Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
J Microbiol Methods ; 221: 106943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705209

RESUMO

Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Nasofaringe , Recombinases , Animais , Bovinos , Nasofaringe/microbiologia , Recombinases/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Sequências Repetitivas Dispersas/genética , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/diagnóstico , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Complexo Respiratório Bovino/microbiologia , Conjugação Genética , Sensibilidade e Especificidade , Mannheimia haemolytica/genética , Mannheimia haemolytica/isolamento & purificação , Pasteurellaceae/genética , Pasteurellaceae/isolamento & purificação
2.
J Agric Food Chem ; 72(15): 8823-8830, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578074

RESUMO

Emetic Bacillus cereus (B. cereus), which can cause emetic food poisoning and in some cases even fulminant liver failure and death, has aroused widespread concern. Herein, a universal and naked-eye diagnostic platform for emetic B. cereus based on recombinase polymerase amplification (RPA)-assisted CRISPR/Cas12a was developed by targeting the cereulide synthetase biosynthetic gene (cesB). The diagnostic platform enabled one-pot detection by adding components at the bottom and cap of the tube separately. The visual limit of detection of RPA-CRISPR/Cas12a for gDNA and cells of emetic B. cereus was 10-2 ng µL-1 and 102 CFU mL-1, respectively. Meanwhile, it maintained the same sensitivity in the rice, milk, and cooked meat samples even if the gDNA was extracted by simple boiling. The whole detection process can be finished within 40 min, and the single cell of emetic B. cereus was able to be recognized through enrichment for 2-5 h. The good specificity, high sensitivity, rapidity, and simplicity of the RPA-assisted CRISPR/Cas12a diagnostic platform made it serve as a potential tool for the on-site detection of emetic B. cereus in food matrices. In addition, the RPA-assisted CRISPR/Cas12a assay is the first application in emetic B. cereus detection.


Assuntos
Eméticos , Microbiologia de Alimentos , Recombinases/genética , Bacillus cereus/genética , Sistemas CRISPR-Cas , Sensibilidade e Especificidade , Nucleotidiltransferases/genética
3.
Int J Food Microbiol ; 417: 110697, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38642433

RESUMO

Foodborne illness caused by Salmonella spp. is one of the most prevalent public health problems globally, which have brought immeasurable economic burden and social impact to countries around the world. Neither current nucleic acid amplification detection method nor standard culture method (2-3 days) are suitable for field detection in areas with a heavy burden of Salmonella spp. Here, we developed a highly sensitive and accurate assay for Salmonella spp. detection in less than 40 min. Specifically, the invA gene of Salmonella spp. was amplified by recombinase polymerase amplification (RPA), followed by Pyrococcus furiosus Argonaute (PfAgo)-based target sequence cleavage, which could be observed by a fluorescence reader or the naked eye. The assay offered the lowest detectable concentration of 1.05 × 101 colony forming units/mL (CFU/mL). This assay had strong specificity and high sensitivity for the detection of Salmonella spp. in field samples, which indicated the feasibility of this assay.


Assuntos
Microbiologia de Alimentos , Técnicas de Amplificação de Ácido Nucleico , Pyrococcus furiosus , Salmonella , Pyrococcus furiosus/genética , Salmonella/genética , Salmonella/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Inocuidade dos Alimentos , Recombinases/metabolismo , Recombinases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sensibilidade e Especificidade , Contaminação de Alimentos/análise
4.
Chem Commun (Camb) ; 60(40): 5314-5317, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666524

RESUMO

We integrate recombinase polymerase amplification (RPA) with CRISPR/Cas9-initiated nicking rolling circle amplification (CRISPR/Cas9-nRCA) for detecting Staphylococcus aureus. This approach utilizes a unique dimeric G-triplex structure, demonstrating firstly enhanced ThT fluorescence for target detection. The proof-of-concept study introduces a new avenue for integrating isothermal amplifications with CRISPR/Cas9 in the fields of pathogen detection and disease diagnosis.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Staphylococcus aureus , Staphylococcus aureus/genética , Sistemas CRISPR-Cas/genética , Recombinases/metabolismo , Recombinases/genética
5.
J Med Virol ; 96(4): e29624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38647075

RESUMO

Respiratory infections pose a serious threat to global public health, underscoring the urgent need for rapid, accurate, and large-scale diagnostic tools. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, combined with isothermal amplification methods, has seen widespread application in nucleic acid testing (NAT). However, achieving a single-tube reaction system containing all necessary components is challenging due to the competitive effects between recombinase polymerase amplification (RPA) and CRISPR/Cas reagents. Furthermore, to enable precision medicine, distinguishing between bacterial and viral infections is essential. Here, we have developed a novel NAT method, termed one-pot-RPA-CRISPR/Cas12a, which combines RPA with CRISPR molecular diagnostic technology, enabling simultaneous detection of 12 common respiratory pathogens, including six bacteria and six viruses. RPA and CRISPR/Cas12a reactions are separated by paraffin, providing an independent platform for RPA reactions to generate sufficient target products before being mixed with the CRISPR/Cas12a system. Results can be visually observed under LED blue light. The sensitivity of the one-pot-RPA-CRISPR/Cas12a method is 2.5 × 100 copies/µL plasmids, with no cross-reaction with other bacteria or viruses. Additionally, the clinical utility was evaluated by testing clinical isolates of bacteria and virus throat swab samples, demonstrating favorable performance. Thus, our one-pot-RPA-CRISPR/Cas12a method shows immense potential for accurate and large-scale detection of 12 common respiratory pathogens in point-of-care testing.


Assuntos
Bactérias , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Infecções Respiratórias , Vírus , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Recombinases/metabolismo , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Infecções Respiratórias/microbiologia , Sensibilidade e Especificidade , Viroses/diagnóstico , Vírus/genética , Vírus/isolamento & purificação
6.
Front Immunol ; 15: 1358960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655256

RESUMO

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas de Bactérias , Sistemas CRISPR-Cas , Vírus da Febre Suína Africana/genética , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/diagnóstico , Proteínas Associadas a CRISPR/genética , Recombinases/genética , Recombinases/metabolismo , Proteínas Virais/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Endodesoxirribonucleases/genética , Sensibilidade e Especificidade
7.
Methods Enzymol ; 695: 1-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521581

RESUMO

G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.


Assuntos
DNA Helicases , Quadruplex G , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Recombinases/genética , Recombinases/metabolismo , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas Recombinantes/metabolismo
8.
Front Immunol ; 15: 1345532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524136

RESUMO

Introduction: Staphylococcus aureus (S. aureus) is a prominent pathogen responsible for both hospital-acquired and community-acquired infections. Among its arsenal of virulence factors, Panton-Valentine Leucocidin (PVL) is closely associated with severe diseases such as profound skin infections and necrotizing pneumonia. Patients infected with pvl-positive S. aureus often exhibit more severe symptoms and carry a substantially higher mortality risk. Therefore, it is crucial to promptly and accurately detect pvl-positive S. aureus before initiating protective measures and providing effective antibacterial treatment. Methods: In this study, we propose a precise identification and highly sensitive detection method for pvl-positive S. aureus based on recombinase-assisted amplification and the CRISPR-ERASE strip which we previously developed. Results: The results revealed that this method achieved a detection limit of 1 copy/µL for pvl-positive plasmids within 1 hour. The method successfully identified all 25 pvl-positive and 51 pvl-negative strains among the tested 76 isolated S. aureus samples, demonstrating its concordance with qPCR. Discussion: These results show that the CRISPR-ERASE detection method for pvl-positive S. aureus has the advantages of high sensitivity and specificity, this method combines the characteristics of recombinase-assisted amplification at room temperature and the advantages of ERASE test strip visualization, which can greatly reduce the dependence on professional laboratories. It is more suitable for on-site detection than PCR and qPCR, thereby providing important value for rapid on-site detection of pvl.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Virulência/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções Estafilocócicas/microbiologia , Leucocidinas/genética , Recombinases/genética
9.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G495-G503, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469630

RESUMO

Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas p21(ras) , Camundongos , Animais , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Albuminas/genética , Recombinases/genética , Recombinação Genética , Neoplasias Hepáticas/genética , Integrases/genética
10.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542449

RESUMO

Listeria monocytogenes (L. monocytogenes) is a food-borne pathogenic bacteria that frequently contaminates animal-derived food and low-temperature preserved food. Listeriosis caused by its infection has a high mortality rate and poses a serious threat to human health. Therefore, it is crucial to establish a sensitive, rapid and easy-to-operate technique. In this study, a Recombinase Aided Amplification (RAA) assisted CRISPR/Cas12a (RAA-CRISPR/Cas12a) fluorescence platform was established for highly sensitive nucleic acid detection of L. monocytogenes. The established RAA-CRISPR/Cas12a showed high sensitivity and high specificity, with the sensitivity of 350 CFU/mL and 5.4 × 10-3 ng/µL for pure bacterial solution and genomic DNA, and good specificity for 5 strains of Listeria spp. and 14 strains of other common pathogenic bacteria. L. monocytogenes could be detected at an initial concentration of 2.3 CFU/25g within 2 h of enriching the beef in the food matrix, and this method could be applied to food samples that were easily contaminated with L. monocytogenes The results of RAA-CRISPR/Cas12a could be observed in 5 min, while the amplification was completed in 20-30 min. The speed and sensitivity of RAA-CRISPR/Cas12a were significantly higher than that of the national standard method. In conclusion, the RAA-CRISPR/Cas12a system established in this study has new application potential in the diagnosis of food-borne pathogens.


Assuntos
Listeria monocytogenes , Animais , Bovinos , Humanos , Listeria monocytogenes/genética , Sistemas CRISPR-Cas , Microbiologia de Alimentos , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , DNA
11.
BMC Vet Res ; 20(1): 106, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493286

RESUMO

BACKGROUND: Feline herpesvirus type 1 (FHV) and Feline calicivirus (FCV) are the primary co-infecting pathogens that cause upper respiratory tract disease in cats. However, there are currently no visual detection assays available for on-site testing. Here, we develop an ultrasensitive and visual detection method based on dual recombinase polymerase amplification (dRPA) reaction and the hybrid Cas12a/Cas13a trans-cleavage activities in a one-tube reaction system, referred to as one-tube dRPA-Cas12a/Cas13a assay. RESULTS: The recombinant plasmid DNAs, crRNAs, and RPA oligonucleotides targeting the FCV ORF1 gene and FHV-1 TK gene were meticulously prepared. Subsequently, dual RPA reactions were performed followed by screening of essential reaction components for hybrid CRISPR-Cas12a (targeting the FHV-1 TK gene) and CRISPR-Cas13a (targeting the FCV ORF1 gene) trans-cleavage reaction. As a result, we successfully established an ultra-sensitive and visually detectable method for simultaneous detection of FCV and FHV-1 nucleic acids using dRPA and CRISPR/Cas-powered technology in one-tube reaction system. Visual readouts were displayed using either a fluorescence detector (Fluor-based assay) or lateral flow dipsticks (LDF-based assay). As expected, this optimized assay exhibited high specificity towards only FHV-1 and FCV without cross-reactivity with other feline pathogens while achieving accurate detection for both targets with limit of detection at 2.4 × 10- 1 copies/µL for the FHV-1 TK gene and 5.5 copies/µL for the FCV ORF1 gene, respectively. Furthermore, field detection was conducted using the dRPA-Cas12a/Cas13a assay and the reference real-time PCR methods for 56 clinical samples collected from cats with URTD. Comparatively, the results of Fluor-based assay were in exceptional concordance with the reference real-time PCR methods, resulting in high sensitivity (100% for both FHV-1 and FCV), specificity (100% for both FHV-1 and FCV), as well as consistency (Kappa values were 1.00 for FHV-1 and FCV). However, several discordant results for FHV-1 detection were observed by LDF-based assay, which suggests its prudent use and interpretaion for clinical detection. In spite of this, incorporating dRPA-Cas12a/Cas13a assay and visual readouts will facilitate rapid and accurate detection of FHV-1 and FCV in resource-limited settings. CONCLUSIONS: The one-tube dRPA-Cas12a/Cas13a assay enables simultaneously ultrasensitive and visual detection of FHV-1 and FCV with user-friendly modality, providing unparalleled convenience for FHV-1 and FCV co-infection surveillance and decision-making of URTD management.


Assuntos
Calicivirus Felino , Herpesviridae , Varicellovirus , Gatos , Animais , Recombinases/genética , Sistemas CRISPR-Cas
12.
Nat Commun ; 15(1): 2418, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499601

RESUMO

Synthetic biologists seek to engineer intelligent living systems capable of decision-making, communication, and memory. Separate technologies exist for each tenet of intelligence; however, the unification of all three properties in a living system has not been achieved. Here, we engineer completely intelligent Escherichia coli strains that harbor six orthogonal and inducible genome-integrated recombinases, forming Molecularly Encoded Memory via an Orthogonal Recombinase arraY (MEMORY). MEMORY chassis cells facilitate intelligence via the discrete multi-input regulation of recombinase functions enabling inheritable DNA inversions, deletions, and genomic insertions. MEMORY cells can achieve programmable and permanent gain (or loss) of functions extrachromosomally or from a specific genomic locus, without the loss or modification of the MEMORY platform - enabling the sequential programming and reprogramming of DNA circuits within the cell. We demonstrate all three tenets of intelligence via a probiotic (Nissle 1917) MEMORY strain capable of information exchange with the gastrointestinal commensal Bacteroides thetaiotaomicron.


Assuntos
Escherichia coli , Recombinases , Recombinases/genética , Escherichia coli/genética , DNA/genética , Genômica
13.
Int J Antimicrob Agents ; 63(5): 107140, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490574

RESUMO

OBJECTIVES: The rapid dissemination of the mcr-1 gene via plasmid-mediated transfer has raised concerns regarding the efficacy of colistin as a last-resort treatment for multidrug-resistant Gram-negative bacterial infections. Current mcr-1 gene detection methods mainly focus on cultured bacteria, which is a complex and time-consuming process requiring skilled personnel, making it unsuitable for field analysis. METHODS: A rapid detection technique combining recombinase polymerase amplification with a lateral flow dipstick targeting uncultured clinical samples was developed. RESULTS: This new method targeting the mcr-1 gene region (23 232-23 642 bp, no. KP347127.1) achieved a low detection limit of 10 copies/µL. The whole process was carried out with high specificity and was completed within 20 min. The evaluation assay was conducted using 45 human faecal samples; 16 strains yielded a 98% accuracy, closely matching antimicrobial susceptibility outcomes. CONCLUSIONS: The novel method integrates nucleic acid extraction, isothermal amplification, and a test assay, suggesting the potential for timely colistin resistance surveillance in frontline disease control and healthcare settings, supporting future prevention and clinical standardization efforts.


Assuntos
Colistina , Fezes , Técnicas de Amplificação de Ácido Nucleico , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Colistina/farmacologia , Fezes/microbiologia , Antibacterianos/farmacologia , Recombinases/genética , Recombinases/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana/métodos , Sensibilidade e Especificidade , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico
14.
Virology ; 594: 110062, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38522136

RESUMO

Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/µL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.


Assuntos
Infecções por Coronavirus , Ácidos Nucleicos , Vírus da Diarreia Epidêmica Suína , Rotavirus , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Recombinases/genética , Doenças dos Suínos/diagnóstico , Sensibilidade e Especificidade , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Diarreia/diagnóstico , Diarreia/veterinária
15.
Parasit Vectors ; 17(1): 80, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383404

RESUMO

BACKGROUND: Opisthorchis viverrini infection is traditionally diagnosed using the Kato-Katz method and formalin ethyl-acetate concentration technique. However, the limited sensitivity and specificity of these techniques have prompted the exploration of various molecular approaches, such as conventional polymerase chain reaction (PCR) and real-time PCR, to detect O. viverrini infection. Recently, a novel technique known as recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (RPA-CRISPR/Cas) assay was developed as a point-of-care tool for the detection of various pathogens, including viruses and bacteria such as severe acute respiratory syndrome coronavirus 2 and Mycobacterium tuberculosis. This technology has demonstrated high sensitivity and specificity. Therefore, we developed and used the RPA-CRISPR/Cas assay to detect O. viverrini infection in field-collected human feces. METHODS: To detect O. viverrini infection in fecal samples, we developed a CRISPR/Cas12a (RNA-guided endonuclease) system combined with RPA (Ov-RPA-CRISPR/Cas12a). Several fecal samples, both helminth-positive and helminth-negative, were used for the development and optimization of amplification conditions, CRISPR/Cas detection conditions, detection limits, and specificity of the RPA-CRISPR/Cas12a assay for detecting O. viverrini infection. The detection results were determined using a real-time PCR system based on fluorescence values. Additionally, as the reporter was labeled with fluorescein, the detection results were visually inspected using an ultraviolet (UV) transilluminator. A receiver operating characteristic curve (ROC) was used to determine the optimal cutoff value for fluorescence detection. The diagnostic performance, including sensitivity and specificity, of the Ov-RPA-CRISPR/Cas12a assay was evaluated on the basis of comparison with standard methods. RESULTS: The Ov-RPA-CRISPR/Cas12a assay exhibited high specificity for detecting O. viverrini DNA. On the basis of the detection limit, the assay could detect O. viverrini DNA at concentrations as low as 10-1 ng using the real-time PCR system. However, in this method, visual inspection under UV light required a minimum concentration of 1 ng. To validate the Ov-RPA-CRISPR/Cas12a assay, 121 field-collected fecal samples were analyzed. Microscopic examination revealed that 29 samples were positive for O. viverrini-like eggs. Of these, 18 were confirmed as true positives on the basis of the Ov-RPA-CRISPR/Cas12a assay and microscopic examination, whereas 11 samples were determined as positive solely via microscopic examination, indicating the possibility of other minute intestinal fluke infections. CONCLUSIONS: The Ov-RPA-CRISPR/Cas12a assay developed in this study can successfully detect O. viverrini infection in field-collected feces. Due to the high specificity of the assay reported in this study, it can be used as an alternative approach to confirm O. viverrini infection, marking an initial step in the development of point-of-care diagnosis.


Assuntos
Opistorquíase , Opisthorchis , Animais , Humanos , Opisthorchis/genética , Sistemas CRISPR-Cas , Recombinases/genética , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real , Fezes , DNA
16.
Microbiol Spectr ; 12(3): e0234323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349173

RESUMO

Outer membrane vesicles (OMVs) are universally produced by Gram-negative bacteria and play important roles in symbiotic and pathogenic interactions. The DNA from the lumen of OMVs from the Alphaproteobacterium Dinoroseobacter shibae was previously shown to be enriched for the region around the terminus of replication ter and specifically for the recognition sequence dif of the two site-specific recombinases XerCD. These enzymes are highly conserved in bacteria and play an important role in the last phase of cell division. Here, we show that a similar enrichment of ter and dif is found in the DNA inside OMVs from Prochlorococcus marinus, Pseudomonas aeruginosa, Vibrio cholerae, and Escherichia coli. The deletion of xerC or xerD in E. coli reduced the enrichment peak directly at the dif sequence, while the enriched DNA region around ter became broader, demonstrating that either enzyme influences the DNA content inside the lumen of OMVs. We propose that the intra-vesicle DNA originated from over-replication repair and the XerCD enzymes might play a role in this process, providing them with a new function in addition to resolving chromosome dimers.IMPORTANCEImprecise termination of replication can lead to over-replicated parts of bacterial chromosomes that have to be excised and removed from the dividing cell. The underlying mechanism is poorly understood. Our data show that outer membrane vesicles (OMVs) from diverse Gram-negative bacteria are enriched for DNA around the terminus of replication ter and the site-specific XerCD recombinases influence this enrichment. Clearing the divisome from over-replicated parts of the bacterial chromosome might be a so far unrecognized and conserved function of OMVs.


Assuntos
DNA Nucleotidiltransferases , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Integrases/genética , Proteínas de Escherichia coli/genética , Recombinação Genética , DNA , Recombinases/genética , Recombinases/metabolismo
17.
Mol Biol Rep ; 51(1): 367, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411701

RESUMO

BACKGROUND: Recombinase uvsY from bacteriophage T4, along with uvsX, is a key enzyme for recombinase polymerase amplification (RPA), which is used to amplify a target DNA sequence at a constant temperature. uvsY, though essential, poses solubility challenges, complicating the lyophilization of RPA reagents. This study aimed to enhance uvsY solubility. METHODS: Our hypothesis centered on the C-terminal region of uvsY influencing solubility. To test this, we generated a site-saturation mutagenesis library for amino acid residues Lys91-Glu134 of the N-terminal (His)6-tagged uvsY. RESULTS: Screening 480 clones identified A116H as the variant with superior solubility. Lyophilized RPA reagents featuring the uvsY variant A116H demonstrated enhanced performance compared to those with wild-type uvsY. CONCLUSIONS: The uvsY variant A116H emerges as an appealing choice for RPA applications, offering improved solubility and heightened lyophilization feasibility.


Assuntos
Aminoácidos , Recombinases , Recombinases/genética , Solubilidade , Biblioteca Gênica , Mutagênese
18.
Biotechnol J ; 19(2): e2300410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375559

RESUMO

Site-specific integration (SSI) via recombinase mediated cassette exchange (RMCE) has shown advantages over random integration methods for expression of biotherapeutics. As an extension of our previous work developing SSI host cells, we developed a dual-site SSI system having two independent integration sites at different genomic loci, each containing a unique landing pad (LP). This system was leveraged to generate and compare two RMCE hosts, one (dFRT) compatible with the Flp recombinase, the other (dBxb1) compatible with the Bxb1 recombinase. Our comparison demonstrated that the dBxb1 host was able to generate stable transfectant pools in a shorter time frame, and cells within the dBxb1 transfectant pools were more phenotypically and genotypically stable. We further improved process performance of the dBxb1 host, resulting in desired fed batch performance attributes. Clones derived from this improved host (referred as 41L-11) maintained stable expression profiles over extended generations. While the data represents a significant improvement in the efficiency of our cell line development process, the dual LP architecture also affords a high degree of flexibility for development of complex protein modalities.


Assuntos
Genômica , Recombinases , Cricetinae , Animais , Células CHO , Cricetulus , Recombinases/genética , Células Clonais/metabolismo , Genômica/métodos , Transgenes
19.
Curr Microbiol ; 81(4): 103, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386082

RESUMO

Citrus is an economically important fruit crop, belongs to family Rutaceae, cultivated commercially in over 130 countries, which holds a leading profitable position in the international market. The most important citrus varieties are mandarins, oranges, lemons, sweet limes, grapefruits and pomelos. Citrus yellow vein clearing virus (CYVCV) is an important graft transmissible plant pathogen known to reduce productivity of citrus fruits due to its predominant association and widespread occurrence. Requirement of fast, reliable, efficient & economical CYVCV indexing assay is a prerequisite for production of healthy planting material. Currently, nucleic acid isolation and thermal cycler-based assay available for CYVCV indexing is a cumbersome lab intensive method. The present study was undertaken to develop and validate reverse transcription-recombinase polymerase amplification (RT-RPA) assay requiring no tedious RNA isolation, separate cDNA synthesis and costlier instrument like thermo-cycler. Optimized RT-RPA assay was able to amplify CYVCV up to 10-7 dilution (equivalent to 0.1 pg/µl) with the prepared templates of both RNA and crude saps and showed higher sensitivity in detection of CYVCV infection in field samples as compared to the conventional RT-PCR. Developed RT-RPA assay showed high specificity without any cross-reaction with other citrus pathogens (Indian citrus ringspot virus, citrus yellow mosaic virus, citrus tristeza virus, citrus exocortis viroid and huanglongbing). RT-RPA using crude leaf sap as template is quite simple, robust, highly sensitive, time and cost effective; therefore, it can be used in resource constrained laboratories as screening tool, for field surveys and on-site testing programs in farms, nurseries and biosecurity. Present study, first time reports the development, optimization and validation of crude sap-based RT-RPA assay for the detection of CYVCV infection in citrus plants namely; Kinnow mandarin, Mosambi and Grape fruit.


Assuntos
Citrus , Recombinases , Recombinases/genética , Bioensaio , Fazendas , RNA
20.
Int J Biol Macromol ; 261(Pt 2): 129843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302027

RESUMO

Homologous recombination plays a key role in double-strand break repair, stalled replication fork repair, and meiosis. The RecA/Rad51 family recombinases catalyze the DNA strand invasion reaction that occurs during homologous recombination. However, the high sequence differences between homologous groups have hindered the thoroughly studies of this ancient protein family. The dynamic mechanisms of the family, particularly at the residual level, remain poorly understood. In this work, five representative RecA/Rad51 recombinase family members from all major kingdoms of living organisms: prokaryotes, eukaryotes, archaea, and viruses, were selected to explore the molecular mechanisms behind their conserved biological significance. A variety of techniques, including all-atom molecular dynamics simulation, perturbation response scanning, and protein structure network analysis, were used to examine the flexibility and correlation of protein domains, distribution of sensors and effectors and conserved hub residues. Furthermore, the potential communication routes between the ATP-binding region and the DNA-binding region of each recombinase were identified. Our results demonstrate the conserved molecular dynamics of these recombinases in the early stage of homologous recombination, including cooperative motions between regions, conserved sensing and effecting functional residue distribution, and conserved hub residues. Meanwhile, the unique ATP-DNA communication routes of each recombinase was also revealed. These results provide new insights into the mechanism of RecA/Rad51 family proteins, and provide new theoretical guidance for the development of allosteric inhibitors and the application of RecA/Rad51 family proteins.


Assuntos
Rad51 Recombinase , Recombinases Rec A , Rad51 Recombinase/genética , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA de Cadeia Simples , DNA/química , Recombinases/genética , Recombinases/metabolismo , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA