Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.699
Filtrar
1.
Theor Appl Genet ; 137(6): 118, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709404

RESUMO

KEY MESSAGE: Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci. The causal gene for the C locus was previously isolated, but the gene responsible for the I locus has not been identified yet. To identify candidate genes for the I locus, an approximately 7-Mb genomic DNA region harboring the I locus was obtained from onion and bunching onion (A. fistulosum) whole genome sequences using two tightly linked molecular markers. Within this interval, the AcMYB1 gene, known as a positive regulator of anthocyanin production, was identified. No polymorphic sequences were found between white and red AcMYB1 alleles in the 4,860-bp full-length genomic DNA sequences. However, a 4,838-bp LTR-retrotransposon was identified in the white allele, in the 79-bp upstream coding region from the stop codon. The insertion of this LTR-retrotransposon created a premature stop codon, resulting in the replacement of 26 amino acids with seven different residues. A molecular marker was developed based on the insertion of this LTR-retrotransposon to genotype the I locus. A perfect linkage between bulb color phenotypes and marker genotypes was observed among 5,303 individuals of segregating populations. The transcription of AcMYB1 appeared to be normal in both red and white onions, but the transcription of CHS-A, which encodes chalcone synthase and is involved in the first step of the anthocyanin biosynthesis pathway, was inactivated in the white onions. Taken together, an aberrant AcMYB1 protein produced from the mutant allele might be responsible for the dominant white bulb color in onions.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Cebolas , Pigmentação , Cebolas/genética , Pigmentação/genética , Alelos , Fenótipo , Marcadores Genéticos , Retroelementos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cor , Brancos
2.
Nat Commun ; 15(1): 4295, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769327

RESUMO

Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.


Assuntos
Capsaicina , Capsicum , Evolução Molecular , Genoma de Planta , Filogenia , Telômero , Capsicum/genética , Capsicum/metabolismo , Capsaicina/metabolismo , Telômero/genética , Telômero/metabolismo , Frutas/genética , Frutas/metabolismo , Retroelementos/genética , Regulação da Expressão Gênica de Plantas
3.
Sci Rep ; 14(1): 10932, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740892

RESUMO

SINE-VNTR-Alu (SVA) retrotransposons are transposable elements which represent a source of genetic variation. We previously demonstrated that the presence/absence of a human-specific SVA, termed SVA_67, correlated with the progression of Parkinson's disease (PD). In the present study, we demonstrate that SVA_67 acts as expression quantitative trait loci, thereby exhibiting a strong regulatory effect across the genome using whole genome and transcriptomic data from the Parkinson's progression markers initiative cohort. We further show that SVA_67 is polymorphic for its variable number tandem repeat domain which correlates with both regulatory properties in a luciferase reporter gene assay in vitro and differential expression of multiple genes in vivo. Additionally, this variation's utility as a biomarker is reflected in a correlation with a number of PD progression markers. These experiments highlight the plethora of transcriptomic and phenotypic changes associated with SVA_67 polymorphism which should be considered when investigating the missing heritability of neurodegenerative diseases.


Assuntos
Elementos Alu , Progressão da Doença , Repetições Minissatélites , Doença de Parkinson , Polimorfismo Genético , Retroelementos , Doença de Parkinson/genética , Humanos , Repetições Minissatélites/genética , Retroelementos/genética , Elementos Alu/genética , Locos de Características Quantitativas , Biomarcadores , Elementos Nucleotídeos Curtos e Dispersos/genética
4.
Commun Biol ; 7(1): 582, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755427

RESUMO

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Retroelementos , Animais , Retroelementos/genética , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Ilhas de CpG , Masculino
5.
BMC Genomics ; 25(1): 511, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783171

RESUMO

BACKGROUND: Transposable elements (TEs) are mobile DNA sequences that propagate within genomes, occupying a significant portion of eukaryotic genomes and serving as a source of genetic variation and innovation. TEs can impact genome dynamics through their repetitive nature and mobility. Nematodes are incredibly versatile organisms, capable of thriving in a wide range of environments. The plant-parasitic nematodes are able to infect nearly all vascular plants, leading to significant crop losses and management expenses worldwide. It is worth noting that plant parasitism has evolved independently at least three times within this nematode group. Furthermore, the genome size of plant-parasitic nematodes can vary substantially, spanning from 41.5 Mbp to 235 Mbp. To investigate genome size variation and evolution in plant-parasitic nematodes, TE composition, diversity, and evolution were analysed in 26 plant-parasitic nematodes from 9 distinct genera in Clade IV. RESULTS: Interestingly, despite certain species lacking specific types of DNA transposons or retrotransposon superfamilies, they still exhibit a diverse range of TE content. Identification of species-specific TE repertoire in nematode genomes provides a deeper understanding of genome evolution in plant-parasitic nematodes. An intriguing observation is that plant-parasitic nematodes possess extensive DNA transposons and retrotransposon insertions, including recent sightings of LTR/Gypsy and LTR/Pao superfamilies. Among them, the Gypsy superfamilies were found to encode Aspartic proteases in the plant-parasitic nematodes. CONCLUSIONS: The study of the transposable element (TE) composition in plant-parasitic nematodes has yielded insightful discoveries. The findings revealed that certain species exhibit lineage-specific variations in their TE makeup. Discovering the species-specific TE repertoire in nematode genomes is a crucial element in understanding the evolution of genomes in plant-parasitic nematodes. It allows us to gain a deeper insight into the intricate workings of these organisms and their genetic makeup. With this knowledge, we are gaining a fundamental piece in the puzzle of understanding the evolution of these parasites. Moreover, recent transpositions have led to the acquisition of new TE superfamilies, especially Gypsy and Pao retrotransposons, further expanding the diversity of TEs in these nematodes. Significantly, the widely distributed Gypsy superfamily possesses proteases that are exclusively associated with parasitism during nematode-host interactions. These discoveries provide a deeper understanding of the TE landscape within plant-parasitic nematodes.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Variação Genética , Nematoides , Filogenia , Plantas , Animais , Elementos de DNA Transponíveis/genética , Nematoides/genética , Plantas/parasitologia , Plantas/genética , Retroelementos/genética , Tamanho do Genoma
6.
Proc Natl Acad Sci U S A ; 121(15): e2313866121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564639

RESUMO

Transposable element invasions have a profound impact on the evolution of genomes and phenotypes. It is thus an important open question how often such TE invasions occur. To address this question, we utilize the genomes of historical specimens, sampled about 200 y ago. We found that the LTR retrotransposons Blood, Opus, and 412 spread in Drosophila melanogaster in the 19th century. These invasions constitute second waves, as degraded fragments were found for all three TEs. The composition of Opus and 412, but not of Blood, shows a pronounced geographic heterogeneity, likely due to founder effects during the invasions. Finally, we identified species from the Drosophila simulans complex as the likely origin of the TEs. We show that in total, seven TE families invaded D. melanogaster during the last 200y, thereby increasing the genome size by up to 1.2Mbp. We suggest that this high rate of TE invasions was likely triggered by human activity. Based on the analysis of strains and specimens sampled at different times, we provide a detailed timeline of TE invasions, making D. melanogaster the first organism where the invasion history of TEs during the last two centuries could be inferred.


Assuntos
Drosophila melanogaster , Retroelementos , Animais , Humanos , Drosophila melanogaster/genética , Retroelementos/genética , Genoma , Elementos de DNA Transponíveis , Evolução Molecular
7.
Front Immunol ; 15: 1349030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590523

RESUMO

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Assuntos
Doença de Parkinson , Retroelementos , Humanos , Retroelementos/genética , Doença de Parkinson/genética , Dopamina , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Genótipo
8.
Genes (Basel) ; 15(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38674353

RESUMO

The species Passiflora alata, P. cincinnata, and P. edulis have great economic value due to the use of their fruits for human consumption. In this study, we compared the repetitive genome fractions of these three species. The compositions of the repetitive DNA of these three species' genomes were analyzed using clustering and identification of the repetitive sequences with RepeatExplorer. It was found that repetitive DNA content represents 74.70%, 66.86%, and 62.24% of the genome of P. alata, P. edulis, and P. cincinnata, respectively. LTR Ty3/Gypsy retrotransposons represent the highest genome proportions in P. alata and P. edulis, while Ty1/Copia comprises the largest proportion of P. cincinnata genome. Chromosomal mapping by Fluorescent In Situ Hybridization (FISH) showed that LTR retrotransposons have a dispersed distribution along chromosomes. The subtelomeric region of chromosomes is where 145 bp satellite DNA is located, suggesting that these elements may play important roles in genome structure and organization in these species. In this work, we obtained the first global characterization of the composition of repetitive DNA in Passiflora, showing that an increase in genome size is related to an increase in repetitive DNA, which represents an important evolutionary route for these species.


Assuntos
DNA Satélite , Genoma de Planta , Passiflora , Retroelementos , Passiflora/genética , DNA Satélite/genética , Retroelementos/genética , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Mapeamento Cromossômico
9.
Biol Res ; 57(1): 17, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664786

RESUMO

BACKGROUND: Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer. Steamer mRNA levels and gene copy number correlates with DN and can be used as a marker of the disease. So far, the only mollusk where a retrotransposon expression relates to DN is Mya arenaria. On the other hand, it has been reported that the Chilean blue mussel Mytilus chilensis can also suffers DN. Our aim was to identify retrotransposons in Mytilus chilensis and to study their expression levels in the context of disseminated neoplasia. RESULTS: Here we show that 7.1% of individuals collected in August 2018, from two farming areas, presents morphological characteristics described in DN. Using Steamer sequence to interrogate the transcriptome of M. chilensis we found two putative retrotransposons, named Steamer-like elements (MchSLEs). MchSLEs are present in the genome of M. chilensis and MchSLE1 is indeed an LTR-retrotransposon. Neither expression, nor copy number of the reported MchSLEs correlate with DN status but both are expressed at different levels among individual animals. We also report that in cultured M. chilensis haemocytes MchSLEs1 expression can be induced by bromodeoxyuridine. CONCLUSIONS: We conclude that SLEs present in Mytilus chilensis are differentially expressed among individuals and do not correlate with disseminated neoplasia. Treatment of haemocytes with a stressor like bromodeoxyuridine induces expression of MchSLE1 suggesting that in Mytilus chilensis environmental stressors can induce activation of LTR-retrotransposon.


Assuntos
Mytilus , Retroelementos , Animais , Mytilus/genética , Retroelementos/genética , Chile
10.
EBioMedicine ; 103: 105133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677181

RESUMO

BACKGROUND: Endogenous retroelements (EREs), including human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), comprise almost half of the human genome. Our previous studies of the interferome in the gut suggest potential mechanisms regarding how IFNb may drive HIV-1 gut pathogenesis. As ERE activity is suggested to partake in type 1 immune responses and is incredibly sensitive to viral infections, we sought to elucidate underlying interactions between ERE expression and gut dynamics in people living with HIV-1 (PLWH). METHODS: ERE expression profiles from bulk RNA sequencing of colon biopsies and PBMC were compared between a cohort of PLWH not on antiretroviral therapy (ART) and uninfected controls. FINDINGS: 59 EREs were differentially expressed in the colon of PLWH when compared to uninfected controls (padj <0.05 and FC ≤ -1 or ≥ 1) [Wald's Test]. Of these 59, 12 EREs were downregulated in PLWH and 47 were upregulated. Colon expression of the ERE loci LTR19_12p13.31 and L1FLnI_1q23.1s showed significant correlations with certain gut immune cell subset frequencies in the colon. Furthermore L1FLnI_1q23.1s showed a significant upregulation in peripheral blood mononuclear cells (PBMCs) of PLWH when compared to uninfected controls suggesting a common mechanism of differential ERE expression in the colon and PBMC. INTERPRETATION: ERE activity has been largely understudied in genomic characterizations of human pathologies. We show that the activity of certain EREs in the colon of PLWH is deregulated, supporting our hypotheses that their underlying activity could function as (bio)markers and potential mediators of pathogenesis in HIV-1 reservoirs. FUNDING: US NIH grants NCI CA260691 (DFN) and NIAID UM1AI164559 (DFN).


Assuntos
Retrovirus Endógenos , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/genética , HIV-1/genética , Retrovirus Endógenos/genética , Masculino , Feminino , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Adulto , Pessoa de Meia-Idade , Colo/metabolismo , Colo/virologia , Colo/patologia , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Microbioma Gastrointestinal
11.
Nucleic Acids Res ; 52(9): 5166-5178, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647072

RESUMO

L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here, we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200 000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single-cell level in vivo.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Camundongos Endogâmicos C57BL , Animais , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Linhagem Celular Tumoral , Feminino , Retroelementos/genética , Análise de Sequência de DNA/métodos , Humanos , Sequenciamento por Nanoporos/métodos , Genoma/genética
12.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655654

RESUMO

Foxg1 masters telencephalic development via a pleiotropic control over its progression. Expressed within the central nervous system (CNS), L1 retrotransposons are implicated in progression of its histogenesis and tuning of its genomic plasticity. Foxg1 represses gene transcription, and L1 elements share putative Foxg1-binding motifs, suggesting the former might limit telencephalic expression (and activity) of the latter. We tested such a prediction, in vivo as well as in engineered primary neural cultures, using loss- and gain-of-function approaches. We found that Foxg1-dependent, transcriptional L1 repression specifically occurs in neopallial neuronogenic progenitors and post-mitotic neurons, where it is supported by specific changes in the L1 epigenetic landscape. Unexpectedly, we discovered that Foxg1 physically interacts with L1-mRNA and positively regulates neonatal neopallium L1-DNA content, antagonizing the retrotranscription-suppressing activity exerted by Mov10 and Ddx39a helicases. To the best of our knowledge, Foxg1 represents the first CNS patterning gene acting as a bimodal retrotransposon modulator, limiting transcription of L1 elements and promoting their amplification, within a specific domain of the developing mouse brain.


Assuntos
Fatores de Transcrição Forkhead , Regulação da Expressão Gênica no Desenvolvimento , Neocórtex , Proteínas do Tecido Nervoso , RNA Mensageiro , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Neocórtex/metabolismo , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Retroelementos/genética , DNA/metabolismo , DNA/genética , Neurônios/metabolismo
13.
Viruses ; 16(3)2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543768

RESUMO

LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.


Assuntos
Sítios Internos de Entrada Ribossomal , Mytilus , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Retroelementos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Regiões 5' não Traduzidas , Mytilus/genética , Mytilus/metabolismo , Biossíntese de Proteínas
14.
Genome Res ; 34(2): 161-178, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485193

RESUMO

Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.


Assuntos
Centrômero , Retroelementos , Animais , Retroelementos/genética , Centrômero/genética , Cinetocoros , Plantas/genética , Sequências de Repetição em Tandem
15.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470914

RESUMO

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Assuntos
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , RNA Interferente Pequeno , Variações do Número de Cópias de DNA , Sequências Repetidas Terminais/genética , Filogenia , Evolução Molecular
16.
Cell Rep ; 43(3): 113775, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38381606

RESUMO

In mammals, many retrotransposons are de-repressed during zygotic genome activation (ZGA). However, their functions in early development remain elusive largely due to the challenge to simultaneously manipulate thousands of retrotransposon insertions in embryos. Here, we applied CRISPR interference (CRISPRi) to perturb the long terminal repeat (LTR) MT2_Mm, a well-known ZGA and totipotency marker that exists in ∼2,667 insertions throughout the mouse genome. CRISPRi robustly perturbed 2,485 (∼93%) MT2_Mm insertions and 1,090 (∼55%) insertions of the closely related MT2C_Mm in 2-cell embryos. Remarkably, such perturbation caused downregulation of hundreds of ZGA genes and embryonic arrest mostly at the morula stage. Mechanistically, MT2 LTRs are globally enriched for open chromatin and H3K27ac and function as promoters/enhancers downstream of OBOX/DUX proteins. Thus, we not only provide direct evidence to support the functional importance of MT2 activation in development but also systematically define cis-regulatory function of MT2 in embryos by integrating functional perturbation and multi-omic analyses.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Zigoto , Camundongos , Animais , Zigoto/metabolismo , Cromatina/metabolismo , Retroviridae , Retroelementos/genética , Sequências Repetidas Terminais/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética
17.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364788

RESUMO

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Assuntos
Bainha de Mielina , Retroelementos , Animais , Expressão Gênica , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Retroelementos/genética , RNA/metabolismo , Peixe-Zebra/genética , Anuros
18.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339043

RESUMO

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Retroelementos/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo
19.
Sci Rep ; 14(1): 4322, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383551

RESUMO

Long interspersed nuclear elements (LINE-1s/L1s) are a group of retrotransposons that can copy themselves within a genome. In humans, it is the most successful transposon in nucleotide content. L1 expression is generally mild in normal human tissues, but the activity has been shown to increase significantly in many cancers. Few studies have examined L1 expression at single-cell resolution, thus it is undetermined whether L1 reactivation occurs solely in malignant cells within tumors. One of the cancer types with frequent L1 activity is high-grade serous ovarian carcinoma (HGSOC). Here, we identified locus-specific L1 expression with 3' single-cell RNA sequencing in pre- and post-chemotherapy HGSOC sample pairs from 11 patients, and in fallopian tube samples from five healthy women. Although L1 expression quantification with the chosen technique was challenging due to the repetitive nature of the element, we found evidence of L1 expression primarily in cancer cells, but also in other cell types, e.g. cancer-associated fibroblasts. The expression levels were similar in samples taken before and after neoadjuvant chemotherapy, indicating that L1 transcriptional activity was unaffected by clinical platinum-taxane treatment. Furthermore, L1 activity was negatively associated with the expression of MYC target genes, a finding that supports earlier literature of MYC being an L1 suppressor.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Tubas Uterinas/metabolismo
20.
Cell Genom ; 4(2): 100498, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38309261

RESUMO

Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.


Assuntos
Metilação de DNA , Retroelementos , Animais , Humanos , Retroelementos/genética , Metilação de DNA/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Fatores de Transcrição/genética , Primatas/genética , Epigênese Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA