Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Hippocampus ; 34(9): 491-502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091158

RESUMO

Hippocampal area CA2 has garnered attention in recent times owing to its significant involvement in social memory and distinctive plasticity characteristics. Research has revealed that the CA2 region demonstrates a remarkable resistance to plasticity, particularly in the Schaffer Collateral (SC)-CA2 pathway. In this study we investigated the role of Nogo-A, a well-known axon growth inhibitor and more recently discovered plasticity regulator, in modulating plasticity within the CA2 region. The findings demonstrate that blocking Nogo-A in male rat hippocampal slices facilitates the establishment of both short-term and long-term plasticity in the SC-CA2 pathway, while having no impact on the Entorhinal Cortical (EC)-CA2 pathway. Additionally, the study reveals that inhibiting Nogo-A enables association between the SC and EC pathways. Mechanistically, we confirm that Nogo-A operates through its well-known co-receptor, p75 neurotrophin receptor (p75NTR), and its downstream signaling factor such as Rho-associated protein kinase (ROCK), as their inhibition also allows plasticity induction in the SC-CA2 pathway. Additionally, the induction of long-term depression (LTD) in both the EC and SC-CA2 pathways led to persistent LTD, which was not affected by Nogo-A inhibition. Our study demonstrates the involvement of Nogo-A mediated signaling mechanisms in limiting synaptic plasticity within the CA2 region.


Assuntos
Região CA2 Hipocampal , Plasticidade Neuronal , Proteínas Nogo , Sinapses , Animais , Proteínas Nogo/metabolismo , Masculino , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Região CA2 Hipocampal/fisiologia , Região CA2 Hipocampal/metabolismo , Região CA2 Hipocampal/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Córtex Entorrinal/fisiologia , Córtex Entorrinal/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Vias Neurais/fisiologia , Proteínas da Mielina/metabolismo , Proteínas da Mielina/genética , Proteínas do Tecido Nervoso , Receptores de Fatores de Crescimento
2.
Science ; 385(6710): 738-743, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146421

RESUMO

Memory consolidation involves the synchronous reactivation of hippocampal cells active during recent experience in sleep sharp-wave ripples (SWRs). How this increase in firing rates and synchrony after learning is counterbalanced to preserve network stability is not understood. We discovered a network event generated by an intrahippocampal circuit formed by a subset of CA2 pyramidal cells to cholecystokinin-expressing (CCK+) basket cells, which fire a barrage of action potentials ("BARR") during non-rapid eye movement sleep. CA1 neurons and assemblies that increased their activity during learning were reactivated during SWRs but inhibited during BARRs. The initial increase in reactivation during SWRs returned to baseline through sleep. This trend was abolished by silencing CCK+ basket cells during BARRs, resulting in higher synchrony of CA1 assemblies and impaired memory consolidation.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal , Colecistocinina , Consolidação da Memória , Células Piramidais , Sono , Animais , Masculino , Camundongos , Região CA1 Hipocampal/fisiologia , Região CA2 Hipocampal/fisiologia , Colecistocinina/metabolismo , Interneurônios/fisiologia , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Células Piramidais/fisiologia , Sono/fisiologia
3.
Prog Neurobiol ; 240: 102652, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955325

RESUMO

Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212-2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.


Assuntos
Canabinoides , Fenciclidina , Transmissão Sináptica , Animais , Fenciclidina/farmacologia , Masculino , Camundongos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Canabinoides/farmacologia , Benzoxazinas/farmacologia , Comportamento Social , Região CA2 Hipocampal/efeitos dos fármacos , Região CA2 Hipocampal/fisiologia , Naftalenos/farmacologia , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem
4.
Elife ; 122024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833278

RESUMO

Adult-born granule cells (abGCs) project to the CA2 region of the hippocampus, but it remains unknown how this circuit affects behavioral function. Here, we show that abGC input to the CA2 of adult mice is involved in the retrieval of remote developmental memories of the mother. Ablation of abGCs impaired the ability to discriminate between a caregiving mother and a novel mother, and this ability returned after abGCs were regenerated. Chemogenetic inhibition of projections from abGCs to the CA2 also temporarily prevented the retrieval of remote mother memories. These findings were observed when abGCs were inhibited at 4-6 weeks old, but not when they were inhibited at 10-12 weeks old. We also found that abGCs are necessary for differentiating features of CA2 network activity, including theta-gamma coupling and sharp wave ripples, in response to novel versus familiar social stimuli. Taken together, these findings suggest that abGCs are necessary for neuronal oscillations associated with discriminating between social stimuli, thus enabling retrieval of remote developmental memories of the mother by their adult offspring.


Assuntos
Neurônios , Animais , Camundongos , Neurônios/fisiologia , Memória/fisiologia , Região CA2 Hipocampal/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 14(1): 12252, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806649

RESUMO

Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.


Assuntos
Região CA2 Hipocampal , Espinhas Dendríticas , Ciclo Estral , Animais , Masculino , Feminino , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Camundongos , Ciclo Estral/fisiologia , Região CA2 Hipocampal/fisiologia , Região CA2 Hipocampal/metabolismo , Caracteres Sexuais , Neurônios/metabolismo
6.
Brain Imaging Behav ; 18(4): 783-793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38478257

RESUMO

Although brain cholinergic denervation has been largely associated with cognitive decline in patients with Parkinson's disease (PD), new evidence suggests that cholinergic upregulation occurs in the hippocampus of PD patients without cognitive deficits. The specific hippocampal sectors and potential mechanisms of this cholinergic compensatory process have been further studied here, using MRI volumetry and morphometry coupled with molecular imaging using the PET radiotracer [18F]-Fluoroethoxybenzovesamicol ([18F]-FEOBV). Following a thorough screening procedure, 18 participants were selected and evenly distributed in three groups, including cognitively normal PD patients (PD-CN), PD patients with mild cognitive impairment (PD-MCI), and healthy volunteers (HV). Participants underwent a detailed neuropsychological assessment, structural MRI, and PET imaging with [18F]-FEOBV. Basal forebrain Ch1-Ch2 volumes were measured using stereotaxic mapping. Hippocampal subfields were automatically defined using the MAGeT-Brain segmentation algorithm. Cholinergic innervation density was quantified using [18F]-FEOBV uptake. Compared with HV, both PD-CN and PD-MCI displayed significantly reduced volumes in CA2-CA3 bilaterally. We found no other hippocampal subfield nor Ch1-Ch2 volume differences between the three groups. PET imaging revealed higher [18F]-FEOBV uptake in CA2-CA3 of the PD-CN compared with HV or PD-MCI. A positive correlation was observed between cognitive performances and [18F]-FEOBV uptake in the right CA2-CA3 subfield. Reduced volume, together with increased [18F]-FEOBV uptake, were observed specifically in the CA2-CA3 hippocampal subfields. However, while the volume change was observed in both PD-CN and PD-MCI, increased [18F]-FEOBV uptake was present only in the PD-CN group. This suggests that a cholinergic compensatory process takes place in the atrophied CA2-CA3 hippocampal subfields and might underlie normal cognition in PD.


Assuntos
Atrofia , Disfunção Cognitiva , Hipocampo , Imageamento por Ressonância Magnética , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Masculino , Tomografia por Emissão de Pósitrons/métodos , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/metabolismo , Pessoa de Meia-Idade , Neurônios Colinérgicos/patologia , Neurônios Colinérgicos/metabolismo , Região CA2 Hipocampal/diagnóstico por imagem , Região CA2 Hipocampal/patologia , Cognição/fisiologia , Testes Neuropsicológicos , Piperidinas
7.
Cell Rep ; 42(12): 113467, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979171

RESUMO

The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.


Assuntos
Região CA1 Hipocampal , Região CA2 Hipocampal , Região CA3 Hipocampal , Colecistocinina , Córtex Entorrinal , Plasticidade Neuronal , Aprendizagem Espacial , Colecistocinina/genética , Colecistocinina/metabolismo , Córtex Entorrinal/metabolismo , Região CA3 Hipocampal/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA2 Hipocampal/fisiologia , Sinapses/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Camundongos , Camundongos Knockout , Potenciação de Longa Duração
8.
Cells ; 12(20)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887290

RESUMO

Febrile seizure (FS), which occurs as a response to fever, is the most common seizure that occurs in infants and young children. FS is usually accompanied by diverse neuropsychiatric symptoms, including impaired social behaviors; however, research on neuropsychiatric disorders and hippocampal inflammatory changes following febrile seizure occurrences is very limited. Here, we provide evidence linking FS occurrence with ASD pathogenesis in rats. We developed an FS juvenile rats model and found ASD-like abnormal behaviors including deficits in social novelty, repetitive behaviors, and hyperlocomotion. In addition, FS model juvenile rats showed enhanced levels of gliosis and inflammation in the hippocampal CA2 region and cerebellum. Furthermore, abnormal levels of social and repetitive behaviors persisted in adults FS model rats. These findings suggest that the inflammatory response triggered by febrile seizures in young children could potentially serve as a mediator of social cognitive impairments.


Assuntos
Convulsões Febris , Humanos , Criança , Ratos , Animais , Pré-Escolar , Convulsões Febris/complicações , Convulsões Febris/patologia , Região CA2 Hipocampal/patologia , Ratos Sprague-Dawley , Citocinas , Gliose/complicações
9.
J Neurosci ; 43(41): 6930-6949, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37643861

RESUMO

A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Humanos , Masculino , Feminino , Camundongos , Animais , Região CA2 Hipocampal , Colecistocinina , Hipocampo/fisiologia , Interneurônios/fisiologia , Convulsões , Pilocarpina/toxicidade , Modelos Animais de Doenças
10.
Cereb Cortex ; 33(18): 10207-10220, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37557916

RESUMO

The hippocampus is a complex brain structure composed of subfields that each have distinct cellular organizations. While the volume of hippocampal subfields displays age-related changes that have been associated with inference and memory functions, the degree to which the cellular organization within each subfield is related to these functions throughout development is not well understood. We employed an explicit model testing approach to characterize the development of tissue microstructure and its relationship to performance on 2 inference tasks, one that required memory (memory-based inference) and one that required only perceptually available information (perception-based inference). We found that each subfield had a unique relationship with age in terms of its cellular organization. While the subiculum (SUB) displayed a linear relationship with age, the dentate gyrus (DG), cornu ammonis field 1 (CA1), and cornu ammonis subfields 2 and 3 (combined; CA2/3) displayed nonlinear trajectories that interacted with sex in CA2/3. We found that the DG was related to memory-based inference performance and that the SUB was related to perception-based inference; neither relationship interacted with age. Results are consistent with the idea that cellular organization within hippocampal subfields might undergo distinct developmental trajectories that support inference and memory performance throughout development.


Assuntos
Região CA2 Hipocampal , Hipocampo , Humanos , Região CA1 Hipocampal , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos
11.
Dev Neurobiol ; 83(5-6): 143-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326250

RESUMO

Social memories formed in early life, like those for family and unrelated peers, are known to contribute to healthy social interactions throughout life, although how the developing brain supports social memory remains relatively unexplored. The CA2 subregion of the hippocampus is involved in social memory function, but most literature on this subject is restricted to studies of adult rodents. Here, we review the current literature on the embryonic and postnatal development of hippocampal subregion CA2 in mammals, with a focus on the emergence of its unusual molecular and cellular characteristics, including its notably high expression of plasticity-suppressing molecules. We also consider the connectivity of the CA2 with other brain areas, including intrahippocampal regions, such as the dentate gyrus, CA3, and CA1 regions, and extrahippocampal regions, such as the hypothalamus, ventral tegmental area, basal forebrain, raphe nuclei, and the entorhinal cortex. We review developmental milestones of CA2 molecular, cellular, and circuit-level features that may contribute to emerging social recognition abilities for kin and unrelated conspecifics in early life. Lastly, we consider genetic mouse models related to neurodevelopmental disorders in humans in order to survey evidence about whether atypical formation of the CA2 may contribute to social memory dysfunction.


Assuntos
Região CA2 Hipocampal , Hipocampo , Humanos , Camundongos , Animais , Região CA2 Hipocampal/metabolismo , Reconhecimento Psicológico , Córtex Entorrinal , Região CA1 Hipocampal , Mamíferos
12.
Front Neural Circuits ; 17: 1181032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180763

RESUMO

Hippocampal area CA2 plays a critical role in social recognition memory and has unique cellular and molecular properties that distinguish it from areas CA1 and CA3. In addition to having a particularly high density of interneurons, the inhibitory transmission in this region displays two distinct forms of long-term synaptic plasticity. Early studies on human hippocampal tissue have reported unique alteration in area CA2 with several pathologies and psychiatric disorders. In this review, we present recent studies revealing changes in inhibitory transmission and plasticity of area CA2 in mouse models of multiple sclerosis, autism spectrum disorder, Alzheimer's disease, schizophrenia and the 22q11.2 deletion syndrome and propose how these changes could underly deficits in social cognition observed during these pathologies.


Assuntos
Transtorno do Espectro Autista , Região CA2 Hipocampal , Camundongos , Animais , Humanos , Região CA2 Hipocampal/fisiologia , Hipocampo , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia
13.
Neuron ; 111(14): 2232-2246.e5, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192623

RESUMO

Although the hippocampus is crucial for social memory, how social sensory information is combined with contextual information to form episodic social memories remains unknown. Here, we investigated the mechanisms for social sensory information processing using two-photon calcium imaging from hippocampal CA2 pyramidal neurons (PNs)-which are crucial for social memory-in awake head-fixed mice exposed to social and non-social odors. We found that CA2 PNs represent social odors of individual conspecifics and that these representations are refined during associative social odor-reward learning to enhance the discrimination of rewarded compared with unrewarded odors. Moreover, the structure of the CA2 PN population activity enables CA2 to generalize along categories of rewarded versus unrewarded and social versus non-social odor stimuli. Finally, we found that CA2 is important for learning social but not non-social odor-reward associations. These properties of CA2 odor representations provide a likely substrate for the encoding of episodic social memory.


Assuntos
Região CA2 Hipocampal , Odorantes , Camundongos , Animais , Olfato/fisiologia , Hipocampo/fisiologia , Aprendizagem , Aprendizagem por Discriminação/fisiologia
14.
Hippocampus ; 33(6): 759-768, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938702

RESUMO

The hippocampus is a key structure involved in learning and remembering spatial information. However, the extent to which hippocampal region CA2 is involved in these processes remains unclear. Here, we show that chronically silencing dorsal CA2 impairs reversal learning in the Morris water maze. After platform relocation, CA2-silenced mice spent more time in the vicinity of the old platform location and less time in the new target quadrant. Accordingly, behavioral strategy analysis revealed increased perseverance in navigating to the old location during the first day and an increased use of non-spatial strategies during the second day of reversal learning. Confirming previous indirect indications, these results demonstrate that CA2 is recruited when mice must flexibly adapt their behavior as task contingencies change. We discuss how these findings can be explained by recent theories of CA2 function and outline testable predictions to understand the underlying neural mechanisms. Demonstrating a direct involvement of CA2 in spatial learning, this work lends further support to the notion that CA2 plays a fundamental role in hippocampal information processing.


Assuntos
Região CA2 Hipocampal , Aprendizagem Espacial , Animais , Camundongos , Hipocampo , Aprendizagem em Labirinto , Reversão de Aprendizagem , Região CA2 Hipocampal/fisiologia
15.
Hippocampus ; 33(6): 745-758, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965045

RESUMO

The hippocampal CA2 region has received greater attention in recent years due to its fundamental role in social memory and hippocampus-dependent memory processing. Unlike entorhinal cortical inputs, the Schaffer collateral inputs to CA2 do not support activity-dependent long-term potentiation (LTP), which serves as the basis for long-term memories. This LTP-resistant zone also expresses genes that restrict plasticity. With the aim of exploring social interaction and sociability in rats that were subjected to juvenile stress, we addressed questions about how the neural circuitry is altered and its effects on social behavior. Although there was induction of LTP in both Schaffer collateral and entorhinal cortical pathways in juvenile-stressed rats, LTP declined in both pathways after 2-3 h. Moreover, exogenous bath application of substance P, a neuropeptide that resulted in slow onset long-lasting potentiation in control animals while it failed to induce LTP in juvenile-stressed rats. Our study reveals that juvenile-stressed rats show behavioral and cellular abnormalities with a long-lasting impact in adulthood.


Assuntos
Região CA2 Hipocampal , Potenciação de Longa Duração , Animais , Ratos , Região CA2 Hipocampal/fisiologia , Córtex Entorrinal , Hipocampo , Memória , Plasticidade Neuronal
17.
Hippocampus ; 33(3): 208-222, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36309963

RESUMO

It is now well-established that the hippocampal CA2 region plays an important role in social recognition memory in adult mice. The CA2 is also important for the earliest social memories, including those that mice have for their mothers and littermates, which manifest themselves as a social preference for familiarity over novelty. The role of the CA2 in the development of social memory for recently encountered same-age conspecifics, that is, peers, has not been previously reported. Here, we used a direct social interaction test to characterize the emergence of novelty preference for peers during development and found that at the end of the second postnatal week, pups begin to significantly prefer novel over familiar peers. Using chemogenetic inhibition at this time, we showed that CA2 activity is necessary for the emergence of novelty preference and for the ability to distinguish never encountered from recently encountered peers. In adulthood, the CA2 region is known to integrate a large number of inputs from various sources, many of which participate in social recognition memory, but previous studies have not determined whether these afferents are present at adult levels by the end of the second postnatal week. To explore the development of CA2 inputs, we used immunolabeling and retrograde adenovirus circuit tracing and found that, by the end of the second postnatal week, the CA2 is innervated by many regions, including the dentate gyrus, supramammillary nucleus of the hypothalamus, the lateral entorhinal cortex, and the median raphe nucleus. Using retroviral labeling of postnatally generated granule cells in the dentate gyrus, we found that mossy fiber projections to the CA2 mature faster during development than those generated in adulthood. Together, our findings indicate that the CA2 is partially mature in afferent connectivity by the end of the second postnatal week, connections that likely facilitate the emergence of social recognition memory and preference for novel peers.


Assuntos
Região CA2 Hipocampal , Hipocampo , Camundongos , Animais , Hipocampo/fisiologia , Região CA2 Hipocampal/fisiologia , Neurônios/fisiologia , Córtex Entorrinal/fisiologia , Hipotálamo Posterior/fisiologia
18.
Curr Opin Neurobiol ; 77: 102642, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36215845

RESUMO

In recent years, convergent evidence has emerged in support of the idea of social brain networks, specific brain regions that are interconnected and support social behaviors. One of these regions is the CA2 area of the hippocampus, a small region strongly connected with cortical and subcortical areas implicated in social behaviors. Furthermore, CA2 area is enriched in receptors for several neuromodulators that are related to various aspects of social behaviors, suggesting that this area could be a key component of social information processing in the brain. In this review, recent findings related to the physiological mechanisms underlying the role of CA2 in social memory are discussed.


Assuntos
Região CA2 Hipocampal , Hipocampo , Região CA2 Hipocampal/fisiologia , Hipocampo/fisiologia , Comportamento Social , Cognição
19.
Neuron ; 110(19): 3121-3138.e8, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35987207

RESUMO

The hippocampal CA2 region, an area important for social memory, has been suspected to play a role in temporal lobe epilepsy (TLE) because of its resistance to degeneration observed in neighboring CA1 and CA3 regions in both humans and rodent models of TLE. However, little is known about whether alterations in CA2 properties promote seizure generation or propagation. Here, we addressed the role of CA2 using the pilocarpine-induced status epilepticus model of TLE. Ex vivo electrophysiological recordings from acute hippocampal slices revealed a set of coordinated changes that enhance CA2 PC intrinsic excitability, reduce CA2 inhibitory input, and increase CA2 excitatory output to its major CA1 synaptic target. Moreover, selective chemogenetic silencing of CA2 pyramidal cells caused a significant decrease in the frequency of spontaneous seizures measured in vivo. These findings provide the first evidence that CA2 actively contributes to TLE seizure activity and may thus be a promising therapeutic target.


Assuntos
Epilepsia do Lobo Temporal , Animais , Região CA2 Hipocampal , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo/fisiologia , Humanos , Camundongos , Pilocarpina/toxicidade , Células Piramidais/fisiologia , Convulsões/induzido quimicamente
20.
Neuron ; 110(9): 1443-1445, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512637

RESUMO

In this issue of Neuron, Lopez-Rojas et al. (2022) uncover a cortical circuit conveying social information to CA2, a region essential for social memory. Their findings suggest CA2 neurons integrate information from other extrahippocampal circuits to locally compute social novelty.


Assuntos
Região CA2 Hipocampal , Células Piramidais , Região CA2 Hipocampal/fisiologia , Neurônios , Células Piramidais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA