivation of tumor suppressor genes promotes initiation and progression of cervical cancer. This study aims to investigate the tumor suppressive effects of TROP-2 in cervical cancer cells and to explain the underlying mechanisms. METHODS: The tumor suppressive functions of TROP-2 in cervical cancer cells were examined by in vitro and in vivo tumorigenic functional assays. Downstream factors of TROP-2 were screened using Human Phospho-Receptor Tyrosine Kinase Array. Small molecule inhibitors were applied to HeLa cells to test the TROP-2 effects on the oncogenicity of IGF-1R and ALK. Protein interactions between TROP-2 and the ligands of IGF-1R and ALK were detected via immunoprecipitation assay and protein-protein affinity prediction. RESULTS: In vitro and in vivo functional assays showed that overexpression of TROP-2 significantly inhibited the oncogenicity of cervical cancer cells; while knockdown of TROP-2 exhibited opposite effects. Human Phospho-Receptor Tyrosine Kinase Array showed that the activity of IGF-1R and ALK was stimulated by TROP-2 knockdown. Small molecule inhibitors AG1024 targeting IGF-1R and Crizotinib targeting ALK were treated to HeLa cells with and without TROP-2 overexpression, and results from cell viability and migration assays indicated that the oncogenicity of vector-transfected cells was repressed to a greater extent by the inhibition of either IGF-1R or ALK than that of the TROP-2-overexpressed cells. Immunoprecipitation assay and protein-protein affinity prediction suggested protein interactions between TROP-2 and the ligands of IGF-1R and ALK. CONCLUSIONS: Collectively, our results support that TROP-2 exhibits tumor suppressor functions in cervical cancer through inhibiting the activity of IGF-1R and ALK.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antígenos de Neoplasias/fisiologia , Moléculas de Adesão Celular/fisiologia , Receptores de Somatomedina/antagonistas & inibidores , Proteínas Supressoras de Tumor/fisiologia , Neoplasias do Colo do Útero/prevenção & controle , Quinase do Linfoma Anaplásico/fisiologia , Animais , Moléculas de Adesão Celular/antagonistas & inibidores , Proliferação de Células , Feminino , Células HeLa , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Midkina/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/fisiologia , Transdução de Sinais/fisiologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
9.
Proc Natl Acad Sci U S A ; 115(51): E12063-E12072, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509997

RESUMO

Rheumatoid arthritis (RA) is an inflammatory joint disease with a neurological component including depression, cognitive deficits, and pain, which substantially affect patients' quality of daily life. Insulin-like growth factor 1 receptor (IGF1R) signaling is one of the factors in RA pathogenesis as well as a known regulator of adult neurogenesis. The purpose of this study was to investigate the association between IGF1R signaling and the neurological symptoms in RA. In experimental RA, we demonstrated that arthritis induced enrichment of IBA1+ microglia in the hippocampus. This coincided with inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) and up-regulation of IGF1R in the pyramidal cell layer of the cornus ammoni and in the dentate gyrus, reproducing the molecular features of the IGF1/insulin resistance. The aberrant IGF1R signaling was associated with reduced hippocampal neurogenesis, smaller hippocampus, and increased immobility of RA mice. Inhibition of IGF1R in experimental RA led to a reduction of IRS1 inhibition and partial improvement of neurogenesis. Evaluation of physical functioning and brain imaging in RA patients revealed that enhanced functional disability is linked with smaller hippocampus volume and aberrant IGF1R/IRS1 signaling. These results point to abnormal IGF1R signaling in the brain as a mediator of neurological sequelae in RA and provide support for the potentially reversible nature of hippocampal changes.


Assuntos
Artrite Reumatoide/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Animais , Artrite Reumatoide/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Pessoa de Meia-Idade , Neurogênese/efeitos dos fármacos , Dor , Medição da Dor , Fosforilação , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/metabolismo , Regulação para Cima , Adulto Jovem
10.
Lung Cancer ; 123: 36-43, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089593

RESUMO

OBJECTIVE: We previously postulated that 2-deoxyglucose (2-DG) activates multiple pro-survival pathways through IGF1R to negate its inhibitory effect on glycolysis. Here, we evaluated whether IGF1R inhibitor synergizes with 2-DG to impede the growth of non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: The activation of IGF1R signaling was assessed by the phosphorylation of IGF1R and its downstream target AKT using immunoblot. Drug dose response and combination index analyses were carried out according to the method of Chou and Talalay. Flow cytometry was used to evaluate cell cycle progression. Apoptosis was monitored by caspase-3/PARP cleavages or Annexin V staining. A subcutaneous xenograft model was used to assess this combination in vivo. RESULTS: 2-DG induces the phosphorylation of IGF1R in its kinase domain, which can be abolished by the IGF1R inhibitor BMS-754807. Furthermore, the combination of 2-DG and BMS-754807 synergistically inhibited the survival of several non-small cell lung cancer (NSCLC) cell lines both in vitro and in vivo. The mechanistic basis of this synergy was cell line-dependent, and LKB1-inactivated EKVX cells underwent apoptosis following treatment with a subtoxic dose of 2-DG and BMS-754807. For these cells, the restoration of LKB1 kinase activity suppressed apoptosis induced by this combination but enhanced G1 arrest. In H460 cells, the addition of 2-DG did not enhance the low level of apoptosis induced by BMS-754807. However, treatment with 0.75 µM of BMS-754807 resulted in the accumulation of H460 cells with 8n-DNA content without affecting cell density increases. Hence, H460 cells may escape BMS-754807-induced G2/M cell cycle arrest through polyploidy. The inclusion of 2-DG blocked formation of the 8n-DNA cell population and restored G2/M phase cell cycle arrest. CONCLUSION: The combination of 2-DG and IGF1R inhibitor BMS-754807 may be used to suppress the proliferation of NSCLC tumors through different mechanisms.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Desoxiglucose/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores de Somatomedina/antagonistas & inibidores , Quinases Proteína-Quinases Ativadas por AMP , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxiglucose/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/farmacologia , Receptor IGF Tipo 1 , Triazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 8(1): 10711, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013043

RESUMO

Tescalcin (TESC; also known as calcineurin B homologous protein 3, CHP3) has recently reported as a regulator of cancer progression. Here, we showed that the elevation of TESC in non-small cell lung cancer (NSCLC) intensifies epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, consequently enhancing the cellular resistance to γ-radiation. TESC expression and the phosphorylation (consequent activation) of signal transducer and activator of transcription 3 (STAT3) were upregulated in CSC-like ALDH1high cells than in ALDH1low cells sorted from A549 NSCLC cells. Knockdown of TESC suppressed CSC-like properties as well as STAT3 activation through inhibition of insulin-like growth factor 1 receptor (IGF1R), a major signaling pathway of lung cancer stem cells. TESC activated IGF1R by the direct recruitment of proto-oncogene tyrosine kinase c-Src (c-Src) to IGF1Rß complex. Treatment of IGF1R inhibitor, AG1024, also suppressed c-Src activation, implicating that TESC mediates the mutual activation of c-Src and IGF1R. STAT3 activation by TESC/c-Src/IGF1R signaling pathway subsequently upregulated ALDH1 expression, which enhanced EMT-associated CSC-like properties. Chromatin immunoprecipitation and luciferase assay demonstrated that STAT3 is a potential transcription activator of ALDH1 isozymes. Ultimately, targeting TESC can be a potential strategy to overcome therapeutic resistance in NSCLC caused by augmented EMT and self-renewal capacity.


Assuntos
Aldeído Desidrogenase/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/metabolismo , Células A549 , Família Aldeído Desidrogenase 1 , Animais , Proteína Tirosina Quinase CSK , Proteínas de Ligação ao Cálcio/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/radioterapia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/efeitos da radiação , Proto-Oncogene Mas , RNA Interferente Pequeno/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/administração & dosagem , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/metabolismo , Retinal Desidrogenase , Tirfostinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
12.
Clin Cancer Res ; 24(20): 5165-5177, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29941485

RESUMO

Purpose: Insulin-like growth factor 1 (IGF1) signaling regulates breast cancer initiation and progression and associated cancer phenotypes. We previously identified E-cadherin (CDH1) as a repressor of IGF1 signaling and in this study examined how loss of E-cadherin affects IGF1R signaling and response to anti-IGF1R/insulin receptor (InsR) therapies in breast cancer.Experimental Design: Breast cancer cell lines were used to assess how altered E-cadherin levels regulate IGF1R signaling and response to two anti-IGF1R/InsR therapies. In situ proximity ligation assay (PLA) was used to define interaction between IGF1R and E-cadherin. TCGA RNA-seq and RPPA data were used to compare IGF1R/InsR activation in estrogen receptor-positive (ER+) invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) tumors. ER+ ILC cell lines and xenograft tumor explant cultures were used to evaluate efficacy to IGF1R pathway inhibition in combination with endocrine therapy.Results: Diminished functional E-cadherin increased both activation of IGF1R signaling and efficacy to anti-IGF1R/InsR therapies. PLA demonstrated a direct endogenous interaction between IGF1R and E-cadherin at points of cell-cell contact. Increased expression of IGF1 ligand and levels of IGF1R/InsR phosphorylation were observed in E-cadherin-deficient ER+ ILC compared with IDC tumors. IGF1R pathway inhibitors were effective in inhibiting growth in ER+ ILC cell lines and synergized with endocrine therapy and similarly IGF1R/InsR inhibition reduced proliferation in ILC tumor explant culture.Conclusions: We provide evidence that loss of E-cadherin hyperactivates the IGF1R pathway and increases sensitivity to IGF1R/InsR targeted therapy, thus identifying the IGF1R pathway as a potential novel target in E-cadherin-deficient breast cancers. Clin Cancer Res; 24(20); 5165-77. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Caderinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento Insulin-Like I/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Camundongos , RNA Interferente Pequeno/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Biol Chem ; 293(32): 12502-12515, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29903916

RESUMO

Many oncogenes, including chimeric oncoproteins, require insulin-like growth factor 1 receptor (IGF1R) for promoting cell transformation. The ETS variant 6 (ETV6)-neurotrophic receptor tyrosine kinase 3 (NTRK3) (EN) chimeric tyrosine kinase is expressed in mesenchymal, epithelial, and hematopoietic cancers and requires the IGF1R axis for transformation. However, current models of IGF1R-mediated EN activation are lacking mechanistic detail. We demonstrate here that IGF-mediated IGF1R stimulation enhances EN tyrosine phosphorylation and that blocking IGF1R activity or decreasing protein levels of the adaptor protein insulin receptor substrate 1/2 (IRS1/2) results in rapid EN degradation. This was observed both in vitro and in vivo in fibroblast and breast epithelial cell line models and in MO91, an EN-expressing human leukemia cell line. Stable isotope labeling with amino acids in cell culture (SILAC)-based MS analysis identified the E3 ligase RING-finger protein 123 (Rnf123, more commonly known as KPC1) as an EN interactor upon IGF1R/insulin receptor (INSR) inhibitor treatment. KPC1/Rnf123 ubiquitylated EN in vitro, and its overexpression decreased EN protein levels. In contrast, KPC1/Rnf123 knockdown rendered EN resistant to IGF1R inhibitor-mediated degradation. These results support a critical function for IGF1R in protecting EN from KPC1/Rnf123-mediated proteasomal degradation. Attempts to therapeutically target oncogenic chimeric tyrosine kinases have traditionally focused on blocking kinase activity to restrict downstream activation of essential signaling pathways. In this study, we demonstrate that IGF1R inhibition results in rapid ubiquitylation and degradation of the EN oncoprotein through a proteasome-dependent mechanism that is reversible, highlighting a potential strategy for targeting chimeric tyrosine kinases in cancer.


Assuntos
Proteínas de Fusão Oncogênica/metabolismo , Poliubiquitina/metabolismo , Proteólise , Receptores de Somatomedina/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Células Cultivadas , Humanos , Proteínas de Fusão Oncogênica/genética , Fosforilação , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
14.
PLoS One ; 13(5): e0196312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787591

RESUMO

Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.


Assuntos
Antineoplásicos/farmacologia , Estradiol/análogos & derivados , Receptores de Somatomedina/antagonistas & inibidores , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Estradiol/química , Estradiol/farmacologia , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Ligantes , Células MCF-7 , Proteínas de Membrana , Modelos Químicos , Modelos Moleculares , Receptor IGF Tipo 1 , Receptores de Somatomedina/química , Receptores de Somatomedina/genética , Transdução de Sinais/efeitos dos fármacos , Interface Usuário-Computador
15.
J Hematol Oncol ; 11(1): 71, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843755

RESUMO

BACKGROUND: Binding of insulin-like growth factor-I (IGF-1) to its receptor (IGF-1R) initiates downstream signals that activate PI3K/Akt/mTOR and MEK/Erk pathways, which stimulate cancer cell proliferation and induce drug resistance. Cross talk between IGF-1R and epidermal growth factor receptor (EGFR) mediates resistance to anti-EGFR agents. We studied safety, tolerability, and outcomes of MK-0646, IGF-1 monoclonal antibody, in combination with gemcitabine (G) ± erlotinib (E) in metastatic pancreatic cancer. METHODS: Our study included a phase I dose escalation and phase II randomization and expansion cohorts. A 3 + 3 dose escalation protocol was used to determine MK-0646 maximum tolerable dose (MTD) in combination with G ± E standard doses. For phase II, patients were randomized to arm A (G + MK), arm B (G + MK + E), or arm C (G + E). Primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), disease control rate, toxicity, and correlation between OS and IGF-1 in patients treated with MK-0646. RESULTS: MK-0646 MTD was 10 mg/kg in combination with G and 5 mg/kg in combination with G + E. In randomization cohort, 15 patients were treated in each arm. Disease control rates were 50, 60, and 40% respectively. PFS was not different between the three arms. OS was significantly different between arm A (10.4 months) and C (5.7 months) (P = 0.02). However, addition of erlotinib in arm B yielded no OS benefit compared to arm A (P = 0.6). Plasma and tissue IGF-1 levels did not correlate with OS (P = 0.64, 0.87). Grade 3-4 toxicity during phase II cohorts were neutropenia (10/arm A, 14/arm B, 5/arm C), leukopenia (5/A, 5/B, 7/C), thrombocytopenia (8/A, 9/B, 2/C), hyponatremia (1/A, 3/B), and hyperglycemia (8/A, 1/B). CONCLUSIONS: MK-0646 was tolerable in combination with G and associated with improvement in OS but not PFS as compared with G + E. Tissue and serum IGF-1 did not correlate with clinical outcome. TRIAL REGISTRATION: This trial is registered in ClinicalTrial.gov under the Identifier NCT00769483 and registration date was October 9, 2008.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/análogos & derivados , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Somatomedina/antagonistas & inibidores , Adenocarcinoma/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/toxicidade , Anticorpos Monoclonais Humanizados , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Desoxicitidina/toxicidade , Cloridrato de Erlotinib/administração & dosagem , Cloridrato de Erlotinib/toxicidade , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/mortalidade , Receptor IGF Tipo 1 , Análise de Sobrevida , Resultado do Tratamento , Gencitabina , Neoplasias Pancreáticas
16.
Clin Cancer Res ; 24(12): 2873-2885, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549161

RESUMO

Purpose: Insulin-like growth factor receptor 1 (IGF-1R) is critically involved in pancreatic cancer pathophysiology, promoting cancer cell survival and therapeutic resistance. Assessment of IGF-1R inhibitors in combination with standard-of-care chemotherapy, however, failed to demonstrate significant clinical benefit. The aim of this work is to unravel mechanisms of resistance to IGF-1R inhibition in pancreatic cancer and develop novel strategies to improve the activity of standard-of-care therapies.Experimental Design: Growth factor screening in pancreatic cancer cell lines was performed to identify activators of prosurvival PI3K/AKT signaling. The prevalence of activating growth factors and their receptors was assessed in pancreatic cancer patient samples. Effects of a bispecific IGF-1R and ErbB3 targeting antibody on receptor expression, signaling, cancer cell viability and apoptosis, spheroid growth, and in vivo chemotherapy activity in pancreatic cancer xenograft models were determined.Results: Growth factor screening in pancreatic cancer cells revealed insulin-like growth factor 1 (IGF-1) and heregulin (HRG) as the most potent AKT activators. Both growth factors reduced pancreatic cancer cell sensitivity to gemcitabine or paclitaxel in spheroid growth assays. Istiratumab (MM-141), a novel bispecific antibody that blocks IGF-1R and ErbB3, restored the activity of paclitaxel and gemcitabine in the presence of IGF-1 and HRG in vitro Dual IGF-1R/ErbB3 blocking enhanced chemosensitivity through inhibition of AKT phosphorylation and promotion of IGF-1R and ErbB3 degradation. Addition of istiratumab to gemcitabine and nab-paclitaxel improved chemotherapy activity in vivoConclusions: Our findings suggest a critical role for the HRG/ErbB3 axis and support the clinical exploration of dual IGF-1R/ErbB3 blocking in pancreatic cancer. Clin Cancer Res; 24(12); 2873-85. ©2018 AACR.


Assuntos
Albuminas/farmacologia , Desoxicitidina/análogos & derivados , Paclitaxel/farmacologia , Neoplasias Pancreáticas/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptores de Somatomedina/antagonistas & inibidores , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
17.
Mol Cancer Ther ; 17(4): 814-824, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29440290

RESUMO

The emergence of drug resistance is often an inevitable obstacle that limits the long-term effectiveness of clinical cancer chemotherapeutics. Although various forms of cancer cell-intrinsic mechanisms of drug resistance have been experimentally revealed, the role and the underlying mechanism of tumor microenvironment in driving the development of acquired drug resistance remain elusive, which significantly impedes effective clinical cancer treatment. Recent experimental studies have revealed a macrophage-mediated drug resistance mechanism in which the tumor microenvironment undergoes adaptation in response to macrophage-targeted colony-stimulating factor-1 receptor (CSF1R) inhibition therapy in gliomas. In this study, we developed a spatio-temporal model to quantitatively describe the interplay between glioma cells and CSF1R inhibitor-targeted macrophages through CSF1 and IGF1 pathways. Our model was used to investigate the evolutionary kinetics of the tumor regrowth and the associated dynamic adaptation of the tumor microenvironment in response to the CSF1R inhibitor treatment. The simulation result obtained using this model was in agreement with the experimental data. The sensitivity analysis revealed the key parameters involved in the model, and their potential impacts on the model behavior were examined. Moreover, we demonstrated that the drug resistance is dose-dependent. In addition, we quantitatively evaluated the effects of combined CSFR inhibition and IGF1 receptor (IGF1R) inhibition with the goal of designing more effective therapies for gliomas. Our study provides quantitative and mechanistic insights into the microenvironmental adaptation mechanisms that operate during macrophage-targeted immunotherapy and has implications for drug dose optimization and the design of more effective combination therapies. Mol Cancer Ther; 17(4); 814-24. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Imunoterapia , Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Somatomedina/antagonistas & inibidores , Análise Espaço-Temporal , Glioma/imunologia , Glioma/patologia , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Receptor IGF Tipo 1 , Microambiente Tumoral
18.
Mol Cancer ; 17(1): 50, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29455661

RESUMO

BACKGROUND: Both the type I insulin-like growth factor receptor (IGF1R) and Src pathways are associated with the development and progression of numerous types of human cancer, and Src activation confers resistance to anti-IGF1R therapies. Hence, targeting both IGF1R and Src concurrently is one of the main challenges in combating resistance to the currently available anti-IGF1R-based anticancer therapies. However, the enhanced toxicity from this combinatorial treatment could be one of the main hurdles for this strategy, suggesting the necessity of developing a novel strategy for co-targeting IGF1R and Src to meet an urgent clinical need. METHODS: We synthesized a series of 4-aminopyrazolo[3,4-d]pyrimidine-based dual IGF1R/Src inhibitors, selected LL28 as an active compound and evaluated its potential antitumor effects in vitro and in vivo using the MTT assay, colony formation assays, flow cytometric analysis, a tumor xenograft model, and the Kras G12D/+ -driven spontaneous lung tumorigenesis model. RESULTS: LL28 markedly suppressed the activation of IGF1R and Src and significantly inhibited the viability of several NSCLC cell lines in vitro by inducing apoptosis. Administration of mice with LL28 significantly suppressed the growth of H1299 NSCLC xenograft tumors without overt toxicity and substantially reduced the multiplicity, volume, and load of lung tumors in the Kras G12D/+ -driven lung tumorigenesis model. CONCLUSIONS: The present results suggest the potential of LL28 as a novel anticancer drug candidate targeting both IGF1R and Src, providing a new avenue to efficient anticancer therapies. Further investigation is warranted in advanced preclinical and clinical settings.


Assuntos
Pirimidinas/química , Pirimidinas/uso terapêutico , Receptores de Somatomedina/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dasatinibe/uso terapêutico , Humanos , Imidazóis/uso terapêutico , Imuno-Histoquímica , Células MCF-7 , Pirazinas/uso terapêutico , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
19.
Invest New Drugs ; 36(3): 451-457, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476383

RESUMO

Background The inhibition of insulin-like growth factor receptor-1 (IGF-1R) induces cell cycle arrest and enhancing the effect of castration by delay of progression of human prostate cancer models. Linsitinib is a small molecule and potent dual inhibitor of IGF-1R and insulin receptor tyrosine kinase activity. We report results of a single-arm, phase II study evaluating the safety and efficacy of linsitinib in men with chemotherapy-naïve asymptomatic or mildly symptomatic metastatic castration resistant prostate cancer (mCRPC). Methods Patients received at 150 mg orally twice daily on a 28-day cycle. The primary endpoint was prostate specific (PSA) response at 12 weeks and correlative studies included circulating tumor cells (CTCs) and circulating endothelial cells (CECs). Results Seventeen patients, median age 68 (55-78) and pre-treatment PSA of 55.23 (2.46-277.60) were enrolled and completed 12 weeks of therapy. All but two patients discontinued therapy secondary to PSA progression, which met the predefined futility criteria and led to early termination of this study. Overall best response (RECIST v1.1) included a partial response in 1 patient and stable disease in 8 patients. Higher baseline CTCs were associated with higher pre-treatment PSA levels (Spearman r = 0.49, p = 0.04) but no correlation between PSA progression and CTCs/CECs were observed. Most common adverse events included fatigue, nausea/vomiting, AST/ALT changes and prolonged QT interval. Conclusions Single-agent linsitinib was safe and well tolerated but failed to show activity in men with mCRPC. These results highlight the complexity of using IGF-1R as a therapeutic target in this patient population. ClinicalTrials.gov NCT01533246.


Assuntos
Imidazóis/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Pirazinas/uso terapêutico , Receptores de Somatomedina/antagonistas & inibidores , Idoso , Células Endoteliais/patologia , Humanos , Imidazóis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia , Antígeno Prostático Específico/metabolismo , Pirazinas/efeitos adversos , Receptor IGF Tipo 1
20.
Int J Biochem Cell Biol ; 94: 125-132, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29225160

RESUMO

Steroid receptor co-activator3 (SRC3) has been known to severe as an androgen receptor (AR) coactivator and is involved in the prostate cancer progression. Non-coding RNA (ncRNA) plays an important role in the cancer progression. However, the mechanism underlying the relationship between ncRNA and AR coactivators is still unclear. Here, we found a ncRNA, Nuclear Enriched Abundant Transcript 1 (NEAT1), was able to interact with SRC3 in the prostate cancer cell lines. NEAT1 can upregulate the AKT phosphorylation via a SRC3/IGF1R pathway. In function, NEAT1 promoted the prostate cancer cell growth through IGF1R/AKT signaling pathway. The NEAT1, SRC3, and IGF1R were highly expressed in the patients' samples of prostate cancer. Therefore, we found a novel SRC3 binding ncRNA that can promote the prostate cancer cell growth through SRC3/IGF1R/AKT pathway.


Assuntos
Coativador 3 de Receptor Nuclear/agonistas , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/agonistas , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Receptores de Somatomedina/agonistas , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/metabolismo , Estadiamento de Neoplasias , Coativador 3 de Receptor Nuclear/metabolismo , Fosforilação , Próstata/enzimologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Neoplásico/antagonistas & inibidores , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Bancos de Tecidos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA