Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 107(2): 368504241244666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614461

RESUMO

Bone extracellular matrix (ECM) proteins play a key role in bone formation and regeneration, including structural and regulatory functions. The Phylobone database consists of 255 ECM protein groups from 39 species and can be used to support bone research. Here, we gathered bone ECM proteins from reindeer (Rangifer tarandus), a member of the Cervidae family. The importance of reindeer lies in their ability to regenerate their antlers, in both male and female individuals. Protein sequences were extracted from the National Center for Biotechnology Information's repository and selected by homology searches. We identified 215 proteins and their corresponding functional domains, which are putatively present in the bone ECM of reindeer. Protein sequence alignments have shown a high degree of conservation between R. tarandus and other members of the Cervidae family. This update expands the Phylobone database and shows that it is a useful resource for the preliminary annotation of bone ECM proteins in novel proteomes.


Assuntos
Rena , Humanos , Animais , Feminino , Masculino , Rena/genética , Biotecnologia , Bases de Dados Factuais , Proteínas da Matriz Extracelular
3.
Sci Rep ; 14(1): 4143, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374421

RESUMO

Climate warming at the end of the last glacial period had profound effects on the distribution of cold-adapted species. As their range shifted towards northern latitudes, they were able to colonise previously glaciated areas, including remote Arctic islands. However, there is still uncertainty about the routes and timing of colonisation. At the end of the last ice age, reindeer/caribou (Rangifer tarandus) expanded to the Holarctic region and colonised the archipelagos of Svalbard and Franz Josef Land. Earlier studies have proposed two possible colonisation routes, either from the Eurasian mainland or from Canada via Greenland. Here, we used 174 ancient, historical and modern mitogenomes to reconstruct the phylogeny of reindeer across its whole range and to infer the colonisation route of the Arctic islands. Our data shows a close affinity among Svalbard, Franz Josef Land and Novaya Zemlya reindeer. We also found tentative evidence for positive selection in the mitochondrial gene ND4, which is possibly associated with increased heat production. Our results thus support a colonisation of the Eurasian Arctic archipelagos from the Eurasian mainland and provide some insights into the evolutionary history and adaptation of the species to its High Arctic habitat.


Assuntos
Genoma Mitocondrial , Rena , Animais , Rena/genética , Genoma Mitocondrial/genética , Regiões Árticas , Evolução Biológica , Filogenia
4.
Mol Ecol ; 33(5): e17274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279681

RESUMO

Overharvest can severely reduce the abundance and distribution of a species and thereby impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing issue for Arctic mammals, which due to climate change now also confront one of the fastest changing environments on Earth. The high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus), endemic to Svalbard, experienced a harvest-induced demographic bottleneck that occurred during the 17-20th centuries. Here, we investigate changes in genetic diversity, population structure, and gene-specific differentiation during and after this overharvesting event. Using whole-genome shotgun sequencing, we generated the first ancient and historical nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to 4000 BP) and integrated these data with a large collection of modern genome sequences (n = 90) to infer temporal changes. We show that hunting resulted in major genetic changes and restructuring in reindeer populations. Near-extirpation followed by pronounced genetic drift has altered the allele frequencies of important genes contributing to diverse biological functions. Median heterozygosity was reduced by 26%, while the mitochondrial genetic diversity was reduced only to a limited extent, likely due to already low pre-harvest diversity and a complex post-harvest recolonization process. Such genomic erosion and genetic isolation of populations due to past anthropogenic disturbance will likely play a major role in metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our results from a high-arctic case study therefore emphasize the need to understand the long-term interplay of past, current, and future stressors in wildlife conservation.


Assuntos
Rena , Animais , Rena/genética , Animais Selvagens , Frequência do Gene , Deriva Genética , Svalbard
5.
Sci Rep ; 13(1): 23019, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155192

RESUMO

Domestic reindeer (Rangifer tarandus) play a vital role in the culture and livelihoods of indigenous people across northern Eurasia. These animals are well adapted to harsh environmental conditions, such as extreme cold, limited feed availability and long migration distances. Therefore, understanding the genomics of reindeer is crucial for improving their management, conservation and utilisation. In this study, we have generated a new genome assembly for the Fennoscandian domestic reindeer with high contiguity, making it the most complete reference genome for reindeer to date. The new genome assembly was utilised to explore genetic diversity, population structure and selective sweeps in Eurasian Rangifer tarandus populations which was based on the largest population genomic dataset for reindeer, encompassing 58 individuals from diverse populations. Phylogenetic analyses revealed distinct genetic clusters, with the Finnish wild forest reindeer (Rangifer tarandus fennicus) standing out as a unique subspecies. Divergence time estimates suggested a separation of ~ 52 thousand years ago (Kya) between the northern European Rangifer tarandus fennicus and Rangifer tarandus tarandus. Our study identified four main genetic clusters: Fennoscandian, the eastern/northern Russian and Alaskan group, the Finnish forest reindeer, and the Svalbard reindeer. Furthermore, two independent reindeer domestication processes were inferred, suggesting separate origins for the domestic Fennoscandian and eastern/northern Russian reindeer. Notably, shared genes under selection, including retroviral genes, point towards molecular domestication processes that aided adaptation of this species to diverse environments.


Assuntos
Rena , Humanos , Animais , Rena/genética , Filogenia , Evolução Biológica , Svalbard
6.
Sci Rep ; 13(1): 11992, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491593

RESUMO

The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.


Assuntos
Cervos , Rena , Bovinos , Animais , Cervos/genética , Ruminantes/genética , Cromossomos , Cervo Muntjac/genética , Cromossomo X/genética , Rena/genética
7.
Proc Biol Sci ; 290(1999): 20230538, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37253422

RESUMO

The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.


Assuntos
Ritmo Circadiano , Ruminantes , Termogênese , Animais , Tecido Adiposo Marrom/metabolismo , Cabras , Rena/genética , Ruminantes/genética , Termogênese/genética , Regiões Árticas
8.
BMC Genomics ; 24(1): 142, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959567

RESUMO

BACKGROUND: Genome assembly into chromosomes facilitates several analyses including cytogenetics, genomics and phylogenetics. Despite rapid development in bioinformatics, however, assembly beyond scaffolds remains challenging, especially in species without closely related well-assembled and available reference genomes. So far, four draft genomes of Rangifer tarandus (caribou or reindeer, a circumpolar distributed cervid species) have been published, but none with chromosome-level assembly. This emblematic northern species is of high interest in ecological studies and conservation since most populations are declining. RESULTS: We have designed specific probes based on Oligopaint FISH technology to upgrade the latest published reindeer and caribou chromosome-level genomes. Using this oligonucleotide-based method, we found six mis-assembled scaffolds and physically mapped 68 of the largest scaffolds representing 78% of the most recent R. tarandus genome assembly. Combining physical mapping and comparative genomics, it was possible to document chromosomal evolution among Cervidae and closely related bovids. CONCLUSIONS: Our results provide validation for the current chromosome-level genome assembly as well as resources to use chromosome banding in studies of Rangifer tarandus.


Assuntos
Cervos , Rena , Animais , Rena/genética , Cervos/genética , Genoma , Mapeamento Cromossômico , Cromossomos/genética
9.
Mol Ecol ; 32(8): 1943-1954, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36704858

RESUMO

Current genetic methods of population assessment in conservation biology have been challenged by genome-scale analyses due to their quantitatively novel insights. These analyses include assessments of runs-of-homozygosity (ROH), genomic evolutionary rate profiling (GERP), and mutational load. Here, we aim to elucidate the relationships between these measures using three divergent ungulates: white-tailed deer, caribou, and mountain goat. The white-tailed deer is currently expanding, while caribou are in the midst of a significant decline. Mountain goats remain stable, having suffered a large historical bottleneck. We assessed genome-wide signatures of inbreeding using the inbreeding coefficient F and %ROH (FROH ) and identified evolutionarily constrained regions with GERP. Mutational load was estimated by identifying mutations in highly constrained elements (CEs) and sorting intolerant from tolerant (SIFT) mutations. Our results showed that F and FROH are higher in mountain goats than in caribou and white-tailed deer. Given the extended bottleneck and low Ne of the mountain goat, this supports the idea that the genome-wide effects of demographic change take time to accrue. Similarly, we found that mountain goats possess more highly constrained CEs and the lowest dN/dS values, both of which are indicative of greater purifying selection; this is also reflected by fewer mutations in CEs and deleterious mutations identified by SIFT. In contrast, white-tailed deer presented the highest mutational load with both metrics, in addition to dN/dS, while caribou were intermediate. Our results demonstrate that extended bottlenecks may lead to reduced diversity and increased FROH in ungulates, but not necessarily an increase in mutational load, probably due to the purging of deleterious alleles in small populations.


Assuntos
Cervos , Rena , Animais , Cervos/genética , Rena/genética , Endogamia , Genômica , Homozigoto , Ruminantes , Polimorfismo de Nucleotídeo Único , Demografia , Genótipo
10.
BMC Genomics ; 23(1): 687, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199020

RESUMO

BACKGROUND: Development of large single nucleotide polymorphism (SNP) arrays can make genomic data promptly available for conservation problematic. Medium and high-density panels can be designed with sufficient coverage to offer a genome-wide perspective and the generated genotypes can be used to assess different genetic metrics related to population structure, relatedness, or inbreeding. SNP genotyping could also permit sexing samples with unknown associated metadata as it is often the case when using non-invasive sampling methods favored for endangered species. Genome sequencing of wild species provides the necessary information to design such SNP arrays. We report here the development of a SNP-array for endangered Rangifer tarandus using a multi-platform sequencing approach from animals found in diverse populations representing the entire circumpolar distribution of the species. RESULTS: From a very large comprehensive catalog of SNPs detected over the entire sample set (N = 894), a total of 63,336 SNPs were selected. SNP selection accounted for SNPs evenly distributed across the entire genome (~ every 50Kb) with known minor alleles across populations world-wide. In addition, a subset of SNPs was selected to represent rare and local alleles found in Eastern Canada which could be used for ecotype and population assignments - information urgently needed for conservation planning. In addition, heterozygosity from SNPs located in the X-chromosome and genotyping call-rate of SNPs located into the SRY gene of the Y-chromosome yielded an accurate and robust sexing assessment. All SNPs were validated using a high-throughput SNP-genotyping chip. CONCLUSION: This design is now integrated into the first genome-wide commercially available genotyping platform for Rangifer tarandus. This platform would pave the way to future genomic investigation of populations for this endangered species, including estimation of genetic diversity parameters, population assignments, as well as animal sexing from genetic SNP data for non-invasive samples.


Assuntos
Polimorfismo de Nucleotídeo Único , Rena , Alelos , Animais , Mapeamento Cromossômico , Genótipo , Rena/genética
11.
Genes (Basel) ; 13(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140812

RESUMO

Reindeer are native to harsh northern Eurasian environments which are characterized by long and cold winters, short summers, and limited pasture vegetation. Adipose tissues play a significant role in these animals by modulating energy metabolism, immunity, and reproduction. Here, we have investigated the transcriptome profiles of metacarpal, perirenal, and prescapular adipose tissues in Even reindeer and searched for genes that were differentially expressed in male and female individuals. A total of 15,551 genes were expressed, where the transcriptome profile of metacarpal adipose tissue was found to be distinct from that of perirenal and prescapular adipose tissues. Interestingly, 10 genes, including PRDM9, which is known to have an important role in adaptation and speciation in reindeer, were always upregulated in all three tissues of male reindeer.


Assuntos
Rena , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético/genética , Feminino , Masculino , Rena/genética , Estações do Ano , Transcriptoma/genética
12.
PLoS Genet ; 18(2): e1009974, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143486

RESUMO

Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.


Assuntos
Migração Animal/fisiologia , Genoma/genética , Rena/genética , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Ecossistema , Espécies em Perigo de Extinção/estatística & dados numéricos , Feminino , Genômica/métodos , Haplótipos , América do Norte , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
13.
Transbound Emerg Dis ; 69(4): e20-e31, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34346562

RESUMO

Susceptibility of cervids to Chronic Wasting Disease (CWD), a prion disease, can be modulated by variations in the prion protein gene (PRNP), encoding the cellular prion protein (PrPC ). In prion diseases, PrPC is conformationally converted to pathogenic conformers (PrPSc ), aggregates of which comprise infectious prions. CWD has recently been observed in its contagious form in Norwegian reindeer (Rangifer tarandus) and in novel, potentially sporadic forms, here called 'atypical CWD', in moose (Alces alces) and red deer (Cervus elaphus). To estimate relative susceptibility of different Norwegian cervid species to CWD, their non-synonymous PRNP variants were analyzed. In reindeer, seven PRNP alleles were observed and in red deer and moose two alleles were present, whereas roe deer (Capreolus capreolus) PRNP was monomorphic. One 'archetypal' PRNP allele associated with susceptibility was common to all four cervid species. The distribution of PRNP alleles differed between wild and semi-domesticated reindeer, with alleles associated with a high susceptibility occurring, on average, above 55% in wild reindeer and below 20% in semi-domesticated reindeer. This difference may reflect the diverse origins of the populations and/or selection processes during domestication and breeding. Overall, PRNP genetic data indicate considerable susceptibility to CWD among Norwegian cervids and suggest that PRNP homozygosity may be a risk factor for the atypical CWD observed in moose. The CWD isolates found in the Norwegian cervid species differ from those previously found in Canada and USA. Our study provides an overview of the PRNP genetics in populations exposed to these emerging strains that will provide a basis for understanding these strains' dynamics in relation to PRNP variability.


Assuntos
Cervos , Príons , Rena , Doença de Emaciação Crônica , Animais , Cervos/genética , Noruega/epidemiologia , Proteínas Priônicas/genética , Príons/genética , Rena/genética , Doença de Emaciação Crônica/epidemiologia , Doença de Emaciação Crônica/genética
14.
Commun Biol ; 4(1): 1170, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620965

RESUMO

Reindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.


Assuntos
Adaptação Biológica/genética , Tecido Adiposo/metabolismo , Rena/genética , Transcriptoma , Animais , Regiões Árticas , Finlândia , Rena/metabolismo , Estações do Ano , Sibéria
15.
Mol Ecol ; 30(23): 6121-6143, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34482596

RESUMO

Pleistocene glacial cycles influenced the diversification of high-latitude wildlife species through recurrent periods of range contraction, isolation, divergence, and expansion from refugia and subsequent admixture of refugial populations. We investigate population size changes and the introgressive history of caribou (Rangifer tarandus) in western Canada using 33 whole genome sequences coupled with larger-scale mitochondrial data. We found that a major population expansion of caribou occurred starting around 110,000 years ago (kya), the start of the last glacial period. Additionally, we found effective population sizes of some caribou reaching ~700,000 to 1,000,000 individuals, one of the highest recorded historical effective population sizes for any mammal species thus far. Mitochondrial analyses dated introgression events prior to the LGM dating to 20-30 kya and even more ancient at 60 kya, coinciding with colder periods with extensive ice coverage, further demonstrating the importance of glacial cycles and events prior to the LGM in shaping demographic history. Reconstructing the origins and differential introgressive history has implications for predictions on species responses under climate change. Our results have implications for other whole genome analyses using pairwise sequentially Markovian coalescent (PSMC) analyses, as well as highlighting the need to investigate pre-LGM demographic patterns to fully reconstruct the origin of species diversity, especially for high-latitude species.


Assuntos
Rena , Animais , Mudança Climática , DNA Mitocondrial/genética , Variação Genética , Genoma , Humanos , Filogenia , Densidade Demográfica , Dinâmica Populacional , Rena/genética
16.
Mol Ecol ; 30(7): 1642-1658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565631

RESUMO

Founder populations are of special interest to both evolutionary and conservation biologists, but the detection of genetic signals of selection in these populations is challenging due to their demographic history. Geographically separated founder populations likely to have been subjected to similar selection pressures provide an ideal but rare opportunity to overcome these challenges. Here we take advantage of such a situation generated when small, isolated founder populations of reindeer were established on the island of South Georgia, and using this system we look for empirical evidence of selection overcoming strong genetic drift. We generated a 70 k ddRADseq single nucleotide polymorphism database for the two parallel reindeer founder populations and screened for signatures of soft sweeps. We find evidence for a genomic region under selection shared among the two populations, and support our findings with Wright-Fisher model simulations to assess the power and specificity of interpopulation selection scans-namely Bayescan, OutFLANK, PCadapt and a newly developed scan called Genome Wide Differentiation Scan (GWDS)-in the context of pairwise source-founder comparisons. Our simulations indicate that loci under selection in small founder populations are most probably detected by GWDS, and strengthen the hypothesis that the outlier region represents a true locus under selection. We explore possible, relevant functional roles for genes in linkage with the detected outlier loci.


Assuntos
Genética Populacional , Rena , Animais , Deriva Genética , Ilhas , Polimorfismo de Nucleotídeo Único , Rena/genética , Seleção Genética
17.
Sci Rep ; 11(1): 1990, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479378

RESUMO

The rumen microbiota comprises a community of microorganisms which specialise in the degradation of complex carbohydrates from plant-based feed. These microbes play a highly important role in ruminant nutrition and could also act as sources of industrially useful enzymes. In this study, we performed a metagenomic analysis of samples taken from the ruminal contents of cow (Bos Taurus), sheep (Ovis aries), reindeer (Rangifer tarandus) and red deer (Cervus elaphus). We constructed 391 metagenome-assembled genomes originating from 16 microbial phyla. We compared our genomes to other publically available microbial genomes and found that they contained 279 novel species. We also found significant differences between the microbiota of different ruminant species in terms of the abundance of microbial taxonomies, carbohydrate-active enzyme genes and KEGG orthologs. We present a dataset of rumen-derived genomes which in combination with other publicly-available rumen genomes can be used as a reference dataset in future metagenomic studies.


Assuntos
Bactérias/genética , Microbiota/genética , Rúmen/microbiologia , Ruminantes/genética , Ração Animal , Animais , Bactérias/classificação , Bovinos , Cervos/genética , Cervos/microbiologia , Metagenômica , Rena/genética , Rena/microbiologia , Ruminantes/classificação , Ovinos/genética , Ovinos/microbiologia
18.
Dokl Biol Sci ; 494(1): 255-259, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33083885

RESUMO

This is the first study to show the genetic identity of the Altai-Sayan population of the forest reindeer of the Kuznetsk Alatau (Rangifer tarandus valentinae). The population is characterized by the existence of unique mitochondrial lines, the absence of signs of introgression of domestic rein deer mtDNA, as well as a low level of genetic diversity. In the sample studied, only two nucleotide substitutions (both of them transitions) were revealed, the nucleotide diversity (0.0015 ± 0.00136) was almost ten times lower than in most populations of wild reindeer in Russia and was comparable only with that of some wild reindeer populations of Norway and Svalbard. The haplotype diversity (h) was also relatively low (0.615 ± 0.102).


Assuntos
DNA Mitocondrial/genética , Variação Genética/genética , Rena/genética , Animais , Florestas , Haplótipos/genética , Federação Russa
19.
Mol Ecol ; 29(20): 3830-3840, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810895

RESUMO

Polymorphisms within the prion protein gene (Prnp) are an intrinsic factor that can modulate chronic wasting disease (CWD) pathogenesis in cervids. Although wild European reindeer (Rangifer tarandus tarandus) were infected with CWD, as yet there have been no reports of the disease in North American caribou (R. tarandus spp.). Previous Prnp genotyping studies on approximately 200 caribou revealed single nucleotide polymorphisms (SNPs) at codons 2 (V/M), 129 (G/S), 138 (S/N), 146 (N/n) and 169 (V/M). The impact of these polymorphisms on CWD transmission is mostly unknown, except for codon 138. Reindeer carrying at least one allele encoding for asparagine (138NN or 138SN) are less susceptible to clinical CWD upon infection by natural routes, with the majority of prions limited to extraneural tissues. We sequenced the Prnp coding region of two caribou subspecies (n = 986) from British Columbia, Saskatchewan, Yukon, Nunavut and the Northwest Territories, to identify SNPs and their frequencies. Genotype frequencies at codon 138 differed significantly between barren-ground (R. t. groenlandicus) and woodland (R. t. caribou) caribou when we excluded the Chinchaga herd (p < .05). We also found new variants at codons 153 (Y/F) and 242 (P/L). Our findings show that the 138N allele is rare among caribou in areas with higher risk of contact with CWD-infected species. As both subspecies are classified as Threatened and play significant roles in North American Indigenous culture, history, food security and the economy, determining frequencies of Prnp genotypes associated with susceptibility to CWD is important for future wildlife management measures.


Assuntos
Cervos , Príons , Rena , Doença de Emaciação Crônica , Animais , Colúmbia Britânica , Cervos/genética , Genótipo , Territórios do Noroeste , Nunavut , Proteínas Priônicas/genética , Príons/genética , Rena/genética , Saskatchewan , Doença de Emaciação Crônica/genética
20.
Heredity (Edinb) ; 125(5): 290-303, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32728043

RESUMO

Genes of the major histocompatibility complex (MHC) are involved in acquired immunity in vertebrates. Only a few studies have investigated the fitness consequences of MHC gene diversity in wild populations. Here, we looked at the association between annual survival and body mass and MHC-DRB exon 2 (MHC-DRB) genetic diversity, obtained from high-throughput sequencing, in two declining migratory caribou (Rangifer tarandus) herds. To disentangle the potential direct and general effects of MHC-DRB genetic diversity, we compared different indices of diversity that were either based on DNA-sequence variation or on physicochemical divergence of the translated peptides, thereby covering a gradient of allelic-to-functional diversity. We found that (1) body mass was not related to MHC-DRB diversity or genotype, and (2) adult survival probability was negatively associated with point accepted mutation distance, a corrected distance that considers the likelihood of each amino acid substitution to be accepted by natural selection. In addition, we found no evidence of fluctuating selection over time on MHC-DRB diversity. We concluded that direct effects were involved in the negative relationship between MHC functional diversity and survival, although the mechanism underlying this result remains unclear. A possible explanation could be that individuals with higher MHC diversity suffer higher costs of immunity (immunopathology). Our results suggest that genetic diversity is not always beneficial even in genes that are likely to be strongly shaped by balancing selection.


Assuntos
Migração Animal , Complexo Principal de Histocompatibilidade , Rena , Alelos , Substituição de Aminoácidos , Animais , Peso Corporal , Feminino , Genes MHC da Classe II , Variação Genética , Complexo Principal de Histocompatibilidade/genética , Masculino , Rena/genética , Seleção Genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA