Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.536
Filtrar
1.
Hum Brain Mapp ; 45(7): e26703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716714

RESUMO

The default mode network (DMN) lies towards the heteromodal end of the principal gradient of intrinsic connectivity, maximally separated from the sensory-motor cortex. It supports memory-based cognition, including the capacity to retrieve conceptual and evaluative information from sensory inputs, and to generate meaningful states internally; however, the functional organisation of DMN that can support these distinct modes of retrieval remains unclear. We used fMRI to examine whether activation within subsystems of DMN differed as a function of retrieval demands, or the type of association to be retrieved, or both. In a picture association task, participants retrieved semantic associations that were either contextual or emotional in nature. Participants were asked to avoid generating episodic associations. In the generate phase, these associations were retrieved from a novel picture, while in the switch phase, participants retrieved a new association for the same image. Semantic context and emotion trials were associated with dissociable DMN subnetworks, indicating that a key dimension of DMN organisation relates to the type of association being accessed. The frontotemporal and medial temporal DMN showed a preference for emotional and semantic contextual associations, respectively. Relative to the generate phase, the switch phase recruited clusters closer to the heteromodal apex of the principal gradient-a cortical hierarchy separating unimodal and heteromodal regions. There were no differences in this effect between association types. Instead, memory switching was associated with a distinct subnetwork associated with controlled internal cognition. These findings delineate distinct patterns of DMN recruitment for different kinds of associations yet common responses across tasks that reflect retrieval demands.


Assuntos
Rede de Modo Padrão , Emoções , Imageamento por Ressonância Magnética , Rememoração Mental , Semântica , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Emoções/fisiologia , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Rememoração Mental/fisiologia , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico , Reconhecimento Visual de Modelos/fisiologia
2.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38745558

RESUMO

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.


Assuntos
Nível de Alerta , Encéfalo , Cognição , Conectoma , Imageamento por Ressonância Magnética , Descanso , Humanos , Nível de Alerta/fisiologia , Cognição/fisiologia , Masculino , Feminino , Conectoma/métodos , Adulto , Descanso/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem
3.
Biol Lett ; 20(5): 20230576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747685

RESUMO

Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.


Assuntos
Evolução Biológica , Encéfalo , Cognição , Cognição/fisiologia , Animais , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Insetos/fisiologia , Corpos Pedunculados/fisiologia
4.
Nat Commun ; 15(1): 3542, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719802

RESUMO

Understanding the functional connectivity between brain regions and its emergent dynamics is a central challenge. Here we present a theory-experiment hybrid approach involving iteration between a minimal computational model and in vivo electrophysiological measurements. Our model not only predicted spontaneous persistent activity (SPA) during Up-Down-State oscillations, but also inactivity (SPI), which has never been reported. These were confirmed in vivo in the membrane potential of neurons, especially from layer 3 of the medial and lateral entorhinal cortices. The data was then used to constrain two free parameters, yielding a unique, experimentally determined model for each neuron. Analytic and computational analysis of the model generated a dozen quantitative predictions about network dynamics, which were all confirmed in vivo to high accuracy. Our technique predicted functional connectivity; e. g. the recurrent excitation is stronger in the medial than lateral entorhinal cortex. This too was confirmed with connectomics data. This technique uncovers how differential cortico-entorhinal dialogue generates SPA and SPI, which could form an energetically efficient working-memory substrate and influence the consolidation of memories during sleep. More broadly, our procedure can reveal the functional connectivity of large networks and a theory of their emergent dynamics.


Assuntos
Córtex Entorrinal , Modelos Neurológicos , Neurônios , Córtex Entorrinal/fisiologia , Animais , Neurônios/fisiologia , Masculino , Conectoma , Rede Nervosa/fisiologia , Potenciais da Membrana/fisiologia , Vias Neurais/fisiologia , Simulação por Computador , Camundongos
5.
Commun Biol ; 7(1): 550, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719883

RESUMO

Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.


Assuntos
Atenção , Modelos Neurológicos , Atenção/fisiologia , Humanos , Córtex Cerebral/fisiologia , Animais , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Neurônios/fisiologia , Cognição/fisiologia
6.
J Math Biol ; 89(1): 3, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740613

RESUMO

Dynamical systems on networks typically involve several dynamical processes evolving at different timescales. For instance, in Alzheimer's disease, the spread of toxic protein throughout the brain not only disrupts neuronal activity but is also influenced by neuronal activity itself, establishing a feedback loop between the fast neuronal activity and the slow protein spreading. Motivated by the case of Alzheimer's disease, we study the multiple-timescale dynamics of a heterodimer spreading process on an adaptive network of Kuramoto oscillators. Using a minimal two-node model, we establish that heterogeneous oscillatory activity facilitates toxic outbreaks and induces symmetry breaking in the spreading patterns. We then extend the model formulation to larger networks and perform numerical simulations of the slow-fast dynamics on common network motifs and on the brain connectome. The simulations corroborate the findings from the minimal model, underscoring the significance of multiple-timescale dynamics in the modeling of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Encéfalo , Simulação por Computador , Conceitos Matemáticos , Modelos Neurológicos , Neurônios , Humanos , Doença de Alzheimer/fisiopatologia , Neurônios/fisiologia , Encéfalo/fisiopatologia , Conectoma , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/patologia , Rede Nervosa/fisiopatologia , Rede Nervosa/fisiologia
7.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741270

RESUMO

This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer's disease.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Conectoma/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Cognição/fisiologia , Idoso , Pessoa de Meia-Idade , Aprendizado Profundo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/fisiopatologia , Adulto
8.
Brain Cogn ; 177: 106161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696928

RESUMO

Narrative comprehension relies on basic sensory processing abilities, such as visual and auditory processing, with recent evidence for utilizing executive functions (EF), which are also engaged during reading. EF was previously related to the "supporter" of engaging the auditory and visual modalities in different cognitive tasks, with evidence of lower efficiency in this process among those with reading difficulties in the absence of a visual stimulus (i.e. while listening to stories). The current study aims to fill out the gap related to the level of reliance on these neural circuits while visual aids (pictures) are involved during story listening in relation to reading skills. Functional MRI data were collected from 44 Hebrew-speaking children aged 8-12 years while listening to stories with vs without visual stimuli (i.e., pictures). Functional connectivity of networks supporting reading was defined in each condition and compared between the conditions against behavioral reading measures. Lower reading skills were related to greater functional connectivity values between EF networks (default mode and memory networks), and between the auditory and memory networks for the stories with vs without the visual stimulation. A greater difference in functional connectivity between the conditions was related to lower reading scores. We conclude that lower reading skills in children may be related to a need for greater scaffolding, i.e., visual stimulation such as pictures describing the narratives when listening to stories, which may guide future intervention approaches.


Assuntos
Função Executiva , Imageamento por Ressonância Magnética , Leitura , Percepção Visual , Humanos , Criança , Masculino , Feminino , Função Executiva/fisiologia , Percepção Visual/fisiologia , Percepção Auditiva/fisiologia , Compreensão/fisiologia , Estimulação Luminosa/métodos , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiologia
9.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767461

RESUMO

Transient or partial synchronization can be used to do computations, although a fully synchronized network is sometimes related to the onset of epileptic seizures. Here, we propose a homeostatic mechanism that is capable of maintaining a neuronal network at the edge of a synchronization transition, thereby avoiding the harmful consequences of a fully synchronized network. We model neurons by maps since they are dynamically richer than integrate-and-fire models and more computationally efficient than conductance-based approaches. We first describe the synchronization phase transition of a dense network of neurons with different tonic spiking frequencies coupled by gap junctions. We show that at the transition critical point, inputs optimally reverberate through the network activity through transient synchronization. Then, we introduce a local homeostatic dynamic in the synaptic coupling and show that it produces a robust self-organization toward the edge of this phase transition. We discuss the potential biological consequences of this self-organization process, such as its relation to the Brain Criticality hypothesis, its input processing capacity, and how its malfunction could lead to pathological synchronization and the onset of seizure-like activity.


Assuntos
Homeostase , Modelos Neurológicos , Rede Nervosa , Neurônios , Homeostase/fisiologia , Neurônios/fisiologia , Rede Nervosa/fisiologia , Humanos , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Encéfalo/fisiologia , Transmissão Sináptica/fisiologia
10.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732980

RESUMO

Walking encompasses a complex interplay of neuromuscular coordination and cognitive processes. Disruptions in gait can impact personal independence and quality of life, especially among the elderly and neurodegenerative patients. While traditional biomechanical analyses and neuroimaging techniques have contributed to understanding gait control, they often lack the temporal resolution needed for rapid neural dynamics. This study employs a mobile brain/body imaging (MoBI) platform with high-density electroencephalography (hd-EEG) to explore event-related desynchronization and synchronization (ERD/ERS) during overground walking. Simultaneous to hdEEG, we recorded gait spatiotemporal parameters. Participants were asked to walk under usual walking and dual-task walking conditions. For data analysis, we extracted ERD/ERS in α, ß, and γ bands from 17 selected regions of interest encompassing not only the sensorimotor cerebral network but also the cognitive and affective networks. A correlation analysis was performed between gait parameters and ERD/ERS intensities in different networks in the different phases of gait. Results showed that ERD/ERS modulations across gait phases in the α and ß bands extended beyond the sensorimotor network, over the cognitive and limbic networks, and were more prominent in all networks during dual tasks with respect to usual walking. Correlation analyses showed that a stronger α ERS in the initial double-support phases correlates with shorter step length, emphasizing the role of attention in motor control. Additionally, ß ERD/ERS in affective and cognitive networks during dual-task walking correlated with dual-task gait performance, suggesting compensatory mechanisms in complex tasks. This study advances our understanding of neural dynamics during overground walking, emphasizing the multidimensional nature of gait control involving cognitive and affective networks.


Assuntos
Encéfalo , Eletroencefalografia , Marcha , Caminhada , Humanos , Marcha/fisiologia , Masculino , Eletroencefalografia/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Feminino , Adulto , Caminhada/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
11.
Sensors (Basel) ; 24(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38733030

RESUMO

This article presents a study on the neurobiological control of voluntary movements for anthropomorphic robotic systems. A corticospinal neural network model has been developed to control joint trajectories in multi-fingered robotic hands. The proposed neural network simulates cortical and spinal areas, as well as the connectivity between them, during the execution of voluntary movements similar to those performed by humans or monkeys. Furthermore, this neural connection allows for the interpretation of functional roles in the motor areas of the brain. The proposed neural control system is tested on the fingers of a robotic hand, which is driven by agonist-antagonist tendons and actuators designed to accurately emulate complex muscular functionality. The experimental results show that the corticospinal controller produces key properties of biological movement control, such as bell-shaped asymmetric velocity profiles and the ability to compensate for disturbances. Movements are dynamically compensated for through sensory feedback. Based on the experimental results, it is concluded that the proposed biologically inspired adaptive neural control system is robust, reliable, and adaptable to robotic platforms with diverse biomechanics and degrees of freedom. The corticospinal network successfully integrates biological concepts with engineering control theory for the generation of functional movement. This research significantly contributes to improving our understanding of neuromotor control in both animals and humans, thus paving the way towards a new frontier in the field of neurobiological control of anthropomorphic robotic systems.


Assuntos
Mãos , Redes Neurais de Computação , Robótica , Tendões , Humanos , Robótica/métodos , Mãos/fisiologia , Tendões/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Fenômenos Biomecânicos/fisiologia , Tratos Piramidais/fisiologia , Animais
12.
Sci Rep ; 14(1): 10242, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702415

RESUMO

Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin (Δ[HbO]) and redox-state cytochrome c oxidase (Δ[CCO]) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the prefrontal cortex (PFC). Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.


Assuntos
Eletroencefalografia , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Masculino , Adulto , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Terapia com Luz de Baixa Intensidade/métodos , Adulto Jovem , Descanso/fisiologia , Oxiemoglobinas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hemodinâmica/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/metabolismo
13.
Behav Brain Funct ; 20(1): 11, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724963

RESUMO

Procrastination is universally acknowledged as a problematic behavior with wide-ranging consequences impacting various facets of individuals' lives, including academic achievement, social accomplishments, and mental health. Although previous research has indicated that future self-continuity is robustly negatively correlated with procrastination, it remains unknown about the neural mechanisms underlying the impact of future self-continuity on procrastination. To address this issue, we employed a free construction approach to collect individuals' episodic future thinking (EFT) thoughts regarding specific procrastination tasks. Next, we conducted voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) analysis to explore the neural substrates underlying future self-continuity. Behavior results revealed that future self-continuity was significantly negatively correlated with procrastination, and positively correlated with anticipated positive outcome. The VBM analysis showed a positive association between future self-continuity and gray matter volumes in the right ventromedial prefrontal cortex (vmPFC). Furthermore, the RSFC results indicated that the functional connectivity between the right vmPFC and the left inferior parietal lobule (IPL) was positively correlated with future self-continuity. More importantly, the mediation analysis demonstrated that anticipated positive outcome can completely mediate the relationship between the vmPFC-IPL functional connectivity and procrastination. These findings suggested that vmPFC-IPL functional connectivity might prompt anticipated positive outcome about the task and thereby reduce procrastination, which provides a new perspective to understand the relationship between future self-continuity and procrastination.


Assuntos
Imageamento por Ressonância Magnética , Lobo Parietal , Córtex Pré-Frontal , Procrastinação , Humanos , Procrastinação/fisiologia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Adulto , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Vias Neurais/fisiologia , Adolescente , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Pensamento/fisiologia
14.
Hum Brain Mapp ; 45(7): e26666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726831

RESUMO

Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.


Assuntos
Imageamento por Ressonância Magnética , Meditação , Rede Nervosa , Humanos , Reprodutibilidade dos Testes , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto , Masculino , Feminino , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem
15.
Behav Brain Sci ; 47: e92, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770864

RESUMO

By examining the shared neuro-cognitive correlates of curiosity and creativity, we better understand the brain basis of creativity. However, by only examining shared components, important neuro-cognitive correlates are overlooked. Here, we argue that any comprehensive brain model of creativity should consider multiple cognitive processes and, alongside the interplay between brain networks, also the neurochemistry and neural oscillations that underly creativity.


Assuntos
Encéfalo , Cognição , Criatividade , Humanos , Encéfalo/fisiologia , Cognição/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Comportamento Exploratório/fisiologia
16.
Behav Brain Sci ; 47: e96, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770872

RESUMO

Ivancovsky et al. argue that the neurocognitive mechanisms of creativity and curiosity both rely on the interplay among brain networks. Research to date demonstrates that such inter-network dynamics are further complicated by functional fractionation within networks. Investigating how networks subdivide and reconfigure in service of a task offers insights about the precise anatomy that underpins creative and curious behaviour.


Assuntos
Encéfalo , Criatividade , Comportamento Exploratório , Rede Nervosa , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Comportamento Exploratório/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
17.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771244

RESUMO

The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.


Assuntos
Callithrix , Cognição , Conectoma , Macaca , Animais , Camundongos , Cognição/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Córtex Cerebral/fisiologia
18.
Phys Rev E ; 109(4-1): 044303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755874

RESUMO

In the face of the stupefying complexity of the human brain, network analysis is a most useful tool that allows one to greatly simplify the problem, typically by approximating the billions of neurons making up the brain by means of a coarse-grained picture with a practicable number of nodes. But even such relatively small and coarse networks, such as the human connectome with its 100-1000 nodes, may present challenges for some computationally demanding analyses that are incapable of handling networks with more than a handful of nodes. With such applications in mind, we set out to study the extent to which dynamical behavior and critical phenomena in the brain may be preserved following a severe coarse-graining procedure. Thus we proceeded to further coarse grain the human connectome by taking a modularity-based approach, the goal being to produce a network of a relatively small number of modules. After finding that the qualitative dynamical behavior of the coarse-grained networks reflected that of the original networks, albeit to a less pronounced extent, we then formulated a hypothesis based on the coarse-grained networks in the context of criticality in the Wilson-Cowan and Ising models, and we verified the hypothesis, which connected a transition value of the former with the critical temperature of the latter, using the original networks. This preservation of dynamical and critical behavior following a severe coarse-graining procedure, in principle, allows for the drawing of similar qualitative conclusions by analyzing much smaller networks, which opens the door for studying the human connectome in contexts typically regarded as computationally intractable, such as Integrated Information Theory and quantum models of the human brain.


Assuntos
Encéfalo , Conectoma , Modelos Neurológicos , Humanos , Encéfalo/fisiologia , Rede Nervosa/fisiologia
19.
Phys Rev E ; 109(4-1): 044404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755896

RESUMO

Statistically inferred neuronal connections from observed spike train data are often skewed from ground truth by factors such as model mismatch, unobserved neurons, and limited data. Spike train covariances, sometimes referred to as "functional connections," are often used as a proxy for the connections between pairs of neurons, but reflect statistical relationships between neurons, not anatomical connections. Moreover, covariances are not causal: spiking activity is correlated in both the past and the future, whereas neurons respond only to synaptic inputs in the past. Connections inferred by maximum likelihood inference, however, can be constrained to be causal. However, we show in this work that the inferred connections in spontaneously active networks modeled by stochastic leaky integrate-and-fire networks strongly correlate with the covariances between neurons, and may reflect noncausal relationships, when many neurons are unobserved or when neurons are weakly coupled. This phenomenon occurs across different network structures, including random networks and balanced excitatory-inhibitory networks. We use a combination of simulations and a mean-field analysis with fluctuation corrections to elucidate the relationships between spike train covariances, inferred synaptic filters, and ground-truth connections in partially observed networks.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Rede Nervosa , Neurônios , Neurônios/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/citologia , Sinapses/fisiologia , Processos Estocásticos
20.
Neuroimage ; 293: 120633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704057

RESUMO

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso­scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso­scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso­scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Jogos de Vídeo , Humanos , Plasticidade Neuronal/fisiologia , Conectoma/métodos , Masculino , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Feminino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA