Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
2.
Clin Cancer Res ; 29(16): 2988-3003, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265425

RESUMO

PURPOSE: Patients with unresectable/metastatic chondrosarcoma have poor prognoses; conventional chondrosarcoma is associated with a median progression-free survival (PFS) of <4 months after first-line chemotherapy. No standard targeted therapies are available. We present the preclinical characterization of INBRX-109, a third-generation death receptor 5 (DR5) agonist, and clinical findings from a phase I trial of INBRX-109 in unresectable/metastatic chondrosarcoma (NCT03715933). PATIENTS AND METHODS: INBRX-109 was first characterized preclinically as a DR5 agonist, with binding specificity and hepatotoxicity evaluated in vitro and antitumor activity evaluated both in vitro and in vivo. INBRX-109 (3 mg/kg every 3 weeks) was then evaluated in a phase I study of solid tumors, which included a cohort with any subtype of chondrosarcoma and a cohort with IDH1/IDH2-mutant conventional chondrosarcoma. The primary endpoint was safety. Efficacy was an exploratory endpoint, with measures including objective response, disease control rate, and PFS. RESULTS: In preclinical studies, INBRX-109 led to antitumor activity in vitro and in patient-derived xenograft models, with minimal hepatotoxicity. In the phase I study, INBRX-109 was well tolerated and demonstrated antitumor activity in unresectable/metastatic chondrosarcoma. INBRX-109 led to a disease control rate of 87.1% [27/31; durable clinical benefit, 40.7% (11/27)], including two partial responses, and median PFS of 7.6 months. Most treatment-related adverse events, including liver-related events, were low grade (grade ≥3 events in chondrosarcoma cohorts, 5.7%). CONCLUSIONS: INBRX-109 demonstrated encouraging antitumor activity with a favorable safety profile in patients with unresectable/metastatic chondrosarcoma. A randomized, placebo-controlled, phase II trial (ChonDRAgon, NCT04950075) will further evaluate INBRX-109 in conventional chondrosarcoma.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Anticorpos Monoclonais/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas , Condrossarcoma/terapia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia
3.
J Med Virol ; 94(11): 5574-5581, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35869417

RESUMO

Mortality in coronavirus disease 2019 (COVID-19) patients has been linked to the presence of a "cytokine storm" induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which involves elevated levels of circulating cytokines and immune-cell hyperactivation. Targeting cytokines during the management of COVID-19 patients has the potential to improve survival rates and reduce mortality. Although cytokine blockers and immune-host modulators are currently being tested in severely ill COVID-19 patients to cope with the overwhelming systemic inflammation, there is not too many successful cases, thus finding new cytokine blockers to attenuate the cytokine storm syndrome is meaningful. In this paper, we significantly attenuated the inflammatory responses induced by mouse hepatitis viruses A59 and SARS-CoV-2 through a soluble DR5-Fc (sDR5-Fc) chimeric protein that blocked the TNF-related apoptosis-inducing ligand-death receptor 5 (TRAIL-DR5) interaction. Our findings indicates that blocking the TRAIL-DR5 pathway through the sDR5-Fc chimeric protein is a promising strategy to treat COVID-19 severe patients requiring intensive care unit  admission or with chronic metabolic diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , SARS-CoV-2 , Animais , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/genética
4.
Cell Rep ; 37(5): 109953, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731630

RESUMO

Receptor clustering is the first and critical step to activate apoptosis by death receptor-5 (DR5). The recent discovery of the autoinhibitory DR5 ectodomain has challenged the long-standing view of its mechanistic activation by the natural ligand Apo2L. Because the autoinhibitory residues have remained unknown, here we characterize a crucial patch of positively charged residues (PPCR) in the highly variable domain of DR5. The PPCR electrostatically separates DR5 receptors to autoinhibit their clustering in the absence of ligand and antibody binding. Mutational substitution and antibody-mediated PPCR interference resulted in increased apoptotic cytotoxic function. A dually specific antibody that enables sustained tampering with PPCR function exceptionally enhanced DR5 clustering and apoptotic activation and distinctively improved the survival of animals bearing aggressive metastatic and recurrent tumors, whereas clinically tested DR5 antibodies without PPCR blockade function were largely ineffective. Our study provides mechanistic insights into DR5 activation and a therapeutic analytical design for potential clinical success.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Células A549 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Especificidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/metabolismo , Epitopos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Science ; 372(6537)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795432

RESUMO

Multivalent display of receptor-engaging antibodies or ligands can enhance their activity. Instead of achieving multivalency by attachment to preexisting scaffolds, here we unite form and function by the computational design of nanocages in which one structural component is an antibody or Fc-ligand fusion and the second is a designed antibody-binding homo-oligomer that drives nanocage assembly. Structures of eight nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage, respectively, closely match the corresponding computational models. Antibody nanocages targeting cell surface receptors enhance signaling compared with free antibodies or Fc-fusions in death receptor 5 (DR5)-mediated apoptosis, angiopoietin-1 receptor (Tie2)-mediated angiogenesis, CD40 activation, and T cell proliferation. Nanocage assembly also increases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-angiotensin-converting enzyme 2 (ACE2) fusion proteins.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Nanoestruturas , Engenharia de Proteínas , Transdução de Sinais , Angiopoietinas/química , Angiopoietinas/imunologia , Angiopoietinas/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Antígenos CD40/química , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Simulação por Computador , Genes Sintéticos , Humanos , Fragmentos Fc das Imunoglobulinas/química , Ativação Linfocitária , Modelos Moleculares , Ligação Proteica , Receptor TIE-2/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Linfócitos T/fisiologia
6.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33483421

RESUMO

MYC is a powerful transcription factor overexpressed in many human cancers including B cell and prostate cancers. Antibody therapeutics are exciting opportunities to attack cancers but require knowledge of surface proteins that change due to oncogene expression. To identify how MYC overexpression remodels the cell surface proteome in a cell autologous fashion and in different cell types, we investigated the impact of MYC overexpression on 800 surface proteins in three isogenic model cell lines either of B cell or prostate cell origin engineered to have high or low MYC levels. We found that MYC overexpression resulted in dramatic remodeling (both up- and down-regulation) of the cell surfaceome in a cell type-dependent fashion. We found systematic and large increases in distinct sets of >80 transporters including nucleoside transporters and nutrient transporters making cells more sensitive to toxic nucleoside analogs like cytarabine, commonly used for treating hematological cancers. Paradoxically, MYC overexpression also increased expression of surface proteins driving cell turnover such as TNFRSF10B, also known as death receptor 5, and immune cell attacking signals such as the natural killer cell activating ligand NCR3LG1, also known as B7-H6. We generated recombinant antibodies to these two targets and verified their up-regulation in MYC overexpression cell lines and showed they were sensitive to bispecific T cell engagers (BiTEs). Our studies demonstrate how MYC overexpression leads to dramatic bidirectional remodeling of the surfaceome in a cell type-dependent but functionally convergent fashion and identify surface targets or combinations thereof as possible candidates for cytotoxic metabolite or immunotherapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Linfócitos B/efeitos dos fármacos , Antígenos B7/genética , Células Epiteliais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Anticorpos Biespecíficos/biossíntese , Linfócitos B/imunologia , Linfócitos B/patologia , Antígenos B7/antagonistas & inibidores , Antígenos B7/imunologia , Engenharia Celular/métodos , Linhagem Celular Tumoral , Citarabina/farmacologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Imunossupressores/farmacologia , Imunoterapia/métodos , Masculino , Terapia de Alvo Molecular/métodos , Plasmídeos/química , Plasmídeos/metabolismo , Próstata/imunologia , Próstata/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Transfecção
7.
Eur J Immunol ; 51(3): 721-733, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180337

RESUMO

Costimulatory signals potently promote T-cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4-1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen-specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA-A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T-cell responses. CD28 costimulation potently augmented the percentage and number of antigen-reactive CD8 T cells, whereas eAPC expressing 4-1BB-ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4-1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose-dependent manner. However, the promotion of bystander CD8 T-cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen-specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Genes MHC Classe I/imunologia , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
8.
Sci Rep ; 10(1): 6294, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286343

RESUMO

Dengue virus (DENV) infections may cause life-threatening dengue hemorrhagic fever (DHF). Suppressed protective immunity was shown in these patients. Although several hypotheses have been formulated, the mechanism of DENV-induced immunosuppression remains unclear. Previously, we found that cross-reactive antibodies against tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 1 (death receptor 4 [DR4]) were elicited in DHF patients, and that anti-DR4 autoantibody fractions were elicited by nonstructural protein 1 (NS1) immunizations in experimental mice. In this study, we found that anti-DR4 antibodies could suppress B lymphocyte function in vitro and in vivo. Treatment with the anti-DR4 immunoglobulin (Ig) induced caspase-dependent cell death in immortalized B lymphocyte Raji cells in vitro. Anti-DR4 Igs elicited by NS1 and DR4 immunizations markedly suppressed mouse spleen transitional T2 B (IgM+IgD+), bone marrow pre-pro-B (B220+CD43+), pre-B (B220+CD43-), and mature B cell (B220+IgD+) subsets in mice. Furthermore, functional analysis revealed that the pre-elicitation of anti-NS1 and anti-DR4 Ig titers suppressed subsequently neutralizing antibody production by immunization with DENV envelop protein. Our data suggest that the elicitation of anti-DR4 titers through DENV NS1 immunization plays a suppressive role in humoral immunity in mice.


Assuntos
Anticorpos Antivirais/imunologia , Imunidade Humoral , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Dengue Grave/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Autoanticorpos/sangue , Células Cultivadas , Vírus da Dengue/imunologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL
9.
Front Immunol ; 10: 2514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708930

RESUMO

T-cell-based immunotherapy strategies have profoundly improved the clinical management of several solid tumors and hematological malignancies. A recently developed and promising immunotherapy approach is to redirect polyclonal MHC-unrestricted T lymphocytes toward cancer cells by bispecific antibodies (bsAbs) that engage the CD3 complex and a tumor-associated antigen (TAA). The TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) is an attractive immunotherapy target, frequently expressed by neoplastic cells, that we decided to exploit as a TAA. We found that a TRAIL-R2xCD3 bsAb efficiently activates T cells and specifically redirect their cytotoxicity against cancer cells of different origins in vitro, thereby demonstrating its potential as a pan-carcinoma reagent. Moreover, to mimic in vivo conditions, we assessed its ability to retarget T-cell activity in an ex vivo model of ovarian cancer patients' ascitic fluids containing both effector and target cells-albeit with a suboptimal effector-to-target ratio-with remarkable results.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias/imunologia , Complexo CD3/imunologia , Neoplasias/terapia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Ativação Linfocitária/imunologia , Masculino , Neoplasias/imunologia , Linfócitos T/imunologia
10.
Biomater Sci ; 8(1): 256-265, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31687671

RESUMO

Chemotherapy is a dominant treatment modality for different types and stages of cancer. However, hypoxia is one of the undesirable limitations of chemotherapy, which reduces the therapeutic efficiency in cancer treatment, ultimately leading to failure of the treatment. Herein, an ideal chemosensitization system capable of attenuating the tumor hypoxia microenvironment and enhancing chemotherapy effects in tumors was designed. This system (designated as the RA/RX Liposome) uses for the first time a pH-sensitive liposome to co-deliver cyclopeptide RA-V as chemotherapeutic drugs and antisense oligonucleotides as HIF-1α inhibitors (RX-0047) for attenuating tumor hypoxia, as well as a caspase-8 activation probe for therapeutic self-monitoring. After modification with death receptor 5-specific antibodies (anti-DR5) on the surface of the liposome, the RA/RX Liposome can successfully deliver components targeting colon tumors in vivo. This work should synergistically enhance the therapeutic effects of the treatment by successfully down-regulating HIF-1α expression against tumor hypoxia during the RA-V-induced apoptotic process. More importantly, the RA/RX Liposome can be precisely applied for therapeutic self-monitoring with the light-up fluorescence of the caspase-8 probe.


Assuntos
Anticorpos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Oligonucleotídeos/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Hipóxia Tumoral/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Caspase 8/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Sinergismo Farmacológico , Feminino , Células HCT116 , Células HT29 , Humanos , Lipossomos , Camundongos , Oligonucleotídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Immunol ; 10: 1530, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333662

RESUMO

Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) signaling is far more complex than initially anticipated and can lead to either anti- or protumorigenic effects, hampering the successful clinical use of therapeutic TRAIL receptor agonists. Cell autonomous resistance mechanisms have been identified in addition to paracrine factors that can modulate apoptosis sensitivity. The tumor microenvironment (TME), consisting of cellular and non-cellular components, is a source for multiple signals that are able to modulate TRAIL signaling in tumor and stromal cells. Particularly immune effector cells, also part of the TME, employ the TRAIL/TRAIL-R system whereby cell surface expressed TRAIL can activate apoptosis via TRAIL receptors on tumor cells, which is part of tumor immune surveillance. In this review we aim to dissect the impact of the TME on signaling induced by endogenous and exogenous/therapeutic TRAIL, thereby distinguishing different components of the TME such as immune effector cells, neutrophils, macrophages, and non-hematopoietic stromal cells. In addition, also non-cellular biochemical and biophysical properties of the TME are considered including mechanical stress, acidity, hypoxia, and glucose deprivation. Available literature thus far indicates that tumor-TME interactions are complex and often bidirectional leading to tumor-enhancing or tumor-reducing effects in a tumor model- and tumor type-dependent fashion. Multiple signals originating from different components of the TME simultaneously affect TRAIL receptor signaling. We conclude that in order to unleash the full clinical potential of TRAIL receptor agonists it will be necessary to increase our understanding of the contribution of different TME components on outcome of therapeutic TRAIL receptor activation in order to identify the most critical mechanism responsible for resistance, allowing the design of effective combination treatments.


Assuntos
Comunicação Celular , Neoplasias , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF , Microambiente Tumoral/imunologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico
12.
MAbs ; 11(6): 996-1011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156033

RESUMO

Agonism of members of the tumor necrosis factor receptor superfamily (TNFRSF) with monoclonal antibodies is of high therapeutic interest due to their role in immune regulation and cell proliferation. A major hurdle for pharmacologic activation of this receptor class is the requirement for high-order clustering, a mechanism that imposes a reliance in vivo on Fc receptor-mediated crosslinking. This extrinsic dependence represents a potential limitation of virtually the entire pipeline of agonist TNFRSF antibody drugs, of which none have thus far been approved or reached late-stage clinical trials. We show that tetravalent biepitopic targeting enables robust intrinsic antibody agonism for two members of this family, OX40 and DR5, that is superior to extrinsically crosslinked native parental antibodies. Tetravalent biepitopic anti-OX40 engagement co-stimulated OX40low cells, obviated the requirement for CD28 co-signal for T cell activation, and enabled superior pharmacodynamic activity relative to native IgG in a murine vaccination model. This work establishes a proof of concept for an engineering approach that addresses a major gap for the therapeutic activation of this important receptor class.


Assuntos
Anticorpos Monoclonais/imunologia , Capeamento Imunológico , Ligante OX40/agonistas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD28/imunologia , Células CHO , Cricetulus , Humanos , Células Jurkat , Camundongos , Camundongos SCID , Camundongos Transgênicos , Ligante OX40/imunologia , Receptores Fc/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Linfócitos T/citologia
13.
Front Immunol ; 10: 951, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114586

RESUMO

The maintenance of B cell homeostasis requires a tight control of B cell generation, survival, activation, and maturation. In lymphocytes upon activation, increased sensitivity to apoptotic signals helps controlling differentiation and proliferation. The death receptor Fas is important in this context because genetic Fas mutations in humans lead to an autoimmune lymphoproliferative syndrome that is similar to lymphoproliferation observed in Fas-deficient mice. In contrast, the physiological role of TNF-related apoptosis-inducing ligand receptors (TRAIL-Rs) in humans has been poorly studied so far. Indeed, most studies have focused on tumor cell lines and on mouse models whose results are difficult to transpose to primary human B cells. In the present work, the expression of apoptosis-inducing TRAIL-R1 and TRAIL-R2 and of the decoy receptors TRAIL-R3 and TRAIL-R4 was systematically studied in all developmental stages of peripheral B cells isolated from the blood and secondary lymphoid organs. Expression of TRAIL-Rs is modulated along development, with highest levels observed in germinal center B cells. In addition, T-dependent and T-independent signals elicited induction of TRAIL-Rs with distinct kinetics, which differed among B cell subpopulations: switched memory cells rapidly upregulated TRAIL-R1 and -2 upon activation while naïve B cells only reached similar expression levels at later time points in culture. Increased expression of TRAIL-R1 and -2 coincided with a caspase-3-dependent sensitivity to TRAIL-induced apoptosis in activated B cells but not in freshly isolated resting B cells. Finally, both TRAIL-R1 and TRAIL-R2 could signal actively and both contributed to TRAIL-induced apoptosis. In conclusion, this study provides a systematic analysis of the expression of TRAIL-Rs in human primary B cells and of their capacity to signal and induce apoptosis. This dataset forms a basis to further study and understand the dysregulation of TRAIL-Rs and TRAIL expression observed in autoimmune diseases. Additionally, it will be important to foresee potential bystander immunomodulation when TRAIL-R agonists are used in cancer treatment.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Ativação Linfocitária , Proteínas de Membrana/imunologia , Receptor Ativador de Fator Nuclear kappa-B/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Linfócitos B/citologia , Caspase 3/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Masculino , Transdução de Sinais/imunologia
14.
Cell Death Dis ; 10(2): 101, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718507

RESUMO

Development of therapeutic antibodies in oncology has attracted much interest in the past decades. More than 30 of them have been approved and are being used to treat patients suffering from cancer. Despite encouraging results, and albeit most clinical trials aiming at evaluating monoclonal antibodies directed against TRAIL agonist receptors have been discontinued, DR4 or DR5 remain interesting targets, since these receptors are overexpressed by tumour cells and are able to trigger their death. In an effort to develop novel and specific anti-DR4 and anti-DR5 antibodies with improved properties, we used genetic immunization to express native proteins in vivo. Injection of DR4 and DR5 cDNA into the tail veins of mice elicited significant humoral anti-DR4 and anti-DR5 responses and fusions of the corresponding spleens resulted in numerous hybridomas secreting antibodies that could specifically recognize DR4 or DR5 in their native forms. All antibodies bound specifically to their targets with a very high affinity, from picomolar to nanomolar range. Among the 21 anti-DR4 and anti-DR5 monoclonal antibodies that we have produced and purified, two displayed proapoptotic properties alone, five induced apoptosis after cross-linking, four were found to potentiate TRAIL-induced apoptosis and three displayed antiapoptotic potential. The most potent anti-DR4 antibody, C#16, was assessed in vivo and was found, alone, to inhibit tumour growth in animal models. This is the first demonstration that DNA-based immunization method can be used to generate novel monoclonal antibodies targeting receptors of the TNF superfamily that may constitute new therapeutic agents.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Transplante Heterólogo
15.
MAbs ; 10(7): 1084-1097, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29993310

RESUMO

Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or TRAIL-receptor agonistic monoclonal antibodies promote apoptosis in most cancer cells, and the differential expression of TRAIL-R2 between tumor and normal tissues allows its exploitation as a tumor-associated antigen. The use of these antibodies as anticancer agents has been extensively studied, but the results of clinical trials were disappointing. The observed lack of anticancer activity could be attributed to intrinsic or acquired resistance of tumor cells to this type of treatment. A possible strategy to circumvent drug resistance would be to strike tumor cells with a second modality based on a different mechanism of action. We therefore set out to generate and optimize a bispecific antibody targeting TRAIL-R2 and CD3. After the construction of different bispecific antibodies in tandem-scFv or single-chain diabody formats to reduce possible immunogenicity, we selected a humanized bispecific antibody with very low aggregates and long-term high stability and functionality. This antibody triggered TRAIL-R2 in an agonistic manner and its anticancer activity proved dramatically potentiated by the redirection of cytotoxic T cells against both sensitive and resistant melanoma cells. The results of our study show that combining the TRAIL-based antitumor strategy with an immunotherapeutic approach in a single molecule could be an effective addition to the anticancer armamentarium.


Assuntos
Anticorpos Biespecíficos/química , Imunoterapia/métodos , Neoplasias/terapia , Anticorpos de Cadeia Única/química , Linfócitos T/imunologia , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Citotoxicidade Imunológica , Desenho de Fármacos , Descoberta de Drogas , Humanos , Ativação Linfocitária , Neoplasias/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia
16.
J Immunother Cancer ; 6(1): 71, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005714

RESUMO

Adoptive transfer of T cells transduced with Chimeric Antigen Receptors (CAR) are now FDA-approved for the treatment of B-cell malignancies. Yet, the functionality of the endogenous TCR in CART cells has not been fully assessed. Here, we demonstrate that CART cells progressively upregulate Fas, FasL, DR5 and TRAIL, which result in their programmed cell death, independently of antigen-mediated TCR or CAR activation. CART cell apoptosis occurs even when the CAR contains a single (co-)activatory domain such as CD3ζ, CD28 or 4-1BB. Importantly, the dominant role of the Fas and DR5 pathways in CART cell apoptosis is demonstrated by the significant rescue of CART cells upon in vivo blockade by combined Fas-Fc and DR5-Fc recombinant proteins. These observations are of crucial importance for the long-term persistence of CART cells and for the development of new applications including the combined TCR and CAR activation against solid tumors.


Assuntos
Imunoterapia Adotiva , Melanoma Experimental/terapia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Neoplasias Cutâneas/terapia , Receptor fas/imunologia , Animais , Morte Celular , Proteína Ligante Fas/imunologia , Feminino , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Receptores de Antígenos Quiméricos/imunologia , Neoplasias Cutâneas/patologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Carga Tumoral
17.
IET Nanobiotechnol ; 12(4): 436-440, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29768226

RESUMO

Cancer treatment with several kinds of drugs, especially targets the apoptotic pathways nowadays. TNF-related apoptosis-inducing ligand (TRAIL) as one of the important members of death receptors, significantly trigger induction of apoptosis in cancer cells. Three conserved domains of Death receptor (DR5) protein extracellular domain, which are fortified cysteine, were chosen and chemically synthesised. Hens were immunised with nano-liposomal peptides, and as a result the purified Immunoglobulin (IgYs) remarkably killed the cancerous MCF7 cells. The flow cytometric assay, confirmed the apoptotic death. Among several kinds of carriers that were used in this research, the nano-liposomal and nanoparticle conjugated, both were acceptable choices for drug delivery. Furthermore, the IgY against DR5's small peptides with such carriers successfully reached the target and significantly killed the cancer cells via apoptosis.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Imunoglobulinas , Lipossomos/química , Nanoconjugados/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Antineoplásicos/química , Antineoplásicos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Biotecnologia , Galinhas , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Gema de Ovo , Feminino , Humanos , Imunoglobulinas/química , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Imunoglobulinas/farmacologia , Nanopartículas/química , Nanotecnologia
18.
Radiother Oncol ; 124(3): 418-426, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28893414

RESUMO

BACKGROUND AND PURPOSE: We recently reported a time-sensitive, cooperative, anti-tumor effect elicited by radiation (RT) and intra-tumoral-immunocytokine injection in vivo. We hypothesized that RT triggers transcriptional-mediated changes in tumor expression of immune susceptibility markers at delayed time points, which may explain these previously observed time-dependent effects. MATERIALS AND METHODS: We examined the time course of changes in expression of immune susceptibility markers following in vitro or in vivo RT in B78 murine melanoma and A375 human melanoma using flow cytometry, immunoblotting, and qPCR. RESULTS: Flow cytometry and immunoblot revealed time-dependent increases in expression of death receptors and T cell co-stimulatory/co-inhibitory ligands following RT in murine and human melanoma. Using high-throughput qPCR, we observed comparable time courses of RT-induced transcriptional upregulation for multiple immune susceptibility markers. We confirmed analogous changes in B78 tumors irradiated in vivo. We observed upregulated expression of DNA damage response markers days prior to changes in immune markers, whereas phosphorylation of the STAT1 transcription factor occurred concurrently with changes following RT. CONCLUSION: This study highlights time-dependent, transcription-mediated changes in tumor immune susceptibility marker expression following RT. These findings may help in the design of strategies to optimize sequencing of RT and immunotherapy in translational and clinical studies.


Assuntos
Melanoma/radioterapia , Animais , Antígeno B7-1/biossíntese , Antígeno B7-1/imunologia , Antígeno B7-H1/biossíntese , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Melanoma/genética , Melanoma/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Transcrição Gênica , Regulação para Cima
19.
Sci Rep ; 7(1): 5514, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717244

RESUMO

The TRAIL pathway can mediate apoptosis of hepatic stellate cells to promote the resolution of liver fibrosis. However, TRAIL has the capacity to bind to regulatory receptors in addition to death-inducing receptors; their differential roles in liver fibrosis have not been investigated. Here we have dissected the contribution of regulatory TRAIL receptors to apoptosis resistance in primary human hepatic stellate cells (hHSC). hHSC isolated from healthy margins of liver resections from different donors expressed variable levels of TRAIL-R2/3/4 (but negligible TRAIL-R1) ex vivo and after activation. The apoptotic potential of TRAIL-R2 on hHSC was confirmed by lentiviral-mediated knockdown. A functional inhibitory role for TRAIL-R3/4 was revealed by shRNA knockdown and mAb blockade, showing that these regulatory receptors limit apoptosis of hHSC in response to both oligomerised TRAIL and NK cells. A close inverse ex vivo correlation between hHSC TRAIL-R4 expression and susceptibility to apoptosis underscored its central regulatory role. Our data provide the first demonstration of non-redundant functional roles for the regulatory TRAIL receptors (TRAIL-R3/4) in a physiological setting. The potential for these inhibitory TRAIL receptors to protect hHSC from apoptosis opens new avenues for prognostic and therapeutic approaches to the management of liver fibrosis.


Assuntos
Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Fígado/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Membro 10c de Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Membro 10c de Receptores do Fator de Necrose Tumoral/genética , Membro 10c de Receptores do Fator de Necrose Tumoral/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Receptores Chamariz do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Chamariz do Fator de Necrose Tumoral/genética , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo
20.
Bull Exp Biol Med ; 163(3): 381-384, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744632

RESUMO

Death receptors, in particular DR5, are highly attractive targets of antitumor therapy. The major limitation to application of natural death receptor ligands (TRAIL) is their non-specific cytotoxicity against normal cells. Since TRAIL can also bind decoy receptors (DcR) and prevent induction of apoptosis, the search for new DR-specific ligands is a topical issue. In the present study, we used combinatorial phage display peptide libraries to select a panel of DR5-binding amino acid sequences. A comparative analysis of the selected peptides enabled identification of the consensus sequence responsible for binding to DR5. Integration of this motif into polypeptide cytotoxic agents may provide targeted elimination of malignantly transformed cells.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Biblioteca de Peptídeos , Peptídeos/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Proteínas Recombinantes de Fusão/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Expressão Gênica , Células HEK293 , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Separação Imunomagnética/métodos , Ligantes , Camundongos , Modelos Moleculares , Peptídeos/genética , Peptídeos/imunologia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA