Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880132

RESUMO

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Morte Celular , Clonagem Molecular , DNA de Plantas , Regulação da Expressão Gênica de Plantas/imunologia , Modelos Moleculares , Mutação , Proteínas de Plantas/genética , Conformação Proteica , Pseudomonas syringae/imunologia , Nicotiana
2.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769466

RESUMO

Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were determined using the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technique. A total of 693 proteins were considered as differentially expressed proteins (DEPs) following a comparison of leaves treated with TA and sterile water (as a control). Among the identified DEPs, 460 and 233 were upregulated and downregulated, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, many DEPs were found to be involved in defense and stress responses. Most DEPs were grouped in carbohydrate metabolism, amino acid metabolism, energy metabolism, and secondary metabolism including oxidation-reduction process, response to stress, plant-pathogen interaction, and plant hormone signal transduction. In this study, we analyzed the changes in proteins to elucidate the mechanism of potato response to TA, and we provided a molecular basis to further study the interaction between plant and TA. These results also offer the option for potato breeding through analysis of the resistant common scab.


Assuntos
Indóis/farmacologia , Piperazinas/farmacologia , Proteínas de Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Solanum tuberosum/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/imunologia , Indóis/isolamento & purificação , Piperazinas/isolamento & purificação , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo , Streptomyces/química
3.
Sci Rep ; 11(1): 18948, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556705

RESUMO

Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Defensinas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Defensinas/genética , Resistência à Doença , Fusarium/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385303

RESUMO

Several attempts have been made to identify antiviral genes against Tomato leaf curl New Delhi virus (ToLCNDV) and related viruses. This has led to the recognition of Ty genes (Ty1-Ty6), which have been successful in developing virus-resistant crops to some extent. Owing to the regular appearance of resistance-breaking strains of these viruses, it is important to identify genes related to resistance. In the present study, we identified a ToLCNDV resistance (R) gene, SlSw5a, in a ToLCNDV-resistant tomato cultivar, H-88-78-1, which lacks the known Ty genes. The expression of SlSw5a is controlled by the transcription factor SlMyb33, which in turn is regulated by microRNA159 (sly-miR159). Virus-induced gene silencing of either SlSw5a or SlMyb33 severely increases the disease symptoms and viral titer in leaves of resistant cultivar. Moreover, in SlMyb33-silenced plants, the relative messenger RNA level of SlSw5a was reduced, suggesting SlSw5a is downstream of the sly-miR159-SlMyb33 module. We also demonstrate that SlSw5a interacts physically with ToLCNDV-AC4 (viral suppressor of RNA silencing) to trigger a hypersensitive response (HR) and generate reactive oxygen species at infection sites to limit the spread of the virus. The "RTSK" motif in the AC4 C terminus is important for the interaction, and its mutation completely abolishes the interaction with Sw5a and HR elicitation. Overall, our research reports an R gene against ToLCNDV and establishes a connection between the upstream miR159-Myb33 module and its downstream target Sw5a to activate HR in the tomato, resulting in geminivirus resistance.


Assuntos
Begomovirus/fisiologia , Regulação da Expressão Gênica de Plantas/imunologia , Predisposição Genética para Doença , Doenças das Plantas/virologia , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Inativação Gênica , MicroRNAs , RNA de Plantas , Transcriptoma , Regulação para Cima
5.
Virology ; 563: 1-19, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399236

RESUMO

To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2 perform pro-viral functions equivalent to that of the yeast Ssa1 Hsp70. These functions include activation of the tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral approach against tombusviruses in plants.


Assuntos
Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzotiazóis/farmacologia , Regulação da Expressão Gênica de Plantas/imunologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Compostos de Piridínio/farmacologia , RNA Viral/fisiologia , Nicotiana/metabolismo , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
6.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34423785

RESUMO

Wheat (Triticum aestivum) is one of the most important food crops around the world. China is the largest wheat production country and wheat yellow mosaic virus (WYMV) is a non-negligible threat to wheat production. This study aimed to explore miRNAs and their corresponding target genes responsive to WYMV in wheat. Linmai and Jimai were used for miRNA and degradome high-throughput sequencing. After comparison and analysis, differentially expressed miRNAs and their target genes between normal wheat and WYMV-infected wheat were identified. GO and KEGG pathway enrichment analysis were then performed on target genes. A total of 530 miRNAs were identified in all samples, including 106 known miRNAs and 424 novel miRNAs. Among them, 131 miRNAs, corresponding to 85 target genes, were differentially expressed between normal wheat and WYMV-infected wheat. 85 target genes were significantly enriched in 21 GO terms and two KEGG pathways, Plant hormone signal transduction and Monobactam biosynthesis. In conclusion, 131 differentially expressed miRNAs, corresponding to 85 target genes, were identified between normal wheat and WYMVinfected wheat. Our findings provide more evidence on the roles of miRNAs and their target genes in wheat- WYMV interactions.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , MicroRNAs/metabolismo , Vírus do Mosaico/fisiologia , Doenças das Plantas/virologia , Triticum/virologia , MicroRNAs/genética , Vírus do Mosaico/imunologia , Doenças das Plantas/imunologia , RNA de Plantas
7.
BMC Plant Biol ; 21(1): 255, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082694

RESUMO

BACKGROUND: Rice (Oryza sativa) bacterial leaf blight (BLB), caused by the hemibiotrophic Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases affecting the production of rice worldwide. The development and use of resistant rice varieties or genes is currently the most effective strategy to control BLB. RESULTS: Here, we used 259 rice accessions, which are genotyped with 2 888 332 high-confidence single nucleotide polymorphisms (SNPs). Combining resistance variation data of 259 rice lines for two Xoo races observed in 2 years, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL) conferring plant resistance against BLB. The expression levels of genes, which contains in GWAS results were also identified between the resistant and susceptible rice lines by transcriptome analysis at four time points after pathogen inoculation. From that 109 candidate resistance genes showing significant differential expression between resistant and susceptible rice lines were uncovered. Furthermore, the haplotype block structure analysis predicted 58 candidate genes for BLB resistance based on Chr. 7_707158 with a minimum P-value (-log 10 P = 9.72). Among them, two NLR protein-encoding genes, LOC_Os07g02560 and LOC_Os07g02570, exhibited significantly high expression in the resistant line, but had low expression in the susceptible line of rice. CONCLUSIONS: Together, our results reveal novel BLB resistance gene resources, and provide important genetic basis for BLB resistance breeding of rice crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Oryza/genética , Doenças das Plantas/microbiologia , Transcriptoma , Regulação da Expressão Gênica de Plantas/imunologia , Genótipo , Haplótipos , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Plant J ; 107(3): 925-937, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34037995

RESUMO

Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein-protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex-mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex in autophagy-mediated disease resistance to CBB.


Assuntos
Autofagia/genética , Proteínas de Choque Térmico HSP90/metabolismo , Manihot/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Proteínas de Choque Térmico HSP90/genética , Manihot/metabolismo , Chaperonas Moleculares , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xanthomonas axonopodis
9.
Plant J ; 107(3): 775-786, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33982335

RESUMO

Nucleotide-binding site (NBS)-leucine-rich repeat (LRR) domain receptor (NLR) proteins play important roles in plant innate immunity by recognizing pathogen effectors. The Toll/interleukin-1 receptor (TIR)-NBS (TN) proteins belong to a subtype of the atypical NLRs, but their function in plant immunity is poorly understood. The well-characterized Arabidopsis thaliana typical coiled-coil (CC)-NBS-LRR (CNL) protein Resistance to Pseudomonas syringae 5 (RPS5) is activated after recognizing the Pseudomonas syringae type III effector AvrPphB. To explore whether the truncated TN proteins function in CNL-mediated immune signaling, we examined the interactions between the Arabidopsis TN proteins and RPS5, and found that TN13 and TN21 interacted with RPS5. However, only TN13, but not TN21, was involved in the resistance to P. syringae pv. tomato (Pto) strain DC3000 carrying avrPphB, encoding the cognate effector recognized by RPS5. Moreover, the regulation of Pto DC3000 avrPphB resistance by TN13 appeared to be specific, as loss of function of TN13 did not compromise resistance to Pto DC3000 hrcC- or Pto DC3000 avrRpt2. In addition, we demonstrated that the CC and NBS domains of RPS5 play essential roles in the interaction between TN13 and RPS5. Taken together, our results uncover a direct functional link between TN13 and RPS5, suggesting that TN13 acts as a partner in modulating RPS5-activated immune signaling, which constitutes a previously unknown mechanism for TN-mediated regulation of plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Proteínas de Membrana/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae
10.
Sci Rep ; 11(1): 7872, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846415

RESUMO

Robustness, a naïve property of biological systems, enables organisms to maintain functions during perturbation and is crucial for improving the resilience of crops to prevailing stress conditions and diseases, guaranteeing food security. Most studies of robustness in crops have focused on genetic superiority based upon individual genes, overlooking the collaborative actions of multiple responsive genes and the regulatory network topology. This research aims to uncover patterns of gene cooperation leading to organismal robustness by studying the topology of gene co-expression networks (GCNs) of both CBSV virus resistant and susceptible cassava cultivars. The resulting GCNs show higher topological clustering of cooperative genes in the resistant cultivar, suggesting that the network architecture is central to attaining robustness. Despite a reduction in the number of hub genes in the resistant cultivar following the perturbation, essential biological functions contained in the network were maintained through neighboring genes that withstood the shock. The susceptible cultivar seemingly coped by inducing more gene actions in the network but could not maintain the functions required for plant growth. These findings underscore the importance of regulatory network architecture in ensuring phenotypic robustness and deepen our understanding of transcriptional regulation.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/imunologia , Manihot/genética , Doenças das Plantas/genética , Viroses/genética , Genes Reguladores , Potyviridae
11.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805611

RESUMO

Plants have evolved diverse molecular mechanisms that enable them to respond to a wide range of pathogens. It has become clear that microRNAs, a class of short single-stranded RNA molecules that regulate gene expression at the transcriptional or post-translational level, play a crucial role in coordinating plant-pathogen interactions. Specifically, miRNAs have been shown to be involved in the regulation of phytohormone signals, reactive oxygen species, and NBS-LRR gene expression, thereby modulating the arms race between hosts and pathogens. Adding another level of complexity, it has recently been shown that specific lncRNAs (ceRNAs) can act as decoys that interact with and modulate the activity of miRNAs. Here we review recent findings regarding the roles of miRNA in plant defense, with a focus on the regulatory modes of miRNAs and their possible applications in breeding pathogen-resistance plants including crops and trees. Special emphasis is placed on discussing the role of miRNA in the arms race between hosts and pathogens, and the interaction between disease-related miRNAs and lncRNAs.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas/genética , Interações Hospedeiro-Patógeno/imunologia , MicroRNAs/imunologia , Fungos Mitospóricos/genética , Fungos Mitospóricos/crescimento & desenvolvimento , Fungos Mitospóricos/patogenicidade , Melhoramento Vegetal/métodos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/imunologia , Plantas/imunologia , Plantas/microbiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , RNA de Plantas/genética , RNA de Plantas/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Nat Plants ; 7(5): 579-586, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723429

RESUMO

Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity.


Assuntos
Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transcrição Gênica
13.
J Plant Physiol ; 260: 153390, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667937

RESUMO

To maximize breeding and exploitation of disease resistance traits for managing apple replant disease (ARD), it is of great importance to understand the mechanisms of apple root resistance. Currently, little is known about the functions of the specific genes that confer resistance traits in apple root. In this study, molecular, biochemical, and genetic approaches allowed an in-depth understanding of the role of the MdPR4 gene in the defense response of apple root. The MdPR4 encoding gene showed upregulation following ARD pathogen inoculation in our previous transcriptome data. Subcellular localization analyses revealed that MdPR4 is localized on the plasma membrane, endoplasmic reticulum, and apoplast, which is mainly determined by its signal peptide. Molecular docking analysis between MdPR4 protein with chitin molecule and in vitro MdPR4 chitin affinity assay proved its chitin-binding ability, which provided evidence for its role in chitin-mediated immune responses. Purified MdPR4 protein and MdPR4 overexpressed apple callus inhibited spore germination and mycelial growth of ARD-related Fusarium spp. pathogens. These data support the conclusion that MdPR4 is a chitin-binding protein in apple vegetative tissues that may play an important role in defense activation in response to ARD pathogen infection.


Assuntos
Fusarium/fisiologia , Malus/imunologia , Proteínas de Membrana/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Quitina/metabolismo , Fusarium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/imunologia , Malus/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Micélio/crescimento & desenvolvimento , Micélio/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento
14.
PLoS Genet ; 17(2): e1009026, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33621240

RESUMO

Regulation of the plant immune system is important for controlling the specificity and amplitude of responses to pathogens and in preventing growth-inhibiting autoimmunity that leads to reductions in plant fitness. In previous work, we reported that SRFR1, a negative regulator of effector-triggered immunity, interacts with SNC1 and EDS1. When SRFR1 is non-functional in the Arabidopsis accession Col-0, SNC1 levels increase, causing a cascade of events that lead to autoimmunity phenotypes. Previous work showed that some members of the transcriptional co-repressor family TOPLESS interact with SNC1 to repress negative regulators of immunity. Therefore, to explore potential connections between SRFR1 and TOPLESS family members, we took a genetic approach that examined the effect of each TOPLESS member in the srfr1 mutant background. The data indicated that an additive genetic interaction exists between SRFR1 and two members of the TOPLESS family, TPR2 and TPR3, as demonstrated by increased stunting and elevated PR2 expression in srfr1 tpr2 and srfr1 tpr2 tpr3 mutants. Furthermore, the tpr2 mutation intensifies autoimmunity in the auto-active snc1-1 mutant, indicating a novel role of these TOPLESS family members in negatively regulating SNC1-dependent phenotypes. This negative regulation can also be reversed by overexpressing TPR2 in the srfr1 tpr2 background. Similar to TPR1 that positively regulates snc1-1 phenotypes by interacting with SNC1, we show here that TPR2 directly binds the N-terminal domain of SNC1. In addition, TPR2 interacts with TPR1 in vivo, suggesting that the opposite functions of TPR2 and TPR1 are based on titration of SNC1-TPR1 complexes by TPR2 or altered functions of a SNC1-TPR1-TPR2 complex. Thus, this work uncovers diverse functions of individual members of the TOPLESS family in Arabidopsis and provides evidence for the additive effect of transcriptional and post-transcriptional regulation of SNC1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Autoimunidade/genética , Chaperonas Moleculares/metabolismo , Imunidade Vegetal/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/imunologia , Chaperonas Moleculares/genética , Mutação , Plantas Geneticamente Modificadas , Regulação para Cima
15.
Mol Genet Genomics ; 296(1): 155-164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33118051

RESUMO

Sugar beets are attacked by several pathogens that cause root damages. Rhizoctonia (Greek for "root killer") is one of them. Rhizoctonia root rot has become an increasing problem for sugar beet production and to decrease yield losses agronomical measures are adopted. Here, two partially resistant and two susceptible sugar beet genotypes were used for transcriptome analysis to discover new defense genes to this fungal disease, information to be implemented in molecular resistance breeding. Among 217 transcripts with increased expression at 2 days post-infection (dpi), three resistance-like genes were found. These genes were not significantly elevated at 5 dpi, a time point when increased expression of three Bet v I/Major latex protein (MLP) homologous genes BvMLP1, BvMLP2 and BvML3 was observed in the partially resistant genotypes. Quantitative RT-PCR analysis on diseased sugar beet seedlings validated the activity of BvMLP1 and BvMLP3 observed in the transcriptome during challenge by R. solani. The three BvMLP genes were cloned and overexpressed in Arabidopsis thaliana to further dissect their individual contribution. Transgenic plants were also compared to T-DNA mutants of orthologous MLP genes. Plants overexpressing BvMLP1 and BvMLP3 showed significantly less infection whereas additive effects were seen on Atmlp1/Atmlp3 double mutants. The data suggest that BvMLP1 and BvMLP3 may contribute to the reduction of the Rhizoctonia root rot disease in sugar beet. Impact on the defense reaction from other differential expressed genes observed in the study is discussed.


Assuntos
Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Rhizoctonia/patogenicidade , Transcriptoma/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Beta vulgaris/imunologia , Beta vulgaris/microbiologia , Clonagem Molecular , Expressão Gênica , Redes Reguladoras de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Plântula/genética , Plântula/imunologia , Plântula/microbiologia
16.
PLoS Pathog ; 16(12): e1009118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33264360

RESUMO

There are 25 auxin response factors (ARFs) in the rice genome, which play critical roles in regulating myriad aspects of plant development, but their role (s) in host antiviral immune defense and the underneath mechanism remain largely unknown. By using the rice-rice dwarf virus (RDV) model system, here we report that auxin signaling enhances rice defense against RDV infection. In turn, RDV infection triggers increased auxin biosynthesis and accumulation in rice, and that treatment with exogenous auxin reduces OsIAA10 protein level, thereby unleashing a group of OsIAA10-interacting OsARFs to mediate downstream antiviral responses. Strikingly, our genetic data showed that loss-of-function mutants of osarf12 or osarf16 exhibit reduced resistance whereas osarf11 mutants display enhanced resistance to RDV. In turn, OsARF12 activates the down-stream OsWRKY13 expression through direct binding to its promoter, loss-of-function mutants of oswrky13 exhibit reduced resistance. These results demonstrated that OsARF 11, 12 and 16 differentially regulate rice antiviral defense. Together with our previous discovery that the viral P2 protein stabilizes OsIAA10 protein via thwarting its interaction with OsTIR1 to enhance viral infection and pathogenesis, our results reveal a novel auxin-IAA10-ARFs-mediated signaling mechanism employed by rice and RDV for defense and counter defense responses.


Assuntos
Ácidos Indolacéticos/imunologia , Oryza/imunologia , Oryza/virologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Reoviridae/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/imunologia
17.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233522

RESUMO

Wild barley accessions have evolved broad-spectrum defence against barley powdery mildew through recessive mlo mutations. However, the mlo defence response is associated with deleterious phenotypes with a cost to yield and fertility, with implications for natural fitness and agricultural productivity. This research elucidates the mechanism behind a novel mlo allele, designated mlo-11(cnv2), which has a milder phenotype compared to standard mlo-11. Bisulphite sequencing and histone ChIP-seq analyses using near-isogenic lines showed pronounced repression of the Mlo promoter in standard mlo-11 compared to mlo-11(cnv2), with repression governed by 24 nt heterochromatic small interfering RNAs. The mlo-11(cnv2) allele appears to largely reduce the physiological effects of mlo while still endorsing a high level of powdery mildew resistance. RNA sequencing showed that this is achieved through only partly restricted expression of Mlo, allowing adequate temporal induction of defence genes during infection and expression close to wild-type Mlo levels in the absence of infection. The two mlo-11 alleles showed copy number proportionate oxidase and peroxidase expression levels during infection, but lower amino acid and aromatic compound biosynthesis compared to the null allele mlo-5. Examination of highly expressed genes revealed a common WRKY W-box binding motif (consensus ACCCGGGACTAAAGG) and a transcription factor more highly expressed in mlo-11 resistance. In conclusion, mlo-11(cnv2) appears to significantly mitigate the trade-off between mlo defence and normal gene expression.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/imunologia , Aptidão Genética , Hordeum/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Alelos , Ascomicetos/crescimento & desenvolvimento , Variações do Número de Cópias de DNA , Inativação Gênica , Hordeum/imunologia , Hordeum/microbiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Mutação , Peroxidase/genética , Peroxidase/imunologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sequências de Repetição em Tandem
18.
Cells ; 9(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887298

RESUMO

Rho proteins of plants (ROPs) form a specific clade of Rho GTPases, which are involved in either plant immunity or susceptibility to diseases. They are intensively studied in grass host plants, in which ROPs are signaling hubs downstream of both cell surface immune receptor kinases and intracellular nucleotide-binding leucine-rich repeat receptors, which activate major branches of plant immune signaling. Additionally, invasive fungal pathogens may co-opt the function of ROPs for manipulation of the cytoskeleton, cell invasion and host cell developmental reprogramming, which promote pathogenic colonization. Strikingly, mammalian bacterial pathogens also initiate both effector-triggered susceptibility for cell invasion and effector-triggered immunity via Rho GTPases. In this review, we summarize central concepts of Rho signaling in disease and immunity of plants and briefly compare them to important findings in the mammalian research field. We focus on Rho activation, downstream signaling and cellular reorganization under control of Rho proteins involved in disease progression and pathogen resistance.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Arabidopsis/imunologia , Arabidopsis/microbiologia , Citoesqueleto/imunologia , Citoesqueleto/microbiologia , Resistência à Doença/genética , Hordeum/genética , Hordeum/imunologia , Hordeum/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas de Repetições Ricas em Leucina , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Células Vegetais/imunologia , Células Vegetais/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Proteínas/genética , Proteínas/imunologia , Transdução de Sinais , Proteínas rho de Ligação ao GTP/imunologia
19.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751339

RESUMO

Plant plasma membrane-localized receptors recognize microbe-associated molecular patterns (MAMPs) and activate immune responses via various signaling pathways. Receptor-like cytoplasmic kinases (RLCKs) are considered key signaling factors in plant immunity. BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice RLCK, plays a significant role in disease resistance. Overexpression of BSR1 confers strong resistance against fungal and bacterial pathogens. Our recent study revealed that MAMP-triggered immune responses are mediated by BSR1 in wild-type rice and are hyperactivated in BSR1-overexpressing rice. It was suggested that hyperactivated immune responses were responsible for the enhancement of broad-spectrum disease resistance; however, this remained to be experimentally validated. In this study, we verified the above hypothesis by disrupting the MAMP-recognition system in BSR1-overexpressing rice. To this end, we knocked out OsCERK1, which encodes a well-characterized MAMP-receptor-like protein kinase. In the background of BSR1 overaccumulation, the knockout of OsCERK1 nearly abolished the enhancement of blast resistance. This finding indicates that overexpressed BSR1-mediated enhancement of disease resistance depends on the MAMP-triggered immune system, corroborating our previously suggested model.


Assuntos
Ascomicetos/genética , Oryza/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Reconhecimento de Padrão/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Sequência de Bases , Resistência à Doença , Regulação da Expressão Gênica de Plantas/imunologia , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Oryza/imunologia , Oryza/microbiologia , Moléculas com Motivos Associados a Patógenos/química , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/imunologia , Receptores de Reconhecimento de Padrão/deficiência , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais
20.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32810437

RESUMO

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Sobrevivência Celular/imunologia , Imunidade Vegetal/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Ubiquitinação/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA