Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93.429
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Physiol Res ; 73(2): 285-294, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710059

RESUMO

This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.


Assuntos
Regulação para Baixo , Fibrose , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Masculino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Progressão da Doença , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/prevenção & controle , Doenças Musculares/etiologia
2.
Rev Assoc Med Bras (1992) ; 70(4): e20231521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716952

RESUMO

OBJECTIVE: This study aimed to investigate the value of miR-29a-3p, miR-27a, miR126-3p, miR-146a-5p, miR-625-3p, miR-130a, miR-32, miR-218, miR-131, and miR5196 in the diagnosis of axial spondyloarthritis and to determine whether there is a difference in miRNA expression levels between radiographic axial spondyloarthritis and non-radiographic axial spondyloarthritis, as well as the relationship between miRNA expression levels, disease activity, and uveitis history. METHODS: This study included 50 patients with axial spondyloarthritis (25 with radiographic axial spondyloarthritis and 25 with non-radiographic axial spondyloarthritis) and 25 healthy individuals. The fold change of miRNA expression for each miRNA was calculated using the 2-ΔΔCt method. RESULTS: The expression of all miRNAs except miR-130a was downregulated in axial spondyloarthritis patients (miR-27a: fold regulation: -11.21, p<0.001; miR-29a-3p: fold regulation: -2.63, p<0.001; miR-32: fold regulation: -2.94, p=0.002; miR-126-3p: fold regulation -10.94, p<0.001; miR-132: fold regulation: -2.18, p<0.001; miR-146-5p: fold regulation: -9.78, p<0.001; miR-218: fold regulation: -2.65, p<0.001; miR-625-3p: fold regulation: -2.01, p=0.001; miR-5196-3p: fold regulation: -7.04, p<0.001). The expression levels of these miRNAs did not differ significantly between non-radiographic axial spondyloarthritis and radiographic axial spondyloarthritis patients (p>0.05 for all). CONCLUSION: Particularly, miR-27a, miR-126-3p, miR-146-5p, and miR-5196-3p were found to be substantially downregulated in both non-radiographic axial spondyloarthritis and radiographic axial spondyloarthritis patients, suggesting their potential as diagnostic biomarkers for axial spondyloarthritis.


Assuntos
Espondiloartrite Axial , Biomarcadores , Regulação para Baixo , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , Adulto , Feminino , Masculino , Espondiloartrite Axial/genética , Espondiloartrite Axial/diagnóstico por imagem , Biomarcadores/análise , Estudos de Casos e Controles , Pessoa de Meia-Idade , Adulto Jovem , Espondilartrite/genética , Espondilartrite/diagnóstico por imagem
3.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719798

RESUMO

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Assuntos
Neoplasias da Mama , Regulação para Baixo , Transição Epitelial-Mesenquimal , RNA Polimerase I , Teniposídeo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , RNA Polimerase I/metabolismo , Teniposídeo/farmacologia , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Elife ; 132024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722677

RESUMO

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Assuntos
Diferenciação Celular , Regulação para Baixo , MicroRNAs , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Humanos , Células Th17/imunologia , Células Th17/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema/genética , Enfisema/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/metabolismo , Masculino , Interleucina-17/metabolismo , Interleucina-17/genética , Feminino
5.
BMC Musculoskelet Disord ; 25(1): 331, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725009

RESUMO

BACKGROUND: The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE: To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS: KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS: The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION: These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.


Assuntos
Regulação para Baixo , Microglia , Neuralgia , Osteoartrite do Joelho , Plasma Rico em Plaquetas , Ratos Sprague-Dawley , Animais , Masculino , Neuralgia/terapia , Neuralgia/metabolismo , Microglia/metabolismo , Ratos , Osteoartrite do Joelho/terapia , Fator 3 Ativador da Transcrição/metabolismo , Gânglios Espinais/metabolismo , Modelos Animais de Doenças , Injeções Intra-Articulares , Proteínas de Ligação ao Cálcio/metabolismo , Ácido Iodoacético/toxicidade , Proteínas dos Microfilamentos
6.
PLoS One ; 19(5): e0301080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728328

RESUMO

Entheses are classified into three types: fibrocartilaginous, fibrous, and periosteal insertions. However, the mechanism behind the development of fibrous entheses and periosteal insertions remains unclear. Since both entheses are part of the temporomandibular joint (TMJ), this study analyzes the TMJ entheses. Here, we show that SOX9 expression is negatively regulated during TMJ enthesis development, unlike fibrocartilage entheses which are modularly formed by SCX and SOX9 positive progenitors. The TMJ entheses was adjacent to the intramembranous bone rather than cartilage. SOX9 expression was diminished during TMJ enthesis development. To clarify the functional role of Sox9 in the development of TMJ entheses, we examined these structures in TMJ using Wnt1Cre;Sox9flox/+ reporter mice. Wnt1Cre;Sox9flox/+ mice showed enthesial deformation at the TMJ. Next, we also observed a diminished SOX9 expression area at the enthesis in contact with the clavicle's membranous bone portion, similar to the TMJ entheses. Together, these findings reveal that the timing of SOX9 expression varies with the ossification development mode.


Assuntos
Osteogênese , Fatores de Transcrição SOX9 , Articulação Temporomandibular , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Animais , Camundongos , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/crescimento & desenvolvimento , Osteogênese/genética , Regulação para Baixo , Fibrocartilagem/metabolismo , Camundongos Transgênicos
7.
Int J Oral Sci ; 16(1): 36, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730256

RESUMO

N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.


Assuntos
Antígeno B7-H1 , Vírus Oncolíticos , Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Adenosina/análogos & derivados , Regulação para Baixo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Terapia Viral Oncolítica/métodos , PTEN Fosfo-Hidrolase , Camundongos Knockout , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Simplexvirus , Linhagem Celular Tumoral
8.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730387

RESUMO

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Assuntos
Bleomicina , Regulação para Baixo , Morfinanos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Animais , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteína Smad3/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células A549 , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731935

RESUMO

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia , Linfoma , Mitocôndrias , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citostáticos/farmacologia , Antineoplásicos/farmacologia
10.
J Ovarian Res ; 17(1): 102, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745302

RESUMO

Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.


Assuntos
Cisplatino , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Neoplasias Ovarianas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Proteínas de Ligação a RNA , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
11.
J Biochem Mol Toxicol ; 38(5): e23715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704830

RESUMO

Long noncoding RNA MIR17HG was involved with the progression of non-small-cell lung cancer (NSCLC), but specific mechanisms of MIR17HG-mediated immune escape of NSCLC cells were still unknown. The present study investigated the function of MIR17HG on regulatory T cell (Treg)-mediated immune escape and the underlying mechanisms in NSCLC. Expression of MIR17HG and miR-17-5p in NSCLC tissue samples were detected using quantitative real-time PCR (qRT-PCR). A549 and H1299 cells were transfected with sh-MIR17HG, miR-17-5p inhibitor, or sh-MIR17HG + miR-17-5p inhibitor, followed by cocultured with Tregs. Cell proliferation was measured using 5-ethynyl-20-deoxyuridine (Edu) staining assay and cell counting kit-8 (CCK-8) assay. Flow cytometry was used for determining positive numbers of FOXP3+CD4+/CD25+/CD8+ Tregs. Through subcutaneous injection with transfected A549 cells, a xenograft nude mouse model was established. Weights and volumes of xenograft tumors were evaluated. Additionally, the expressions of immune-related factors including transforming growth factor beta (TGF-ß), vascular endothelial growth factor A (VEGF-A), interleukin-10 (IL-10), IL-4, and interferon-gamma (IFN-γ) in cultured cells, were evaluated by enzyme-linked immunosorbent assay and western blot analysis. Then, miR-17-5p was decreased and MIR17HG was enhanced in both NSCLC tissues and cell lines. MIR17HG knockdown significantly suppressed cell proliferation, tumorigenicity, and immune capacity of Tregs in A549 and H1299 cells, whereas sh-MIR17HG significantly reduced expression levels of VEGF-A, TGF-ß, IL-4, and IL-10 but promoted the IFN-γ level in vitro and in vivo. Moreover, downregulation of miR-17-5p significantly reversed the effects of sh-MIR17HG. Additionally, we identified that runt- related transcription factor 3 (RUNX3) was a target of miR-17-5p, and sh-MIR17HG and miR-17-5p mimics downregulated RUNX3 expression. In conclusion, downregulation of MIR17HG suppresses tumorigenicity and Treg-mediated immune escape in NSCLC through downregulating the miR-17-5p/RUNX3 axis, indicating that this axis contains potential biomarkers for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Subunidade alfa 3 de Fator de Ligação ao Core , Regulação para Baixo , Neoplasias Pulmonares , Camundongos Nus , MicroRNAs , RNA Longo não Codificante , Linfócitos T Reguladores , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , MicroRNAs/genética , Linfócitos T Reguladores/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , RNA Longo não Codificante/genética , Camundongos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Evasão Tumoral , Células A549 , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Feminino , Proliferação de Células
12.
Commun Biol ; 7(1): 545, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714724

RESUMO

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Circular , Fatores de Transcrição SOX9 , Neoplasias Gástricas , Fator de Transcrição 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , beta Catenina/metabolismo , beta Catenina/genética , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Masculino , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
13.
J Exp Clin Cancer Res ; 43(1): 133, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698462

RESUMO

BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos , Animais , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Regulação para Baixo , Masculino , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Modelos Animais de Doenças
14.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747699

RESUMO

Nasopharyngeal carcinoma (NPC) carcinogenesis and malignant transformation are intimately associated with Epstein-Barr virus (EBV) infection. A zinc-fingered transcription factor known as Krüppel-like factor 5 (KLF5) has been shown to be aberrantly expressed in a number of cancer types. However, little is known about the regulatory pathways and roles of KLF5 in EBV-positive NPC. Our study found that KLF5 expression was significantly lower in EBV-positive NPC than in EBV-negative NPC. Further investigation revealed that EBER1, which is encoded by EBV, down-regulates KLF5 via the extracellular signal-regulated kinase (ERK) signalling pathway. This down-regulation of KLF5 by EBER1 contributes to maintaining latent EBV infection in NPC. Furthermore, we uncovered the biological roles of KLF5 in NPC cells. Specifically, KLF5 may influence the cell cycle, prevent apoptosis, and encourage cell migration and proliferation - all of which have a generally pro-cancer impact. In conclusion, these findings offer novel strategies for EBV-positive NPC patients' antitumour treatment.


Assuntos
Regulação para Baixo , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Fatores de Transcrição Kruppel-Like , Sistema de Sinalização das MAP Quinases , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Neoplasias Nasofaríngeas/virologia , Neoplasias Nasofaríngeas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Apoptose , Latência Viral
15.
Cancer Rep (Hoboken) ; 7(5): e2064, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711262

RESUMO

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed female cancer. Homeobox protein MEIS2, a key transcription factor, is involved in the regulation of many developmental and cellular processes. However, the role of MEIS2 in the development of breast cancer is still unclear. AIMS: We aimed to examine the role of myeloid ecotropic insertion site (MEIS2) in breast cancer and the association of MEIS2 with breast cancer clinical stages and pathological grades. We revealed the underlying mechanism by which MEIS2 affected breast cancer cell growth and tumor development. METHODS AND RESULTS: Using human BC cell lines, clinical samples and animal xenograft model, we reveal that MEIS2 functions as a tumor suppressor in breast cancer. The expression of MEIS2 is inversely correlated with BC clinical stages and pathological grades. MEIS2 knockdown (MEIS2-KD) promotes while MEIS2 overexpression suppresses breast cancer cell proliferation and tumor development in vitro and in animal xenograft models, respectively. To determine the biological function of MEIS2, we screen the expression of a group of MEIS2 potential targeting genes in stable-established cell lines. Results show that the knockdown of MEIS2 in breast cancer cells up-regulates the IL10 expression, but MEIS2 overexpression opposed the effect on IL10 expression. Furthermore, the suppressive role of MEIS2 in breast cancer cell proliferation is associated with the IL10 expression and myeloid cells infiltration. CONCLUSION: Our study demonstrates that the tumor suppressor of MEIS2 in breast cancer progression is partially via down regulating the expression of IL10 and promoting myeloid cells infiltration. Targeting MEIS2 would be a potentially therapeutic avenue for BC.


Assuntos
Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Interleucina-10 , Fatores de Transcrição , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Interleucina-10/metabolismo , Interleucina-10/genética , Linhagem Celular Tumoral , Regulação para Baixo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
16.
PLoS One ; 19(5): e0302780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713738

RESUMO

Reticulocalbin 1 (RCN1) is a calcium-binding protein involved in the regulation of calcium homeostasis in the endoplasmic reticulum. The aim of this study was to explore the clinical value and biological role of RCN1 in esophageal squamous cell carcinoma (ESCC). In addition, we investigated the effect of RCN1 on the polarization of tumor-associated macrophages (TAMs). The GSE53625 dataset from the Gene Expression Omnibus database was used to analyze the expression of RCN1 mRNA and its relationship with clinical value and immune cell infiltration. Immunohistochemistry was used to validate the expression of RCN1 and its correlation with clinicopathological characteristics. Subsequently, transwell and cell scratch assays were conducted to evaluate the migration and invasion abilities of ESCC cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot, while apoptosis was detected by flow cytometry and western blot. Additionally, qRT‒PCR was utilized to evaluate the role of RCN1 in macrophage polarization. RCN1 was significantly upregulated in ESCC tissues and was closely associated with lymphatic metastasis and a poor prognosis, and was an independent prognostic factor for ESCC in patients. Knockdown of RCN1 significantly inhibited the migration, invasion, and EMT of ESCC cells, and promoted cell apoptosis. In addition, RCN1 downregulation inhibited M2 polarization. RCN1 is upregulated in ESCC patients and is negatively correlated with patient prognosis. Knocking down RCN1 inhibits ESCC progression and M2 polarization. RCN1 can serve as a potential diagnostic and prognostic indicator for ESCC, and targeting RCN1 is a very promising therapeutic strategy.


Assuntos
Proteínas de Ligação ao Cálcio , Regulação para Baixo , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Feminino , Masculino , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Movimento Celular/genética , Progressão da Doença , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Apoptose , Prognóstico , Macrófagos/metabolismo
17.
Anal Cell Pathol (Amst) ; 2024: 8972022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715918

RESUMO

Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.


Assuntos
Regulação para Baixo , Fenótipo , Pré-Eclâmpsia , RNA Longo não Codificante , Fatores de Transcrição da Família Snail , Trofoblastos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Trofoblastos/metabolismo , Trofoblastos/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Regulação para Baixo/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Proliferação de Células/genética , Movimento Celular/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Adulto
18.
PLoS One ; 19(5): e0302906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718039

RESUMO

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Assuntos
Cartilagem Articular , Condrócitos , Interleucina-1beta , NF-kappa B , Osteoartrite , Extratos Vegetais , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Ratos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Extratos Vegetais/farmacologia , Prunus/química , Ratos Sprague-Dawley , Regulação para Baixo/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Colágeno Tipo II/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Frutas/química , Agrecanas/metabolismo , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Células Cultivadas , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
19.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727158

RESUMO

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Assuntos
Regulação para Baixo , Inflamação , Mercúrio , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mercúrio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Células HEK293 , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/sangue
20.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727866

RESUMO

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Assuntos
Vírus da Influenza A , Replicação Viral , Humanos , Replicação Viral/genética , Células HEK293 , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Células HeLa , Regulação para Baixo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ligação Proteica , Mitocôndrias/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA