Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 905
Filtrar
1.
Thromb Haemost ; 124(2): 122-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37669782

RESUMO

BACKGROUND: The C-type lectin receptor CD93 is a single pass type I transmembrane glycoprotein involved in inflammation, immunity, and angiogenesis. This study investigates the role of CD93 in platelet function. CD93 knockout (KO) mice and wild-type (WT) controls were compared in this study. METHODS: Platelet activation and aggregation were investigated by flow cytometry and light transmission aggregometry, respectively. Protein expression and phosphorylation were analyzed by immunoblotting. Subcellular localization of membrane receptors was investigated by wide-field and confocal microscopy. RESULTS: The lack of CD93 in mice was not associated to any evident bleeding defect and no alterations of platelet activation were observed upon stimulation with thromboxane A2 analogue and convulxin. Conversely, platelet aggregation induced by stimulation of the thrombin receptor PAR4 was significantly reduced in the absence of CD93. This defect was associated with a significant reduction of α-granule secretion, integrin αIIbß3 activation, and protein kinase C (PKC) stimulation. Resting WT and CD93-deficient platelets expressed comparable amounts of PAR4. However, upon stimulation with a PAR4 activating peptide, a more pronounced clearance of PAR4 from the platelet surface was observed in CD93-deficient platelets compared with WT controls. Confocal microscopy analysis revealed a massive movement of PAR4 in cytosolic compartments of activated platelets lacking CD93. Accordingly, platelet desensitization following PAR4 stimulation was more pronounced in CD93 KO platelets compared with WT controls. CONCLUSION: These results demonstrate that CD93 supports platelet activation triggered by PAR4 stimulation and is required to stabilize the expression of the thrombin receptor on the cell surface.


Assuntos
Receptores de Trombina , Trombina , Animais , Camundongos , Plaquetas/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Receptor PAR-1/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Trombina/metabolismo
2.
Am J Physiol Renal Physiol ; 326(2): F219-F226, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031732

RESUMO

Protease-activated receptor 4 (PAR4) is a G protein-coupled receptor activated by thrombin. In the platelet, response to thrombin PAR4 contributes to the predominant procoagulant microparticle formation, increased fibrin deposition, and initiation of platelet-stimulated inflammation. In addition, PAR4 is expressed in other cell types, including endothelial cells. Under inflammatory conditions, PAR4 is overexpressed via epigenetic demethylation of the PAR4 gene, F2RL3. PAR4 knockout (KO) studies have determined a role for PAR4 in ischemia-reperfusion injury in the brain, and PAR4 KO mice display normal cardiac function but present less myocyte death and cardiac dysfunction in response to acute myocardial infarction. Although PAR4 has been reported to be expressed within the kidney, the contribution of PAR4 to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 KO mice are protected against kidney injury in two mouse models. First, PAR4 KO mice are protected against induction of markers of both fibrosis and inflammation in two different models of kidney injury: 1) 7 days following unilateral ureter obstruction (UUO) and 2) an AKI-CKD model of ischemia-reperfusion followed by 8 days of contralateral nephrectomy. We further show that PAR4 expression in the kidney is low in the control mouse kidney but induced over time following UUO. PAR4 KO mice are protected against blood urea nitrogen (BUN) and glomerular filtration rate (GFR) kidney function pathologies in the AKI-CKD model. Following the AKI-CKD model, PAR4 is expressed in the collecting duct colocalizing with Dolichos biflorus agglutinin (DBA), but not in the proximal tubule with Lotus tetragonolobus lectin (LTL). Collectively, the results reported in this study implicate PAR4 as contributing to the pathology in mouse models of acute and chronic kidney injury.NEW & NOTEWORTHY The contribution of the thrombin receptor protease-activated receptor 4 (PAR4) to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 expression is upregulated after kidney injury and PAR4 knockout (KO) mice are protected against fibrosis following kidney injury in two mouse models. First, PAR4 KO mice are protected against unilateral ureter obstruction. Second, PAR4 KO mice are protected against an AKI-CKD model of ischemia-reperfusion followed by contralateral nephrectomy.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Animais , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Células Endoteliais/metabolismo , Fibrose , Inflamação/patologia , Isquemia/patologia , Rim/metabolismo , Camundongos Knockout , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/patologia , Trombina/metabolismo , Trombina/farmacologia
3.
J Thromb Haemost ; 21(12): 3640-3648, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37678550

RESUMO

BACKGROUND: The involvement of thrombin receptor PAR1 in blood vessel development has been largely demonstrated in knockout mice; however, its implication in adult mouse angiogenesis seems very moderate. OBJECTIVES: We aimed to explore the potential relationships between PAR1, stemness, and angiogenic properties of human endothelial colony-forming cells (ECFCs). METHODS AND RESULTS: PAR1 activation on ECFCs using the selective PAR1-activating peptide induced a significant decrease in CD133 expression (RTQ-PCR analysis). In line, silencing of PAR1 gene expression with siRNA increased CD133 mRNA as well as intracellular CD133 protein expression. To confirm the link between CD133 and PAR1, we explored the association between PAR1 and CD133 levels in fast and slow fibroblasts prone to reprogramming. An imbalance between PAR1 and CD133 levels was evidenced, with a decreased expression of PAR1 in fast reprogramming fibroblasts expressing a high CD133 level. Regarding in vitro ECFC angiogenic properties, PAR1 silencing with specific siRNA induced cell proliferation evidenced by the overexpression of Ki67. However, it did not impact migration properties nor ECFC adhesion on smooth muscle cells or human arterial endothelial cells. In a mouse model of hind-limb ischemia, PAR1 silencing in ECFCs significantly increased postischemic revascularization compared to siCtrl-ECFCs along with a significant increase in cutaneous blood flows (P < .0001), microvessel density (P = .02), myofiber regeneration (P < .0001), and human endothelial cell incorporation in muscle (P < .0001). CONCLUSION: In conclusion, our work describes for the first time a link between PAR1, stemness, and vasculogenesis in human ECFCs.


Assuntos
Células Endoteliais , Receptor PAR-1 , Humanos , Células Cultivadas , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176005

RESUMO

Protease-activated receptors (PARs) are a class of integral membrane proteins that are cleaved by a variety of proteases, most notably thrombin, to reveal a tethered ligand and promote activation. PARs are critical mediators of platelet function in hemostasis and thrombosis, and therefore are attractive targets for anti-platelet therapies. Animal models studying platelet PAR physiology have relied heavily on genetically modified mouse strains, which have provided ample insight but have some inherent limitations. The current review aims to summarize the notable PAR expression and functional differences between the mouse and human, in addition to highlighting some recently developed tools to further study human physiology in mouse models.


Assuntos
Receptores Ativados por Proteinase , Receptores de Trombina , Humanos , Camundongos , Animais , Receptores Ativados por Proteinase/metabolismo , Receptores de Trombina/metabolismo , Especificidade da Espécie , Plaquetas/metabolismo , Trombina/metabolismo
5.
J Thromb Haemost ; 21(8): 2236-2247, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37068592

RESUMO

BACKGROUND: Thromboelastography (TEG) is used for real-time determination of hemostatic status in patients with acute risk of bleeding. Thrombin is thought to drive clotting in TEG through generation of polymerized fibrin and activation of platelets through protease-activated receptors (PARs). However, the specific role of platelet agonist receptors and signaling in TEG has not been reported. OBJECTIVES: Here, we investigated the specific receptors and signaling pathways required for platelet function in TEG using genetic and pharmacologic inhibition of platelet proteins in mouse and human blood samples. METHODS: Clotting parameters (R time, α-angle [α], and maximum amplitude [MA]), were determined in recalcified, kaolin-triggered citrated blood samples using a TEG 5000 analyzer. RESULTS: We confirmed the requirement of platelets, platelet contraction, and αIIbß3 integrin function for normal α and MA. Loss of the integrin adaptor Talin1 in megakaryocytes/platelets (Talin1mKO) also reduced α and MA, but only minimal defects were observed in samples from mice lacking Rap1 GTPase signaling. PAR4mKO samples showed impaired α but normal MA. However, impaired TEG traces similar to those in platelet-depleted samples were observed with samples from PAR4mKO mice depleted of glycoprotein VI on platelets or with addition of a Syk inhibitor. We reproduced these results in human blood with combined inhibition of PAR1, PAR4, and Syk. CONCLUSION: Our results demonstrate that standard TEG is not sensitive to platelet signaling pathways critical for integrin inside-out activation and platelet hemostatic function. Furthermore, we provide the first evidence that PARs and glycoprotein VI play redundant roles in platelet-mediated clot contraction in TEG.


Assuntos
Plaquetas , Hemostáticos , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Glicoproteínas/metabolismo , Integrinas/metabolismo , Receptores Ativados por Proteinase/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Tromboelastografia/métodos
6.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768341

RESUMO

Diabetic encephalopathy (DE) is an inflammation-associated diabetes mellitus (DM) complication. Inflammation and coagulation are linked and are both potentially modulated by inhibiting the thrombin cellular protease-activated receptor 1 (PAR1). Our aim was to study whether coagulation pathway modulation affects DE. Diabetic C57BL/6 mice were treated with PARIN5, a novel PAR1 modulator. Behavioral changes in the open field and novel object recognition tests, serum neurofilament (NfL) levels and thrombin activity in central and peripheral nervous system tissue (CNS and PNS, respectively), brain mRNA expression of tumor necrosis factor α (TNF-α), Factor X (FX), prothrombin, and PAR1 were assessed. Subtle behavioral changes were detected in diabetic mice. These were accompanied by an increase in serum NfL, an increase in central and peripheral neural tissue thrombin activity, and TNF-α, FX, and prothrombin brain intrinsic mRNA expression. Systemic treatment with PARIN5 prevented the appearance of behavioral changes, normalized serum NfL and prevented the increase in peripheral but not central thrombin activity. PARIN5 treatment prevented the elevation of both TNF-α and FX but significantly elevated prothrombin expression. PARIN5 treatment prevents behavioral and neural damage in the DE model, suggesting it for future clinical research.


Assuntos
Diabetes Mellitus Experimental , Receptor PAR-1 , Trombina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Protrombina/metabolismo , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , RNA Mensageiro/metabolismo , Estreptozocina , Trombina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Thromb Haemost ; 21(5): 1289-1306, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754678

RESUMO

BACKGROUND: Especially in disease conditions, platelets can encounter activating agents in circulation. OBJECTIVES: To investigate the extent to which previously activated platelets can be reactivated and whether in-and reactivation applies to different aspects of platelet activation and thrombus formation. METHODS: Short-and long-term effects of glycoprotein VI (GPVI) and G protein-coupled receptor (GPCR) stimulation on platelet activation and aggregation potential were compared via flow cytometry and plate-based aggregation. Using fluorescence and electron microscopy, we assessed platelet morphology and content, as well as thrombus formation. RESULTS: After 30 minutes of stimulation with thrombin receptor activator peptide 6 (TRAP6) or adenosine diphosphate (ADP), platelets secondarily decreased in PAC-1 binding and were less able to aggregate. The reversibility of platelets after thrombin stimulation was concentration dependent. Reactivation was possible via another receptor. In contrast, cross-linked collagen-related peptide (CRP-XL) or high thrombin stimulation evoked persistent effects in αIIbß3 activation and platelet aggregation. However, after 60 minutes of CRP-XL or high thrombin stimulation, when αIIbß3 activation slightly decreased, restimulation with ADP or CRP-XL, respectively, increased integrin activation again. Compatible with decreased integrin activation, platelet morphology was reversed. Interestingly, reactivation of reversed platelets again resulted in shape change and if not fully degranulated, additional secretion. Moreover, platelets that were previously activated with TRAP6 or ADP regained their potential to contribute to thrombus formation under flow. On the contrary, prior platelet triggering with CRP-XL was accompanied by prolonged platelet activity, leading to a decreased secondary platelet adhesion under flow. CONCLUSION: This work emphasizes that prior platelet activation can be reversed, whereafter platelets can be reactivated through a different receptor. Reversed, previously activated platelets can contribute to thrombus formation.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombose , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo , Receptores de Trombina/metabolismo , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo
8.
BMC Cardiovasc Disord ; 23(1): 97, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809978

RESUMO

BACKGROUND AND OBJECTIVE: Protease-activated receptor 1 (PAR1) is crucial in individuals with acute myocardial infarction (AMI). The continuous and prompt PAR1 activation mainly dependent on PAR1 trafficking is essential for the role of PAR1 during AMI in which cardiomyocytes are in hypoxia. However, the PAR1 trafficking in cardiomyocytes specially during the hypoxia is still unclear. METHODS AND RESULT: A rat AMI model was created. PAR1 activation with thrombin-receptor activated peptide (TRAP) had a transient effect on cardiac function in normal rats but persistent improvement in rats with AMI. Cardiomyocytes from neonatal rats were cultured in a normal CO2 incubator and a hypoxic modular incubator chamber. The cells were then subjected to western blot for the total protein expression and staining with fluorescent reagent and antibody for PAR1 localization. No change in total PAR1 expression following TRAP stimulation was observed; however, it led to increased PAR1 expression in the early endosomes in normoxic cells and decreased expression in the early endosomes in hypoxic cells. Under hypoxic conditions, TRAP restored the PAR1 expression on both cell and endosomal surfaces within an hour by decreasing Rab11A (8.5-fold; 179.93 ± 9.82% of the normoxic control group, n = 5) and increasing Rab11B (15.5-fold) expression after 4 h of hypoxia. Similarly, Rab11A knockdown upregulated PAR1 expression under normoxia, and Rab11B knockdown downregulated PAR1 expression under both normoxic and hypoxic conditions. Cardiomyocytes knocked out of both Rab11A, and Rad11B lost the TRAP-induced PAR1 expression but still exhibited the early endosomal TRAP-induced PAR1 expression under hypoxia. CONCLUSIONS: TRAP-mediated activation of PAR1 in cardiomyocytes did not alter the total PAR1 expression under normoxic conditions. Instead, it triggers a redistribution of PAR1 levels under normoxic and hypoxic conditions. TRAP reverses the hypoxia-inhibited PAR1 expression in cardiomyocytes by downregulating Rab11A expression and upregulating Rab11B expression.


Assuntos
Infarto do Miocárdio , Receptor PAR-1 , Animais , Ratos , Hipóxia/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Trombina/metabolismo , Trombina/farmacologia
10.
Clin Transl Oncol ; 25(5): 1242-1251, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36547764

RESUMO

Colorectal cancer (CRC) is one of the common malignancies with a global trend of increasing incidence and mortality. There is an urgent need to identify new predictive markers and therapeutic targets for the treatment of CRC. Protease-activated receptors (PARs) are a class of G-protein-coupled receptors, with currently identified subtypes including PAR1, PAR2, PAR3 and PAR4. Increasingly, studies suggest that PARs play an important role in the growth and metastasis of CRC. By targeting multiple signaling pathways may contribute to the pathogenesis of CRC. In this review, we first describe recent studies on the role of PARs in CRC inflammation-cancer transformation, focusing on the important role of PARs in signaling pathways associated with inflammation-cancer transformation, and summarize the progress of research on PARs-targeted drugs.


Assuntos
Neoplasias , Receptores Ativados por Proteinase , Humanos , Receptores Ativados por Proteinase/metabolismo , Receptores de Trombina/metabolismo , Transdução de Sinais , Inflamação
11.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430576

RESUMO

Type 2 DM is a risk factor for dementia, including Alzheimer's disease (AD), and is associated with brain atrophy. Amyloid ß protein (Aß) deposition in the brain parenchyma is implicated in the neurodegeneration that occurs in AD. Platelets, known as abundant storage of Aß, are recognized to play important roles in the onset and progression of AD. We recently showed that Aß negatively regulates platelet activation induced by thrombin receptor-activating protein (TRAP) in healthy people. In the present study, we investigated the effects of Aß on the TRAP-stimulated platelet activation in DM patients, and the relationship between the individual responsiveness to Aß and quantitative findings of MRI, the volume of white matter hyperintensity (WMH)/intracranial volume (IC) and the volume of parenchyma (PAR)/IC. In some DM patients, Aß reduced platelet aggregation induced by TRAP, while in others it was unchanged or rather enhanced. The TRAP-induced levels of phosphorylated-Akt and phosphorylated-HSP27, the levels of PDGF-AB and the released phosphorylated-HSP27 correlated with the degree of platelet aggregability. The individual levels of not WMH/IC but PAR/IC was correlated with those of TRAP-stimulated PDGF-AB release. Collectively, our results suggest that the reactivity of TRAP-stimulated platelet activation to Aß differs in DM patients from healthy people. The anti-suppressive feature of platelet activation to Aß might be protective for brain atrophy in DM patients.


Assuntos
Peptídeos beta-Amiloides , Complicações do Diabetes , Ativação Plaquetária , Humanos , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Atrofia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Proteínas de Choque Térmico HSP27/metabolismo , Ativação Plaquetária/fisiologia , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia
12.
Mol Cancer Ther ; 21(9): 1415-1429, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066448

RESUMO

While the role of G-protein-coupled receptors (GPCR) in cancer is acknowledged, their underlying signaling pathways are understudied. Protease-activated receptors (PAR), a subgroup of GPCRs, form a family of four members (PAR1-4) centrally involved in epithelial malignancies. PAR4 emerges as a potent oncogene, capable of inducing tumor generation. Here, we demonstrate identification of a pleckstrin-homology (PH)-binding motif within PAR4, critical for colon cancer growth. In addition to PH-Akt/PKB association, other PH-containing signal proteins such as Gab1 and Sos1 also associate with PAR4. Point mutations are in the C-tail of PAR4 PH-binding domain; F347 L and D349A, but not E346A, abrogate these associations. Pc(4-4), a lead backbone cyclic peptide, was selected out of a mini-library, directed toward PAR2&4 PH-binding motifs. It effectively attenuates PAR2&4-Akt/PKB associations; PAR4 instigated Matrigel invasion and migration in vitro and tumor development in vivo. EGFR/erbB is among the most prominent cancer targets. AYPGKF peptide ligand activation of PAR4 induces EGF receptor (EGFR) Tyr-phosphorylation, effectively inhibited by Pc(4-4). The presence of PAR2 and PAR4 in biopsies of aggressive breast and colon cancer tissue specimens is demonstrated. We propose that Pc(4-4) may serve as a powerful drug not only toward PAR-expressing tumors but also for treating EGFR/erbB-expressing tumors in cases of resistance to traditional therapies. Overall, our studies are expected to allocate new targets for cancer therapy. Pc(4-4) may become a promising candidate for future therapeutic cancer treatment.


Assuntos
Neoplasias do Colo , Receptores de Trombina , Proteínas Sanguíneas , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Desenho de Fármacos , Receptores ErbB/genética , Humanos , Oncogenes , Fosfoproteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo
13.
Eur J Pharmacol ; 933: 175264, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100127

RESUMO

Proteinases released e.g. during inflammatory or allergic responses affect gastrointestinal functions via proteinase-activated receptors such as PAR1 and PAR2. As the gastrointestinal tract exerts pronounced gradients along its longitudinal axis, the present study focuses on the effect of PAR1 and PAR2 agonists on electrogenic ion transport (measured as short-circuit current; Isc), tissue conductance (Gt) and contractility of the longitudinal muscle layer of rats. In Ussing chamber experiments, the PAR1 agonist TFLLR-NH2, which mimics the tethered ligand liberated after cleavage of the receptor, evoked only a modest increase in Isc (<0.5 µEq·h-1·cm-2) in small intestine, but a strong increase (3-4 µEq·h-1·cm-2) in colon. Pretreatment with tetrodotoxin reduced the response of the colonic segments to the level of the small intestine. Thrombin, the natural activator of PAR1, was much less effective suggesting biased activation by this peptidase. A similar gradient along the longitudinal axis of the intestine was observed with trypsin, the endogenous activator of PAR2. Divergent actions of PAR1 activation by enzymatic cleavage or a mimetic peptide were also observed when recording isometric contractions of longitudinal muscle. For example, in the jejunum TFLLR-NH2 concentration-dependently induced a contractile response, whereas thrombin showed only inconsistent effects. The PAR2 activator AC264613 induced a concentration-dependent decrease in muscle tone combined with an inhibition of phasic spontaneous contractions. PCR experiments and immunohistochemical stainings confirmed the expression of PAR1 and PAR2. The data implies that PAR1 and PAR2 functions vary depending on the intestinal segment.


Assuntos
Receptor PAR-1 , Receptor PAR-2 , Animais , Ligantes , Peptídeos , Ratos , Receptores de Trombina/metabolismo , Tetrodotoxina , Trombina/metabolismo , Tripsina/farmacologia
14.
Biochem Pharmacol ; 202: 115152, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752281

RESUMO

There is growing evidence of the importance of protease-activated receptor 4 (PAR4), one of thrombin receptors, as a therapeutic target in thrombotic cardiovascular diseases. In the present study, we utilized ligand-based virtual screening, bioassay, and structure-activity relationship study to discover PAR4 antagonists with new chemical scaffolds from natural origin, and examined their application as antiplatelet agents. By using these approaches, we have identified a flavonoid, 7, 4'-dimethoxy-3-hydroxyflavone, that exhibits anti-PAR4 activity. 7, 4'-Dimethoxy-3-hydroxyflavone inhibited PAR4-mediated human platelet aggregation, GPIIb/IIIa activation, and P-selectin secretion. Also, it inhibited PAR4 downstream signaling pathways, including Ca2+/protein kinase C, Akt, and MAP kinases ERK and p38, in human platelets, and suppressed PAR4-mediated ß-arrestin recruitment in CHO-K1 cells exogenously expressed human PAR4. In a microfluidic system, 7, 4'-dimethoxy-3-hydroxyflavone reduced thrombus formation on collagen-coated chambers at an arterial shear rate in recalcified whole blood. Furthermore, mice treated with 7, 4'-dimethoxy-3-hydroxyflavone were significantly protected from FeCl3-induced carotid arterial occlusions, without significantly affecting tail bleeding time. In conclusion, 7, 4'-dimethoxy-3-hydroxyflavone represents a new class of nature-based PAR4 antagonist, it shows effective in vivo antithrombotic properties with less bleeding tendency, and could be a potential candidate for developing new antiplatelet agents.


Assuntos
Inibidores da Agregação Plaquetária , Trombose , Animais , Humanos , Camundongos , Plaquetas , Fibrinolíticos/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Agregação Plaquetária , Inibidores da Agregação Plaquetária/metabolismo , Receptores de Trombina/metabolismo , Trombina/metabolismo , Trombose/tratamento farmacológico , Trombose/metabolismo
15.
Platelets ; 33(8): 1192-1198, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35701857

RESUMO

We aimed to investigate the effects of integrin αIIbß3 inhibitor tirofiban on hallmarks of platelet activation, degranulation, and aggregation during its use to analyze activated but non-complexed platelets via flow cytometry. To do so, we used washed platelets from healthy human donors. We combined aggregometry, an assay of platelet functionality, with flow cytometry and ELISA to detect and correlate, respectively, platelet aggregation, activation, and granule release. While tirofiban effectively inhibited agonist-induced platelet aggregation (thrombin receptor-activating peptide 6 (TRAP), convulxin (CVX), U46619 and IV.3), the surface expression of P-selectin and CD63 and granule release of RANTES were significantly increased, indicating that tirofiban enhances degranulation, uncoupled from aggregation. The results show that tirofiban alters the activation phenotype of platelets, something that should be considered when using tirofiban to enable flow cytometric analysis of activated but unaggregated platelet suspensions.


Assuntos
Selectina-P , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Plaquetas/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CCL5/farmacologia , Humanos , Selectina-P/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Inibidores da Agregação Plaquetária/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores de Trombina/metabolismo , Tirofibana/farmacologia , Tirosina/metabolismo , Tirosina/farmacologia
16.
Arterioscler Thromb Vasc Biol ; 42(8): 960-972, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708029

RESUMO

BACKGROUND: Thrombin (via PAR [protease-activated receptor]-1 and PAR-4) and ADP (via P2Y12 receptors) are potent endogenous platelet activators implicated in the development of cardiovascular disease. We aimed to assess whether platelet pathways alter with aging. METHODS: We characterized platelet activity in community-dwelling volunteers (n=174) in the following age groups: (1) 20 to 30 (young); (2) 40 to 55 (middle-aged); (3) ≥70 years (elderly). Platelet activity was assessed by aggregometry; flow cytometry (surface markers [P-selectin: alpha granule release, CD63: dense granule release, PAC-1: measure of conformationally active GPIIb/IIIa at the fibrinogen binding site]) measured under basal conditions and after agonist stimulation [ADP, thrombin, PAR-1 agonist or PAR-4 agonist]); receptor cleavage and quantification; fluorometry; calcium flux; ELISA. RESULTS: The elderly had higher basal platelet activation than the young, evidenced by increased expression of P-selectin, CD63, and PAC-1, which correlated with increasing inflammation (IL [interleukin]-1ß/IL-6). The elderly demonstrated higher P2Y12 receptor density, with greater ADP-induced platelet aggregation (P<0.05). However, elderly subjects were resistant to thrombin, achieving less activation in response to thrombin (higher EC50) and to selective stimulation of both PAR-1 and PAR-4, with higher basal PAR-1/PAR-4 cleavage and less inducible PAR-1/PAR-4 cleavage (all P<0.05). Thrombin resistance was attributable to a combination of reduced thrombin orienting receptor GPIbα (glycoprotein Ibα), reduced secondary ADP contribution to thrombin-mediated activation, and blunted calcium flux. D-Dimer, a marker of in situ thrombin generation, correlated with platelet activation in the circulation, ex vivo thrombin resistance, and circulating inflammatory mediators (TNF [tumor necrosis factor]-α/IL-6). CONCLUSIONS: Aging is associated with a distinctive platelet phenotype of increased basal activation, ADP hyperreactivity, and thrombin resistance. In situ thrombin generation associated with systemic inflammation may be novel target to prevent cardiovascular disease in the elderly.


Assuntos
Doenças Cardiovasculares , Receptor PAR-1 , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Idoso , Plaquetas/metabolismo , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Selectina-P/metabolismo , Fenótipo , Ativação Plaquetária , Agregação Plaquetária , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Trombina/metabolismo
17.
Platelets ; 33(7): 1090-1095, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35417662

RESUMO

Thrombin is a potent platelet activator, acting through proteinase-activated receptors -1 and -4 (PAR1 and PAR4). Of these, PAR-1 is activated more rapidly and by lower thrombin concentrations. Consequently, PAR-1 has been extensively investigated as a target for anti-platelet drugs to prevent myocardial infarction. Q94 has been reported to act as an allosteric modulator of PAR1, potently and selectively inhibiting PAR1-Gαq coupling in multiple cell lines, but its effects on human platelet activation have not been previously studied. Platelet Ca2+ signaling, integrin αIIbß3 activation and α-granule secretion were monitored following stimulation by a PAR1-activating peptide (PAR1-AP). Although Q94 inhibited these responses, its potency was low compared to other PAR1 antagonists. In addition, αIIbß3 activation and α-granule secretion in response to other platelet activators were also inhibited with similar potency. Finally, in endothelial cells, Q94 did not inhibit PAR1-dependent Ca2+ signaling. Our data suggest that Q94 may have PAR1-independent off-target effects in platelets, precluding its use as a selective PAR1 allosteric modulator.


Assuntos
Receptor PAR-1 , Trombina , Plaquetas/metabolismo , Células Endoteliais/metabolismo , Humanos , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Trombina/metabolismo , Trombina/farmacologia
18.
Chem Biol Interact ; 357: 109889, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35288162

RESUMO

Thrombin is a potent platelet activator and a key mediator of blood coagulation, thereby playing a crucial role in cardiovascular disease. Recently, protease-activated receptor 4 (PAR4), one of thrombin receptors in human platelets, is emerging as a promising target for antiplatelet therapy. 3,5,2',4'-Tetramethoxystilbene (TMS), a resveratrol analog, have demonstrated promising effects on preventing atherosclerosis and hypertension, whereas its antiplatelet effect has never been investigated. Herein we show that TMS at concentrations of a few micromolar selectively inhibits PAR4-mediated human platelet aggregation, ATP secretion, integrin αIIbß3 activation, and signaling pathways. In a whole-blood model of arterial flow, TMS also significantly reduced in vitro thrombus formation. Analysis of the structure-activity relationships of TMS and a panel of stilbene analogs reveal that full methylation of hydroxy groups of the stilbenes is the critical structural determinant for the anti-PAR4 activity. Our results suggest that fully methylated resveratrol analogs with anti-PAR4 activity are potential candidates for development of novel antiplatelet agents.


Assuntos
Inibidores da Agregação Plaquetária , Agregação Plaquetária , Resveratrol , Trombose , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Receptores de Trombina/metabolismo , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Trombose/prevenção & controle
19.
Platelets ; 33(8): 1132-1138, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35348422

RESUMO

Triggering receptor expressed on myeloid cells (TREM) like transcript-1 (TLT-1) is a membrane protein receptor found in α-granules of megakaryocytes and platelets. Upon platelet activation TLT-1 is rapidly relocated to the surface of platelets. In plasma, a soluble form of TLT-1 (sTLT-1) is present. Plasma levels of sTLT-1 are significantly elevated in thrombotic diseases. In the present study, we investigated to whether TLT-1 reflects platelet activation in pregnant women with preeclampsia. We studied 30 preeclamptic patients who were matched with 30 normotensive pregnant women and 30 non-pregnant controls. Basal TLT-1, P-selectin, and CD63 expressions on platelets were analyzed with the use of flow-cytometry (FCM). Platelet reactivity was induced by thrombin receptor activation peptide and determined by FCM. Plasma concentrations of sTLT-1 and soluble P-selectin (sP-selectin) were measured by an enzyme-linked immunosorbent assay. Results show that basal platelet expression of TLT-1, P-selectin and CD63 were increased in women with preeclampsia (PE) compared with normotensive pregnant women (NP). Platelets from PE women and NP women were more responsive compared to from nonpregnant women controls (NC), and which was demonstrated by increased expression of TLT-1, P-selectin, and CD63 upon stimulation in vitro. Plasma concentration of sTLT-1 was greater in PE women compared to NP women and NC women. Plasma sP-selectin level was higher in pregnant women than in nonpregnant women, but there were no significant differences between PE and NP women. In summary, our results revealed that platelet activation is prominent in preeclampsia, TLT-1 reflects platelet activation and may be a useful indicator for preeclampsia.


Assuntos
Selectina-P , Pré-Eclâmpsia , Plaquetas/metabolismo , Feminino , Humanos , Células Mieloides/metabolismo , Selectina-P/metabolismo , Peptídeos , Ativação Plaquetária , Gravidez , Receptores Imunológicos , Receptores de Trombina/metabolismo
20.
Platelets ; 33(6): 879-886, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294323

RESUMO

Cirrhotic patients have an increased risk of bleeding and thromboembolic events, with platelets being involved as key players in both situations. The impact of peripheral versus central blood sampling on platelet activation remains unclear. In 33 cirrhotic patients, we thus analyzed platelet function in peripheral (P) and central (C) blood samples. Platelet surface expression of P-selectin, activated glycoprotein (GP) IIb/IIIa, and leukocyte-platelet aggregate formation were measured by flow cytometry in response to different agonists: thrombin receptor-activating peptide-6, adenosine diphosphate, collagen-related peptide (CrP), epinephrine, AYPGKF, Pam3CSK4, and lipopolysaccharide. Unstimulated platelet surface expression of P-selectin (p = .850) and activated GPIIb/IIIa (p = .625) were similar in peripheral and central blood samples. Stimulation with various agonists yielded similar results of platelet surface expression of P-selectin and activated GPIIb/IIIa in peripheral and central samples, except for CrP-inducible expression of activated GPIIb/IIIa (median fluorescence intensity, MFI in P: 7.61 [0.00-24.66] vs. C: 4.12 [0.00-19.04], p < .001). The formation of leukocyte-platelet aggregate was similar in central and peripheral blood samples, both unstimulated and after stimulation with all above-mentioned agonists. In conclusion, peripheral vs. central venous blood sampling does not influence the assessment of platelet activation by flow cytometry in cirrhosis.Abbreviations: ACLD: advanced chronic liver disease; ADP: adenosine diphosphate; ALD: alcoholic liver disease; AYPGKF: PAR-4 agonist AYPGKF; CrP: collagen related protein; EPI: epinephrine; FACS: fluorescence-activated cell sorting; GP: glycoprotein; HVPG: hepatic venous pressure gradient; IQR: interquartile range; LPS: lipopolysaccharide; LSM: liver stiffness measurement; MFI: median fluorescence intensity; NAFLD: nonalcoholic fatty liver disease; PAM: lipopeptide Pam3CSK4; PAR: protease-activated receptor; PBS: phosphate-buffered saline; PH: portal hypertension; TIPS: transjugular intrahepatic portosystemic stent shunt; TLR: toll-like receptor; TRAP-6: thrombin receptor-activator peptide-6; vWF: von Willebrand factor.


Assuntos
Selectina-P , Inibidores da Agregação Plaquetária , Difosfato de Adenosina/farmacologia , Plaquetas/metabolismo , Epinefrina/farmacologia , Citometria de Fluxo , Humanos , Lipopolissacarídeos/metabolismo , Cirrose Hepática/metabolismo , Selectina-P/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores de Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA