Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Stroke ; 53(1): 249-259, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905942

RESUMO

BACKGROUND AND PURPOSE: Circadian rhythms influence the extent of brain injury following subarachnoid hemorrhage (SAH), but the mechanism is unknown. We hypothesized that cerebrovascular myogenic reactivity is rhythmic and explains the circadian variation in SAH-induced injury. METHODS: SAH was modeled in mice with prechiasmatic blood injection. Inducible, smooth muscle cell-specific Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1) gene deletion (smooth muscle-specific Bmal1 1 knockout [sm-Bmal1 KO]) disrupted circadian rhythms within the cerebral microcirculation. Olfactory cerebral resistance arteries were functionally assessed by pressure myography in vitro; these functional assessments were related to polymerase chain reaction/Western blot data, brain histology (Fluoro-Jade/activated caspase-3), and neurobehavioral assessments (modified Garcia scores). RESULTS: Cerebrovascular myogenic vasoconstriction is rhythmic, with a peak and trough at Zeitgeber times 23 and 11 (ZT23 and ZT11), respectively. Histological and neurobehavioral assessments demonstrate that higher injury levels occur when SAH is induced at ZT23, compared with ZT11. In sm-Bmal1 KO mice, myogenic reactivity is not rhythmic. Interestingly, myogenic tone is higher at ZT11 versus ZT23 in sm-Bmal1 KO mice; accordingly, SAH-induced injury in sm-Bmal1 KO mice is more severe when SAH is induced at ZT11 compared to ZT23. We examined several myogenic signaling components and found that CFTR (cystic fibrosis transmembrane conductance regulator) expression is rhythmic in cerebral arteries. Pharmacologically stabilizing CFTR expression in vivo (3 mg/kg lumacaftor for 2 days) eliminates the rhythmicity in myogenic reactivity and abolishes the circadian variation in SAH-induced neurological injury. CONCLUSIONS: Cerebrovascular myogenic reactivity is rhythmic. The level of myogenic tone at the time of SAH ictus is a key factor influencing the extent of injury. Circadian oscillations in cerebrovascular CFTR expression appear to underlie the cerebrovascular myogenic reactivity rhythm.


Assuntos
Artérias Cerebrais/metabolismo , Ritmo Circadiano/fisiologia , Microvasos/metabolismo , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/fisiopatologia , Animais , Artérias Cerebrais/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hemorragia Subaracnóidea/genética
2.
Physiol Rep ; 9(17): e15023, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34514718

RESUMO

Loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) causes cystic fibrosis (CF). In the lungs, this manifests as immune cell infiltration and bacterial infections, leading to tissue destruction. Previous work has determined that acute bacterial sphingomyelinase (SMase) decreases CFTR function in bronchial epithelial cells from individuals without CF (nHBEs) and with CF (cfHBEs, homozygous ΔF508-CFTR mutation). This study focuses on exploring the mechanisms underlying this effect. SMase increased the abundance of dihydroceramides, a result mimicked by blockade of ceramidase enzyme using ceranib-1, which also decreased CFTR function. The SMase-mediated inhibitory mechanism did not involve the reduction of cellular CFTR abundance or removal of CFTR from the apical surface, nor did it involve the activation of 5' adenosine monophosphate-activated protein kinase. In order to determine the pathological relevance of these sphingolipid imbalances, we evaluated the sphingolipid profiles of cfHBEs and cfHNEs (nasal) as compared to non-CF controls. Sphingomyelins, ceramides, and dihydroceramides were largely increased in CF cells. Correction of ΔF508-CFTR trafficking with VX445 + VX661 decreased some sphingomyelins and all ceramides, but exacerbated increases in dihydroceramides. Additional treatment with the CFTR potentiator VX770 did not affect these changes, suggesting rescue of misfolded CFTR was sufficient. We furthermore determined that cfHBEs express more acid-SMase protein than nHBEs. Lastly, we determined that airway-like neutrophils, which are increased in the CF lung, secrete acid-SMase. Identifying the mechanism of SMase-mediated inhibition of CFTR will be important, given the imbalance of sphingolipids in CF cells and the secretion of acid-SMase from cell types relevant to CF.


Assuntos
Fenômenos Biomecânicos/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Fibrose Cística/metabolismo , Mucosa Respiratória/metabolismo , Esfingomielina Fosfodiesterase/biossíntese , Migração Transendotelial e Transepitelial/fisiologia , Células Cultivadas , Fibrose Cística/patologia , Humanos , Lipidômica/métodos , Mucosa Respiratória/patologia
3.
Nat Med ; 27(5): 806-814, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958799

RESUMO

Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/citologia , Pulmão/patologia , Mucosa Respiratória/patologia , Diferenciação Celular/genética , Cílios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Análise de Célula Única/métodos , Transcriptoma/genética
4.
Int J Mol Sci ; 22(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916525

RESUMO

The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, ß and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.


Assuntos
Metilação de DNA , Canais Epiteliais de Sódio/biossíntese , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Humanos
5.
J Mol Biol ; 433(13): 166955, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33771570

RESUMO

ABC transporters transport a wealth of molecules across membranes and consist of transmembrane and cytosolic domains. Their activity cycle involves a tightly regulated and concerted domain choreography. Regulation is driven by the cytosolic domains and function by the transmembrane domains. Folding of these polytopic multidomain proteins to their functional state is a challenge for cells, which is mitigated by co-translational and sequential events. We here reveal the first stages of co-translational domain folding and assembly of CFTR, the ABC transporter defective in the most abundant rare inherited disease cystic fibrosis. We have combined biosynthetic radiolabeling with protease-susceptibility assays and domain-specific antibodies. The most N-terminal domain, TMD1 (transmembrane domain 1), folds both its hydrophobic and soluble helices during translation: the transmembrane helices pack tightly and the cytosolic N- and C-termini assemble with the first cytosolic helical loop ICL1, leaving only ICL2 exposed. This N-C-ICL1 assembly is strengthened by two independent events: (i) assembly of ICL1 with the N-terminal subdomain of the next domain, cytosolic NBD1 (nucleotide-binding domain 1); and (ii) in the presence of corrector drug VX-809, which rescues cell-surface expression of a range of disease-causing CFTR mutants. Both lead to increased shielding of the CFTR N-terminus, and their additivity implies different modes of action. Early assembly of NBD1 and TMD1 is essential for CFTR folding and positions both domains for the required assembly with TMD2. Altogether, we have gained insights into this first, nucleating, VX-809-enhanced domain-assembly event during and immediately after CFTR translation, involving structures conserved in type-I ABC exporters.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citosol/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Evolução Molecular , Genes Supressores , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Domínios Proteicos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína
6.
Neurotoxicology ; 84: 14-29, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571554

RESUMO

Due to limitations in early diagnosis and treatments of Parkinson's disease (PD), it is necessary to explore the neuropathological changes that occur early in PD progression and to design neuroprotective therapies to prevent or delay the ongoing degeneration process. Metabotropic glutamate receptor 5 (mGlu5) has shown both diagnostic and therapeutic potential in preclinical studies on PD. Clinical trials using mGlu5 negative allosteric modulators to treat PD have, however, raised limitations about the neuroprotective role of mGlu5. It is likely that mGlu5 has different regulatory roles in different stages of PD. Here, we investigated a protective role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in the progression of PD by differential regulation of mGlu5 expression and activity to protect against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Following treatment with 6-OHDA, mGlu5 and CAL expressions were elevated in the early stage and reduced in the late stage, both in vitro and in vivo. Activation of mGlu5 in the early stage by (RS)-2-chloro-5-hydroxyphenylglycine, or blocking mGlu5 in the late stage by 2-methyl-6-(phenylethynyl) pyridine, increased cell survival and inhibited apoptosis, but these effects were significantly weakened by knockdown of CAL. CAL alleviated 6-OHDA-induced neurotoxicity by regulating mGlu5-mediated signaling pathways, thereby maintaining the physiological function of mGlu5 in different disease stages. In PD rat model, CAL deficiency aggravated 6-OHDA toxicity on dopaminergic neurons and increased motor dysfunction because of lack of regulation of mGlu5 activity. These data reveal a potential mechanism by which CAL specifically regulates the opposite activity of mGlu5 in progression of PD to protect against neurotoxicity, suggesting that CAL is a favorable endogenous target for the treatment of PD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Receptor de Glutamato Metabotrópico 5/biossíntese , Animais , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ligantes , Masculino , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/prevenção & controle , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
7.
FEBS Lett ; 594(23): 3986-4000, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125703

RESUMO

Post-transcriptional regulation of ATP-binding cassette (ABC) proteins has been so far shown to encompass protein phosphorylation, maturation, and ubiquitination. Yet, recent accumulating evidence implicates FK506-binding proteins (FKBPs), a type of peptidylprolyl cis-trans isomerase (PPIase) proteins, in ABC transporter regulation. In this perspective article, we summarize current knowledge on ABC transporter regulation by FKBPs, which seems to be conserved over kingdoms and ABC subfamilies. We uncover striking functional similarities but also differences between regulatory FKBP-ABC modules in plants and mammals. We dissect a PPIase- and HSP90-dependent and independent impact of FKBPs on ABC biogenesis and transport activity. We propose and discuss a putative new mode of transient ABC transporter regulation by cis-trans isomerization of X-prolyl bonds.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/classificação , Animais , Transporte Biológico , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imunofilinas/metabolismo , Modelos Moleculares , Prolina/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
8.
Sci Adv ; 6(8): eaax9914, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128399

RESUMO

The most prevalent pathogenic mutations in the CFTR (ΔF508) and SLC26A4/pendrin (p.H723R), which cause cystic fibrosis and congenital hearing loss, respectively, evoke protein misfolding and subsequent defects in their cell surface trafficking. Here, we report that activation of the IRE1α kinase pathway can rescue the cell surface expression of ΔF508-CFTR and p.H723R-pendrin through a Golgi-independent unconventional protein secretion (UPS) route. In mammalian cells, inhibition of IRE1α kinase, but not inhibition of IRE1α endonuclease and the downstream effector XBP1, inhibited CFTR UPS. Treatment with the IRE1α kinase activator, (E)-2-(2-chlorostyryl)-3,5,6-trimethyl-pyrazine (CSTMP), rescued cell surface expression and functional activity of ΔF508-CFTR and p.H723R-pendrin. Treatment with a nontoxic dose of CSTMP to ΔF508-CFTR mice restored CFTR surface expression and CFTR-mediated anion transport in the mouse colon. These findings suggest that UPS activation via IRE1α kinase is a strategy to treat diseases caused by defective cell surface trafficking of membrane proteins, including ΔF508-CFTR and p.H723R-pendrin.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transportadores de Sulfato/biossíntese , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Dobramento de Proteína , Transporte Proteico , Transportadores de Sulfato/química
9.
Nucleic Acids Res ; 48(7): 3513-3524, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32095812

RESUMO

The CFTR gene lies within an invariant topologically associated domain (TAD) demarcated by CTCF and cohesin, but shows cell-type specific control mechanisms utilizing different cis-regulatory elements (CRE) within the TAD. Within the respiratory epithelium, more than one cell type expresses CFTR and the molecular mechanisms controlling its transcription are likely divergent between them. Here, we determine how two extragenic CREs that are prominent in epithelial cells in the lung, regulate expression of the gene. We showed earlier that these CREs, located at -44 and -35 kb upstream of the promoter, have strong cell-type-selective enhancer function. They are also responsive to inflammatory mediators and to oxidative stress, consistent with a key role in CF lung disease. Here, we use CRISPR/Cas9 technology to remove these CREs from the endogenous locus in human bronchial epithelial cells. Loss of either site extinguished CFTR expression and abolished long-range interactions between these sites and the gene promoter, suggesting non-redundant enhancers. The deletions also greatly reduced promoter interactions with the 5' TAD boundary. We show substantial recruitment of RNAPII to the -35 kb element and identify CEBPß as a key activator of airway expression of CFTR, likely through occupancy at this CRE and the gene promoter.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Elementos Facilitadores Genéticos , Mucosa Respiratória/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Sistemas CRISPR-Cas , Células CACO-2 , Linhagem Celular , Cromatina/química , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Células Epiteliais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Deleção de Sequência , Transativadores/metabolismo
10.
Biomed Res Int ; 2020: 9526289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31998800

RESUMO

Hypertrophic Scars (HTSs) are a complex fibroproliferative disorder, and their exact mechanism is still not fully understood. In this study, we first found that cystic fibrosis transmembrane conductance regulator (CFTR) expression was downregulated in human hypertrophic scars at the RNA and protein levels by microarray data analysis, RT-PCR, and immunofluorescence (IF) staining. To validate that this downregulation of CFTR is involved in the formation of HTSs, we then applied a mechanical overloading intervention in both wild type and CFTR-mutant mice (ΔF508). Our results showed thatΔF508 mice exhibited delayed wound healing and a significantly larger HTS on day 28. Masson staining revealed that there was more collagen deposition in the HTS, and Sirius red staining and IF staining showed a higher ratio of collagen 1/collagen 3 (Col1/Col3) in ΔF508 mice. Real-time RT-PCR showed that the proinflammatory markers were higher in ΔF508 mice in all phases of scar formation, whereas the proliferation marker was similar. Moreover, we harvested the fibroblasts from both mice. Western blotting showed that the expression of Col1 was the same in both mice, and the expression of Col3 was significantly lower in ΔF508 mice. However, in a mechanical overloading condition, the expression of Col1 was significantly higher in ΔF508 mice, and the expression of Col3 was the same in both mice. Taken together, our results indicate that the downregulation of CFTR might affect the function of fibroblasts, resulting in a lower level of collagen type 3 and a higher ratio of Col1/Col3, and thus aggravate the formation of HTSs in mechanical overloading conditions.


Assuntos
Cicatriz Hipertrófica , Regulador de Condutância Transmembrana em Fibrose Cística , Regulação para Baixo , Mutação , Animais , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes
11.
Respir Res ; 20(1): 200, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477092

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a complex disease resulting in respiratory failure and represents the third leading cause of global death. The two classical phenotypes of COPD are chronic bronchitis and emphysema. Owing to similarities between chronic bronchitis and the autosomal-recessive disease Cystic Fibrosis (CF), a significant body of research addresses the hypothesis that dysfunctional CF Transmembrane Conductance Regulator (CFTR) is implicated in the pathogenesis of COPD. Much less attention has been given to emphysema in this context, despite similarities between the two diseases. These include early-onset cellular senescence, similar comorbidities, and the finding that CF patients develop emphysema as they age. To determine a potential role for CFTR dysfunction in the development of emphysema, Cftr+/+ (Wild-type; WT), Cftr+/- (heterozygous), and Cftr-/- (knock-out; KO) mice were aged or exposed to cigarette smoke and analyzed for airspace enlargement. Aged knockout mice demonstrated increased alveolar size compared to age-matched wild-type and heterozygous mice. Furthermore, both heterozygous and knockout mice developed enlarged alveoli compared to their wild-type counterparts following chronic smoke exposure. Taken into consideration with previous findings that cigarette smoke leads to reduced CFTR function, our findings suggest that decreased CFTR expression sensitizes the lung to the effects of cigarette smoke. These findings may caution normally asymptomatic CF carriers against exposure to cigarette smoke; as well as highlight emphysema as a future challenge for CF patients as they continue to live longer. More broadly, our data, along with clinical findings, may implicate CFTR dysfunction in a pathology resembling accelerated aging.


Assuntos
Envelhecimento/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Enfisema Pulmonar/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Envelhecimento/genética , Envelhecimento/patologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Expressão Gênica , Exposição por Inalação/efeitos adversos , Camundongos , Camundongos Knockout , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia
12.
Chest ; 155(3): 605-616, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30359614

RESUMO

Normal cystic fibrosis (CF) transmembrane regulator (CFTR) protein has multiple functions in health and disease. Many mutations in the CFTR gene produce abnormal or absent protein. CFTR protein dysfunction underlies the classic CF phenotype of progressive pulmonary and GI pathology but may underlie diseases not usually associated with CF. This review highlights selected extrapulmonary disease that may be associated with abnormal CFTR. Increasing survival in CF is associated with increasing incidence of diseases associated with aging. CFTR dysfunction in older individuals may have novel effects on glucose metabolism, control of insulin release, regulation of circadian rhythm, and cancer cell pathophysiology. In individuals who have cancers with acquired CFTR suppression, their tumors may more likely exhibit rapid expansion, epithelial-to-mesenchymal transformation, abnormally reduced apoptosis, and increased metastatic potential. The new modulators of CFTR protein synthesis could facilitate the additional exploration needed to better understand the unfolding clinical biology of CFTR in human disease, even as they revolutionize treatment of patients with CF.


Assuntos
Envelhecimento/metabolismo , Ritmo Circadiano/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação
13.
Mol Biol Cell ; 30(1): 4-16, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403549

RESUMO

A pathway for cystic fibrosis transmembrane conductance regulator (CFTR) degradation is initiated by Hsp27, which cooperates with Ubc9 and binds to the common F508del mutant to modify it with SUMO-2/3. These SUMO paralogues form polychains, which are recognized by the ubiquitin ligase, RNF4, for proteosomal degradation. Here, protein array analysis identified the SUMO E3, protein inhibitor of activated STAT 4 (PIAS4), which increased wild-type (WT) and F508del CFTR biogenesis in CFBE airway cells. PIAS4 increased immature CFTR threefold and doubled expression of mature CFTR, detected by biochemical and functional assays. In cycloheximide chase assays, PIAS4 slowed immature F508del degradation threefold and stabilized mature WT CFTR at the plasma membrance. PIAS4 knockdown reduced WT and F508del CFTR expression by 40-50%, suggesting a physiological role in CFTR biogenesis. PIAS4 modified F508del CFTR with SUMO-1 in vivo and reduced its conjugation to SUMO-2/3. These SUMO paralogue-specific effects of PIAS4 were reproduced in vitro using purified F508del nucleotide-binding domain 1 and SUMOylation reaction components. PIAS4 reduced endogenous ubiquitin conjugation to F508del CFTR by ∼50% and blocked the impact of RNF4 on mutant CFTR disposal. These findings indicate that different SUMO paralogues determine the fates of WT and mutant CFTRs, and they suggest that a paralogue switch during biogenesis can direct these proteins to different outcomes: biogenesis versus degradation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Mutantes/biossíntese , Proteínas Mutantes/metabolismo , Proteólise , Homologia de Sequência de Aminoácidos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Brônquios/patologia , Linhagem Celular , Membrana Celular/metabolismo , Fibrose Cística/patologia , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Estabilidade Proteica , Sumoilação , Fatores de Transcrição/metabolismo , Ubiquitinação
14.
PLoS One ; 13(7): e0201464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30059522

RESUMO

Messenger RNA (mRNA) transfection is a developing field that has applications in research and gene therapy. Potentially, mRNA transfection can be mediated efficiently by cell-penetrating peptides (CPPs) as they may be modified to target specific tissues. However, whilst CPPs are well-documented to transfect oligonucleotides and plasmids, mRNA transfection by CPPs has barely been explored. Here we report that peptides, including a truncated form of protamine and the same peptide fused to the CPP Xentry (Xentry-protamine; XP), can transfect mRNAs encoding reporter genes into human cells. Further, this transfection is enhanced by the anti-malarial chloroquine (CQ) and the toll-like receptor antagonist E6446 (6-[3-(pyrrolidin-1-yl)propoxy)-2-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl]benzo[d]oxazole), with E6446 being >5-fold more potent than CQ at enhancing this transfection. Finally, E6446 facilitated the transfection by XP of mRNA encoding the cystic fibrosis transmembrane regulator, the protein mutated in cystic fibrosis. As such, these findings introduce E6446 as a novel transfection enhancer and may be of practical relevance to researchers seeking to improve the mRNA transfection efficiency of their preferred CPP.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Protaminas/farmacologia , RNA Mensageiro/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Transfecção/métodos , Peptídeos Penetradores de Células/química , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Células Hep G2 , Humanos , Células MCF-7 , Protaminas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Cell Death Dis ; 9(2): 191, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415993

RESUMO

Cystic Fibrosis (CF) due to the ΔF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) can be treated with a combination of cysteamine and Epigallocatechin gallate (EGCG). Since ECGC is not a clinically approved drug, we attempted to identify other compounds that might favourably interact with cysteamine to induce autophagy and thus rescuing the function of ΔF508 CFTR as a chloride channel in the plasma membrane. For this, we screened a compound library composed by chemically diverse autophagy inducers for their ability to enhance autophagic flux in the presence of cysteamine. We identified the antiarrhythmic Ca2+ channel blocker amiodarone, as an FDA-approved drug having the property to cooperate with cysteamine to stimulate autophagy in an additive manner. Amiodarone promoted the re-expression of ΔF508 CFTR protein in the plasma membrane of respiratory epithelial cells. Hence, amiodarone might be yet another compound for the etiological therapy of CF in patients bearing the ΔF508 CFTR mutation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Autofagia/efeitos dos fármacos , Brônquios/citologia , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Cisteamina/farmacologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Humanos , Transfecção
16.
Respir Res ; 18(1): 215, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282053

RESUMO

BACKGROUND: In vitro systems of primary cystic fibrosis (CF) airway epithelial cells are an important tool to study molecular and functional features of the native respiratory epithelium. However, undifferentiated CF airway cell cultures grown under submerged conditions do not appropriately represent the physiological situation. A more advanced CF cell culture system based on airway epithelial cells grown at the air-liquid interface (ALI) recapitulates most of the in vivo-like properties but requires the use of invasive sampling methods. In this study, we describe a detailed characterization of fully differentiated primary CF airway epithelial cells obtained by non-invasive nasal brushing of pediatric patients. METHODS: Differentiated cell cultures were evaluated with immunolabelling of markers for ciliated, mucus-secreting and basal cells, and tight junction and CFTR proteins. Epithelial morphology and ultrastructure was examined by histology and transmission electron microscopy. Ciliary beat frequency was investigated by a video-microscopy approach and trans-epithelial electrical resistance was assessed with an epithelial Volt-Ohm meter system. Finally, epithelial permeability was analysed by using a cell layer integrity test and baseline cytokine levels where measured by an enzyme-linked immunosorbent assay. RESULTS: Pediatric CF nasal cultures grown at the ALI showed a differentiation into a pseudostratified epithelium with a mucociliary phenotype. Also, immunofluorescence analysis revealed the presence of ciliated, mucus-secreting and basal cells and tight junctions. CFTR protein expression was observed in CF (F508del/F508del) and healthy cultures and baseline interleukin (IL)-8 and IL-6 release were similar in control and CF ALI cultures. The ciliary beat frequency was 9.67 Hz and the differentiated pediatric CF epithelium was found to be functionally tight. CONCLUSION: In summary, primary pediatric CF nasal epithelial cell cultures grown at the ALI showed full differentiation into ciliated, mucus-producing and basal cells, which adequately reflect the in vivo properties of the human respiratory epithelium.


Assuntos
Fibrose Cística/patologia , Microvilosidades/patologia , Mucosa Nasal/patologia , Mucosa Respiratória/patologia , Adolescente , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Microvilosidades/metabolismo , Mucosa Nasal/metabolismo , Mucosa Respiratória/metabolismo
17.
Expert Opin Pharmacother ; 18(13): 1363-1371, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730885

RESUMO

INTRODUCTION: Cystic fibrosis (CF) is one of the most common genetically-acquired life-limiting conditions worldwide. The underlying defect is dysfunction of the cystic fibrosis transmembrane-conductance regulator (CFTR) which leads to progressive lung disease and other multi-system effects. Around 10% of people with CF have a class I nonsense mutation that leads to production of shortened CFTR due to a premature termination codon (PTC). Areas covered: We discuss the discovery of the small-molecule drug ataluren, which in vitro has been shown to allow read-through of PTCs and facilitate synthesis of full-length protein. We review clinical studies that have been performed involving ataluren in CF. Early-phase short-term cross-over studies showed improvement in nasal potential difference. A follow-up phase III randomised controlled trial did not show a significant difference for the primary outcome of lung function, however a post-hoc analysis suggested possible benefit in patients not receiving tobramycin. A further randomised controlled trial in patients not receiving tobramycin has been reported as showing no benefit but has not yet been published in full peer-reviewed form. Expert opinion: A small-molecule approach to facilitate read-through of PTCs in nonsense mutations makes intuitive sense. However, at present there is no high-quality evidence of clinical efficacy for ataluren in people with CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Oxidiazóis/uso terapêutico , Códon sem Sentido/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Oxidiazóis/administração & dosagem , Oxidiazóis/farmacocinética , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
18.
Tumour Biol ; 39(5): 1010428317699800, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28468577

RESUMO

Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Carcinogênese , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Receptores de Sulfonilureias/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores de Sulfonilureias/genética , Transcriptoma/genética , Neoplasias Pancreáticas
19.
PLoS Genet ; 13(4): e1006715, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28384194

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD do not carry major CFTR mutations. Some patients have a single copy deletion of the solute carrier family 9 isoform 3 (SLC9A3) gene. SLC9A3 is a Na+/H+ exchanger, and depleted Slc9a3 in male mice causes infertility due to the abnormal dilated lumen of the rete testis and efferent ductules. Furthermore, SLC9A3 interacts with CFTR in the pancreatic duct and functions as a genetic modifier of CF. However, SLC9A3 function and its relation to CFTR expression in the male reproductive tract in vivo remain elusive. In the present study, we found that CFTR expression was dramatically decreased in the epididymis and vas deferens of Slc9a3 knockout mice. Adult Slc9a3-/- mice showed not only significantly decreased epididymis and vas deferens weight but also increased testis weight. Furthermore, Slc9a3-/- mice developed obstructive azoospermia because of abnormal abundant secretions and calcification in the lumen of the reproductive tract. Ultrastructural analysis of the epithelium in Slc9a3-/-epididymis and vas deferens displayed disorganized and reduced number of stereocilia and numerous secretory apparatuses. Our data revealed that interdependence between SLC9A3 and CFTR is critical for maintaining a precise microenvironment in the epithelial cytoarchitecture of the male reproductive tract. The Slc9a3-deficient mice with impaired male excurrent ducts in this study provide proof for our clinical findings that some Taiwanese of CBAVD carry SLC9A3 deletion but without major CFTR mutations.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Infertilidade Masculina/genética , Oligospermia/genética , Infecções Respiratórias/genética , Trocadores de Sódio-Hidrogênio/genética , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Mutação , Oligospermia/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Infecções Respiratórias/patologia , Trocador 3 de Sódio-Hidrogênio
20.
Oncotarget ; 8(15): 24437-24448, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445932

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is classified as an anion channel transporter of Cl- and HCO3-. Through interactions with its PDZ domain, CFTR is capable of regulating other proteins, such as protein phosphatase 2A (PP2A). The aberrant expression and mutation of CFTR have been observed in several tumor, but not in philadelphia chromosome-positive(Ph+) acute leukemia, including Ph+ B cell acute lymphoblastic leukemia(Ph+ B-ALL) and chronic myelogenous leukemia blast crisis phases (CML-BC). In this study, we demonstrated the mean expression level of CFTR in Ph+ acute leukemia cells was markedly higher than that in Ph- B-ALL and CML-chronic phase cells. CFTRinh-172, a classic CFTR inhibitor, down-regulated the expression of CFTR, p-BCR-ABL and classical Wnt/ß-catenin signaling in Ph+ acute leukemia cells, while imatinib had no effect on CFTR. Importantly, reduced efficacy of CFTRinh-172 was closely associated with elevated PP2A phosphatase activity. Furthermore, we confirmed an interaction between CFTR and the PP2AA subunit in K562 cells. In addition, we demonstrated CFTR and PP2AA interact in the cytosol, resulting in PP2A complex inactivation and increased degradation of PP2A substrates via the lysosomal/proteasome pathway. In conclusion, our results showed CFTR was highly expressed in Ph+ acute leukemia, which protected and maintained the continuous activation of BCR-ABL and the canonical Wnt/ß-catenin signaling pathway by decreasing PP2A phosphatase activity. According to this working model of the CFTR-PP2A-BCR-ABL axis, targeting the CFTR protein will activate PP2A and may offer a new treatment strategy for Ph+ acute leukemia, especially for patients exhibiting high levels of CFTR expression.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Leucemia Mieloide Aguda/metabolismo , Proteína Fosfatase 2/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Cromossomo Filadélfia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA