Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Virol ; 98(5): e0049324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38578092

RESUMO

CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE: CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.


Assuntos
Linfócitos T CD4-Positivos , Infecções por Herpesviridae , Interferon gama , Células Matadoras Naturais , Receptores de Interferon , Rhadinovirus , Animais , Linfócitos T CD4-Positivos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Células Matadoras Naturais/imunologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Rhadinovirus/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon gama , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/virologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CD11c/metabolismo , Antígeno CD11c/imunologia , Pulmão/imunologia , Pulmão/virologia
2.
Viruses ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062301

RESUMO

Human respiratory syncytial virus (hRSV) infection brings a wide spectrum of clinical outcomes, from a mild cold to severe bronchiolitis or even acute interstitial pneumonia. Among the known factors influencing this clinical diversity, genetic background has often been mentioned. In parallel, recent evidence has also pointed out that an early infectious experience affects heterologous infections severity. Here, we analyzed the importance of these two host-related factors in shaping the immune response in pneumoviral disease. We show that a prior gammaherpesvirus infection improves, in a genetic background-dependent manner, the immune system response against a subsequent lethal dose of pneumovirus primary infection notably by inducing a systematic expansion of the CD8+ bystander cell pool and by modifying the resident alveolar macrophages (AMs) phenotype to induce immediate cyto/chemokinic responses upon pneumovirus exposure, thereby drastically attenuating the host inflammatory response without affecting viral replication. Moreover, we show that these AMs present similar rapid and increased production of neutrophil chemokines both in front of pneumoviral or bacterial challenge, confirming recent studies attributing a critical antibacterial role of primed AMs. These results corroborate other recent studies suggesting that the innate immunity cells are themselves capable of memory, a capacity hitherto reserved for acquired immunity.


Assuntos
Patrimônio Genético , Infecções por Herpesviridae/imunologia , Macrófagos Alveolares/imunologia , Infecções por Pneumovirus/imunologia , Pneumovirus/imunologia , Rhadinovirus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Imunidade Inata , Inflamação/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Infecções Pneumocócicas/imunologia , Pneumovirus/fisiologia , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/patologia , Infecções por Pneumovirus/virologia , Rhadinovirus/fisiologia
3.
J Virol ; 95(14): e0033021, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33910957

RESUMO

A prophylactic vaccine that confers durable protection against human immunodeficiency virus (HIV) would provide a valuable tool to prevent new HIV/AIDS cases. As herpesviruses establish lifelong infections that remain largely subclinical, the use of persistent herpesvirus vectors to deliver HIV antigens may facilitate the induction of long-term anti-HIV immunity. We previously developed recombinant (r) forms of the gamma-herpesvirus rhesus monkey rhadinovirus (rRRV) expressing a replication-incompetent, near-full-length simian immunodeficiency virus (SIVnfl) genome. We recently showed that 8/16 rhesus macaques (RMs) vaccinated with a rDNA/rRRV-SIVnfl regimen were significantly protected against intrarectal (i.r.) challenge with SIVmac239. Here we investigated the longevity of this vaccine-mediated protection. Despite receiving no additional booster immunizations, the protected rDNA/rRRV-SIVnfl vaccinees maintained detectable cellular and humoral anti-SIV immune responses for more than 1.5 years after the rRRV boost. To assess if these responses were still protective, the rDNA/rRRV-SIVnfl vaccinees were subjected to a second round of marginal-dose i.r. SIVmac239 challenges, with eight SIV-naive RMs serving as concurrent controls. After three SIV exposures, 8/8 control animals became infected, compared to 3/8 vaccinees. This difference in SIV acquisition was statistically significant (P = 0.0035). The three vaccinated monkeys that became infected exhibited significantly lower viral loads than those in unvaccinated controls. Collectively, these data illustrate the ability of rDNA/rRRV-SIVnfl vaccination to provide long-term immunity against stringent mucosal challenges with SIVmac239. Future work is needed to identify the critical components of this vaccine-mediated protection and the extent to which it can tolerate sequence mismatches in the challenge virus. IMPORTANCE We report on the long-term follow-up of a group of rhesus macaques (RMs) that received an AIDS vaccine regimen and were subsequently protected against rectal acquisition of simian immunodeficiency virus (SIV) infection. The vaccination regimen employed included a live recombinant herpesvirus vector that establishes persistent infection in RMs. Consistent with the recurrent SIV antigen expression afforded by this herpesvirus vector, vaccinees maintained detectable SIV-specific immune responses for more than 1.5 years after the last vaccination. Importantly, these vaccinated RMs were significantly protected against a second round of rectal SIV exposures performed 1 year after the first SIV challenge phase. These results are relevant for HIV vaccine development because they show the potential of herpesvirus-based vectors to maintain functional antiretroviral immunity without the need for repeated boosting.


Assuntos
Vetores Genéticos , Rhadinovirus/genética , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Animais , Anticorpos Antivirais/imunologia , Feminino , Seguimentos , Imunogenicidade da Vacina , Memória Imunológica , Macaca mulatta , Masculino , Rhadinovirus/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Fatores de Tempo
4.
Ann Clin Transl Neurol ; 8(2): 456-470, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33440071

RESUMO

OBJECTIVE: To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin-specific T cells in their central nervous system (CNS) and periphery. METHODS: Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non-JME conditions were analyzed for the presence of myelin-specific T cells and changes in interleukin 17 (IL-17) and interferon gamma (IFNγ) expression. RESULTS: Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T-cell responses were absent in JME peripheral blood, and in age- and sex-matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. INTERPRETATIONS: JME possesses an immune-mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma-herpesvirus infection.


Assuntos
Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Encefalomielite/diagnóstico por imagem , Encefalomielite/patologia , Bainha de Mielina/imunologia , Linfócitos T/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Desmielinizantes/virologia , Encefalomielite/virologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Feminino , Infecções por Herpesviridae/imunologia , Interferon gama/análise , Interleucina-17/análise , Macaca fuscata , Masculino , Doenças dos Macacos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/imunologia , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/imunologia , Bainha de Mielina/patologia , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Rhadinovirus/genética , Rhadinovirus/imunologia
5.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491663

RESUMO

The aryl-hydrocarbon receptor (AHR) is an intracellular sensor of aromatic hydrocarbons that sits at the top of various immunomodulatory pathways. Here, we present evidence that AHR plays a role in controlling IL-17 responses and the development of pulmonary fibrosis in response to respiratory pathogens following bone marrow transplant (BMT). Mice infected intranasally with gamma-herpesvirus 68 (γHV-68) following BMT displayed elevated levels of the AHR ligand, kynurenine (kyn), in comparison with control mice. Inhibition or genetic ablation of AHR signaling resulted in a significant decrease in IL-17 expression as well as a reduction in lung pathology. Lung CD103+ DCs expressed AHR following BMT, and treatment of induced CD103+ DCs with kyn resulted in altered cytokine production in response to γHV-68. Interestingly, mice deficient in the kyn-producing enzyme indolamine 2-3 dioxygenase showed no differences in cytokine responses to γHV-68 following BMT; however, isolated pulmonary fibroblasts infected with γHV-68 expressed the kyn-producing enzyme tryptophan dioxygenase (TDO2). Our data indicate that alterations in the production of AHR ligands in response to respiratory pathogens following BMT results in a pro-Th17 phenotype that drives lung pathology. We have further identified the TDO2/AHR axis as a potentially novel form of intercellular communication between fibroblasts and DCs that shapes immune responses to respiratory pathogens.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transplante de Medula Óssea/efeitos adversos , Fibrose Pulmonar/etiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Rhadinovirus/patogenicidade , Triptofano Oxigenase/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Dendríticas/patologia , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Interleucina-17/biossíntese , Cinurenina/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Rhadinovirus/imunologia , Transdução de Sinais , Células Th17/imunologia
6.
PLoS Pathog ; 16(7): e1008701, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735617

RESUMO

Gammaherpesviruses have evolved various strategies to take advantage of host cellular factors or signaling pathways to establish a lifelong latent infection. Like the human gammaherpesvirus Epstein-Barr virus, murine gammaherpesvirus 68 (MHV68) establishes and maintains latency in the memory B cells during infection of laboratory mice. We have previously shown that MHV68 can immortalize fetal liver-derived B cells that induce lymphomas when injected into immunodeficient mice. Here we identify interleukin 16 (IL16) as a most abundantly expressed cytokine in MHV68-immortalized B cells and show that MHV68 infection elevates IL16 expression. IL16 is not important for MHV68 lytic infection but plays a critical role in MHV68 reactivation from latency. IL16 deficiency increases MHV68 lytic gene expression in MHV68-immortalized B cells and enhances reactivation from splenic latency. Correlatively, IL16 deficiency increases the frequency of MHV68-infected plasma cells that can be attributed to enhanced MHV68 reactivation. Furthermore, similar to TPA-mediated lytic replication of Kaposi's sarcoma-associated herpesvirus, IL16 deficiency markedly induces Tyr705 STAT3 de-phosphorylation and elevates p21 expression, which can be counteracted by the tyrosine phosphatase inhibitor orthovanadate. Importantly, orthovanadate strongly blocks MHV68 lytic gene expression mediated by IL16 deficiency. These data demonstrate that virus-induced IL16 does not directly participate in MHV68 lytic replication, but rather inhibits virus reactivation to facilitate latent infection, in part through the STAT3-p21 axis.


Assuntos
Infecções por Herpesviridae/metabolismo , Interleucina-16/metabolismo , Infecções Tumorais por Vírus/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Linfócitos B/virologia , Infecções por Herpesviridae/imunologia , Interleucina-16/imunologia , Linfoma/virologia , Camundongos , Rhadinovirus/imunologia , Rhadinovirus/metabolismo
7.
Immunol Cell Biol ; 98(4): 332-343, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997396

RESUMO

Vaccination against γ-herpesviruses has proved difficult. CD4+ T cells are essential to contain infection, but how best to prime them and whether this can reduce viral loads remain unclear. To address these questions, we used ovalbumin (OVA) as a model antigen, delivering it with murine cytomegalovirus (MCMV) to protect mice against OVA-expressing murine herpesvirus-4 (MuHV-4). Membrane-associated OVA (mOVA) was more effective than soluble OVA, both to prime CD4+ T cells and as an effector target. It was also a better target than an OVA epitope limited to infected cells, suggesting that protective CD4+ T cells recognize infected cell debris rather than infected cells themselves. While MCMV-mOVA protected acutely against MuHV-4-mOVA, long-term protection was incomplete, even when OVA-specific CD8+ T cells and B cells were also primed. Thus, even optimized single-target vaccines may poorly reduce long-term γ-herpesvirus infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Vacinas contra Herpesvirus/imunologia , Imunogenicidade da Vacina/imunologia , Ovalbumina/imunologia , Rhadinovirus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/prevenção & controle , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Rhadinovirus/genética , Fatores de Tempo , Vacinação
8.
J Gen Virol ; 101(4): 420-425, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31985394

RESUMO

The γ-herpesviruses have proved hard to vaccination against, with no convincing protection against long-term latent infection by recombinant viral subunits. In experimental settings, whole-virus vaccines have proved more effective, even when the vaccine virus itself establishes latent infection poorly. The main alternative is replication-deficient virus particles. Here high-dose, replication-deficient murid herpesvirus-4 only protected mice partially against wild-type infection. By contrast, latency-deficient but replication-competent vaccine protected mice strongly, even when delivered non-invasively to the olfactory epithelium. Thus, this approach seems to provide the best chance of a safe and effective γ-herpesvirus vaccine.


Assuntos
Infecções por Herpesviridae/prevenção & controle , Rhadinovirus/imunologia , Vacinas Virais , Animais , Anticorpos Antivirais/sangue , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Proteínas Imediatamente Precoces/genética , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Transativadores/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Vírion/imunologia , Latência Viral/imunologia , Replicação Viral/genética
9.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645449

RESUMO

A replication-competent, recombinant strain of rhesus monkey rhadinovirus (RRV) expressing the Gag protein of SIVmac239 was constructed in the context of a glycoprotein L (gL) deletion mutation. Deletion of gL detargets the virus from Eph family receptors. The ability of this gL-minus Gag recombinant RRV to infect, persist, and elicit immune responses was evaluated after intravenous inoculation of two Mamu-A*01+ RRV-naive rhesus monkeys. Both monkeys responded with an anti-RRV antibody response, and quantitation of RRV DNA in peripheral blood mononuclear cells (PBMC) by real-time PCR revealed levels similar to those in monkeys infected with recombinant gL+ RRV. Comparison of RRV DNA levels in sorted CD3+ versus CD20+ versus CD14+ PBMC subpopulations indicated infection of the CD20+ subpopulation by the gL-minus RRV. This contrasts with results obtained with transformed B cell lines in vitro, in which deletion of gL resulted in markedly reduced infectivity. Over a period of 20 weeks, Gag-specific CD8+ T cell responses were documented by major histocompatibility complex class I (MHC-I) tetramer staining. Vaccine-induced CD8+ T cell responses, which were predominantly directed against the Mamu-A*01-restricted Gag181-189CM9 epitope, could be inhibited by blockade of MHC-I presentation. Our results indicate that gL and the interaction with Eph family receptors are dispensable for the colonization of the B cell compartment following high-dose infection by the intravenous route, which suggests the existence of alternative receptors. Further, gL-minus RRV elicits cellular immune responses that are predominantly canonical in nature.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with a substantial disease burden in sub-Saharan Africa, often in the context of human immunodeficiency virus (HIV) infection. The related rhesus monkey rhadinovirus (RRV) has shown potential as a vector to immunize monkeys with antigens from simian immunodeficiency virus (SIV), the macaque model for HIV. KSHV and RRV engage cellular receptors from the Eph family via the viral gH/gL glycoprotein complex. We have now generated a recombinant RRV that expresses the SIV Gag antigen and does not express gL. This recombinant RRV was infectious by the intravenous route, established persistent infection in the B cell compartment, and elicited strong immune responses to the SIV Gag antigen. These results argue against a role for gL and Eph family receptors in B cell infection by RRV in vivo and have implications for the development of a live-attenuated KSHV vaccine or vaccine vector.


Assuntos
Deleção de Genes , Produtos do Gene gag , Vetores Genéticos , Infecções por Herpesviridae , Rhadinovirus , Vacinas contra a SAIDS , Vírus da Imunodeficiência Símia , Animais , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Humanos , Macaca mulatta , Rhadinovirus/genética , Rhadinovirus/imunologia , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
10.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597758

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the majority of adults worldwide. Chronic gammaherpesvirus infection has been implicated in both lymphomagenesis and, somewhat controversially, autoimmune disease development. Pathogenesis is largely associated with the unique ability of gammaherpesviruses to usurp B cell differentiation, specifically, the germinal center response, to establish long-term latency in memory B cells. The host tyrosine phosphatase SHP1 is known as a brake on immune cell activation and is downregulated in several gammaherpesvirus-driven malignancies. However, here we demonstrate that B cell- but not T cell-intrinsic SHP1 expression supports the gammaherpesvirus-driven germinal center response and the establishment of viral latency. Furthermore, B cell-intrinsic SHP1 deficiency cooperated with gammaherpesvirus infection to increase the levels of double-stranded DNA-reactive antibodies at the peak of viral latency. Thus, in spite of decreased SHP1 levels in gammaherpesvirus-driven B cell lymphomas, B cell-intrinsic SHP1 expression plays a proviral role during the establishment of chronic infection, suggesting that the gammaherpesvirus-SHP1 interaction is more nuanced and is modified by the stage of infection and pathogenesis.IMPORTANCE Gammaherpesviruses establish lifelong infection in a majority of adults worldwide and are associated with a number of malignancies, including B cell lymphomas. These viruses infect naive B cells and manipulate B cell differentiation to achieve a lifelong infection of memory B cells. The germinal center stage of B cell differentiation is important as both an amplifier of the viral latent reservoir and the target of malignant transformation. In this study, we demonstrate that expression of tyrosine phosphatase SHP1, a negative regulator that normally limits the activation and proliferation of hematopoietic cells, enhances the gammaherpesvirus-driven germinal center response and the establishment of chronic infection. The results of this study uncover an intriguing beneficial interaction between gammaherpesviruses that are presumed to profit from B cell activation and a cellular phosphatase that is traditionally perceived to be a negative regulator of the same processes.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Infecções por Herpesviridae/genética , Interações Hospedeiro-Patógeno/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Rhadinovirus/genética , Infecções Tumorais por Vírus/genética , Animais , Anticorpos Antinucleares/biossíntese , Linfócitos B/virologia , Doença Crônica , DNA/genética , DNA/imunologia , Feminino , Centro Germinativo/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Rhadinovirus/imunologia , Rhadinovirus/patogenicidade , Linfócitos T/imunologia , Linfócitos T/virologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Latência Viral/genética , Latência Viral/imunologia
11.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462575

RESUMO

Equine herpesvirus type 1 (EHV-1) outbreaks continue to occur despite widely used vaccination. Therefore, development of EHV-1 vaccines providing improved immunity and protection is ongoing. Here, an open reading frame 2 deletion mutant of the neuropathogenic EHV-1 strain Ab4 (Ab4ΔORF2) was tested as a vaccine candidate. Three groups of horses (n = 8 each) were infected intranasally with Ab4ΔORF2 or the parent Ab4 virus or were kept as noninfected controls. Horses infected with Ab4ΔORF2 had reduced fever and nasal virus shedding compared to those infected with Ab4 but mounted similar adaptive immunity dominated by antibody responses. Nine months after the initial infection, all horses were challenged intranasally with Ab4. Previously noninfected horses (control/Ab4) displayed clinical signs, shed large amounts of virus, and developed cell-associated viremia. In contrast, 5/8 or 3/8 horses previously infected with Ab4ΔORF2 or Ab4, respectively, were fully protected from challenge infection as indicated by the absence of fever, clinical disease, nasal virus shedding, and viremia. All of these outcomes were significantly reduced in the remaining, partially protected 3/8 (Ab4ΔORF2/Ab4) and 5/8 (Ab4/Ab4) horses. Protected horses had EHV-1-specific IgG4/7 antibodies prior to challenge infection, and intranasal antibodies increased rapidly postchallenge. Intranasal inflammatory markers were not detectable in protected horses but quickly increased in control/Ab4 horses during the first week after infection. Overall, our data suggest that preexisting nasal IgG4/7 antibodies neutralize EHV-1, prevent viral entry, and thereby protect from disease, viral shedding, and cell-associated viremia. In conclusion, improved protection from challenge infection emphasizes further evaluation of Ab4ΔORF2 as a vaccine candidate.IMPORTANCE Nasal equine herpesvirus type 1 (EHV-1) shedding is essential for virus transmission during outbreaks. Cell-associated viremia is a prerequisite for the most severe disease outcomes, abortion and equine herpesvirus myeloencephalopathy (EHM). Thus, protection from viremia is considered essential for preventing EHM. Ab4ΔORF2 vaccination prevented EHV-1 challenge virus replication in the upper respiratory tract in fully protected horses. Consequently, these neither shed virus nor developed cell-associated viremia. Protection from virus shedding and viremia during challenge infection in combination with reduced virulence at the time of vaccination emphasizes ORF2 deletion as a promising modification for generating an improved EHV-1 vaccine. During this challenge infection, full protection was linked to preexisting local and systemic EHV-1-specific antibodies combined with rapidly increasing intranasal IgG4/7 antibodies and lack of nasal type I interferon and chemokine induction. These host immune parameters may constitute markers of protection against EHV-1 and be utilized as indicators for improved vaccine development and informed vaccination strategies.


Assuntos
Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 1/imunologia , Vacinas contra Herpesvirus/imunologia , Doenças dos Cavalos/virologia , Administração Intranasal/métodos , Animais , Anticorpos Antivirais , Feminino , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/metabolismo , Cavalos , Masculino , Mucosa Nasal/virologia , Fases de Leitura Aberta , Rhadinovirus/imunologia , Vacinação/veterinária , Viremia/imunologia , Virulência , Eliminação de Partículas Virais/imunologia
12.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315996

RESUMO

Autosomal dominant STAT1 mutations in humans have been associated with chronic mucocutaneous candidiasis (CMC), as well as with increased susceptibility to herpesvirus infections. Prior studies have focused on mucosal and Th17-mediated immunity against Candida, but mechanisms of impaired antiviral immunity have not previously been examined. To begin to explore the mechanisms of STAT1-associated immunodeficiency against herpesviruses, we generated heterozygous STAT1 R274W knock-in mice that have a frequently reported STAT1 mutation associated in humans with susceptibility to herpesvirus infections. In primary macrophages and fibroblasts, we found that STAT1 R274W had no appreciable effect on cell-intrinsic immunity against herpes simplex virus 1 (HSV-1) or gammaherpesvirus 68 (γHV68) infection. However, intraperitoneal inoculation of mice with γHV68 was associated with impaired control of infection at day 14 in STAT1 R274W mice compared with that in wild-type (WT) littermate control animals. Infection of STAT1 R274W mice was associated with paradoxically decreased expression of IFN-stimulated genes (ISGs) and gamma interferon (IFN-γ), likely secondary to defective CD4+ and CD8+ T cell responses, including diminished numbers of antigen-specific CD8+ T cells. Viral pathogenesis studies in WT and STAT1 R274W mixed bone marrow chimeric mice revealed that the presence of WT leukocytes was sufficient to limit infection and that antigen-specific STAT1 R274W CD8+ T cell responses were impaired even in the presence of WT leukocytes. Thus, in addition to regulating Th17 responses against Candida, a STAT1 gain-of-function mutant impedes antigen-specific T cell responses against a common gammaherpesvirus in mice.IMPORTANCE Mechanisms of immunodeficiency related to STAT1 gain of function have not been previously studied in an animal model of viral pathogenesis. Using virological and immunological techniques, we examined the immune response to γHV68 in heterozygous mice that have an autosomal dominant mutation in the STAT1 coiled-coil domain (STAT1 R274W). We observed impaired control of infection, which was associated with diminished production of gamma interferon (IFN-γ), fewer effector CD4+ and CD8+ T cells, and a reduction in the number of antigen-specific CD8+ T cells. These findings indicate that a STAT1 gain-of-function mutation limits production of antiviral T cells, likely contributing to immunodeficiency against herpesviruses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mutação com Ganho de Função , Infecções por Herpesviridae/imunologia , Mutação de Sentido Incorreto , Rhadinovirus/imunologia , Fator de Transcrição STAT1/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/imunologia , Fibroblastos/virologia , Técnicas de Introdução de Genes , Interferon gama/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Fator de Transcrição STAT1/genética
13.
Eur J Immunol ; 49(2): 351-352, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30488950

RESUMO

We show that latently gammaherpesvirus-infected B cells are present in the thymus. This could result in a functional T-cell tolerance against certain viral epitopes. It is conceivable that also antigens from other viruses or pathogens may be conveyed to the thymus for their immune evasion.


Assuntos
Linfócitos B/imunologia , Infecções por Herpesviridae/imunologia , Evasão da Resposta Imune , Tolerância Imunológica , Rhadinovirus/imunologia , Timo/imunologia , Animais , Linfócitos B/patologia , Infecções por Herpesviridae/patologia , Camundongos , Timo/patologia
14.
Methods Mol Biol ; 1826: 157-182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30194600

RESUMO

Serpins have a wide range of functions in regulation of serine proteases in the thrombotic cascade and in immune responses, representing up to 2-10% of circulating proteins in the blood. Selected serpins also have cross-class inhibitory actions for cysteine proteases in inflammasome and apoptosis pathways. The arterial and venous systems transport blood throughout the mammalian body representing a central site for interactions between coagulation proteases and circulating blood cells (immune cells) and target tissues, a very extensive and complex interaction. While analysis of serpin functions in vitro in kinetics or gel shift assays or in tissue culture provides very necessary information on molecular mechanisms, the penultimate assessment of biological or physiological functions and efficacy for serpins as therapeutics requires study in vivo in whole animal models (some also consider cell culture to be an in vivo approach).Mouse models of arterial transplant with immune rejection as well as models of inflammatory vasculitis induced by infection have been used to study the interplay between the coagulation and immune response pathways. We describe here three in vivo vasculitis models that are used to study the roles of serpins in disease and as therapeutics. The models described include (1) mouse aortic allograft transplantation, (2) human temporal artery (TA) xenograft into immunodeficient mouse aorta, and (3) mouse herpes virus (MHV68)-induced inflammatory vasculitis in interferon-gamma receptor (IFNγR) knockout mice.


Assuntos
Aortite , Arterite , Infecções por Herpesviridae , Rhadinovirus , Serpinas , Aloenxertos , Animais , Aorta/imunologia , Aorta/patologia , Aorta/transplante , Aortite/genética , Aortite/imunologia , Aortite/patologia , Arterite/genética , Arterite/imunologia , Arterite/patologia , Modelos Animais de Doenças , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transplante de Órgãos , Rhadinovirus/genética , Rhadinovirus/imunologia , Serpinas/genética , Serpinas/imunologia , Artérias Temporais/imunologia , Artérias Temporais/patologia , Artérias Temporais/transplante
15.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997213

RESUMO

Like many other large double-stranded DNA (dsDNA) viruses, herpesviruses are known to capture host genes to evade host defenses. Little is known about the detailed natural history of such genes, nor do we fully understand their evolutionary dynamics. A major obstacle is that they are often highly divergent, maintaining very low sequence similarity to host homologs. Here we use the herpesvirus genus Rhadinovirus as a model system to develop an analytical approach that combines complementary evolutionary and bioinformatic techniques, offering results that are both detailed and robust for a range of genes. Using a systematic phylogenetic strategy, we identify the original host lineage of viral genes with high confidence. We show that although host immunomodulatory genes evolve rapidly compared to other host genes, they undergo a clear increase in purifying selection once captured by a virus. To characterize this shift in detail, we developed a novel technique to identify changes in selection pressure that can be attributable to particular domains. These findings will inform us on how viruses develop strategies to evade the immune system, and our synthesis of techniques can be reapplied to other viruses or biological systems with similar analytical challenges.IMPORTANCE Viruses and hosts have been shown to capture genes from one another as part of the evolutionary arms race. Such genes offer a natural experiment on the effects of evolutionary pressure, since the same gene exists in vastly different selective environments. However, sequences of viral homologs often bear little similarity to the original sequence, complicating the reconstruction of their shared evolutionary history with host counterparts. In this study, we use a genus of herpesviruses as a model system to comprehensively investigate the evolution of host-derived viral genes, using a synthesis of genomics, phylogenetics, selection analysis, and nucleotide and amino acid modeling.


Assuntos
Genes Virais/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Interações Hospedeiro-Patógeno , Rhadinovirus/genética , Seleção Genética , Proteínas Virais/genética , Animais , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/imunologia , Atelinae/virologia , Evolução Biológica , Antígenos CD59/química , Antígenos CD59/genética , Antígenos CD59/imunologia , Callithrix/virologia , Quimiocina CCL3/química , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Biologia Computacional , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Modelos Moleculares , Filogenia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Ratos , Rhadinovirus/química , Rhadinovirus/imunologia , Saimiri/virologia , Proteínas Virais/química , Proteínas Virais/imunologia
16.
J Immunol ; 200(8): 2703-2713, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29500240

RESUMO

IL-27 is an immunoregulatory cytokine consisting of p28 and EBI3. Its receptor also has two subunits, WSX1 and gp130. Although IL-27 promotes Th1 differentiation in naive T cells, it also induces IL-10 expression in effector Th1 cells to curtail excessive immune responses. By using p28-deficient mice and WSX1-deficient mice (collectively called IL-27-deficient mice), we examined the role of IL-27 in primary infection by murine γ-herpesvirus 68 (MHV68), a murine model of EBV. Upon airway infection with MHV68, IL-27-deficient mice had more aggravated lung inflammation than wild-type mice, although MHV68 infection per se was better controlled in IL-27-deficient mice. Although epithelial cells and alveolar macrophages were primarily infected by MHV68, interstitial macrophages and dendritic cells were the major producers of IL-27. The lung inflammation of IL-27-deficient mice was characterized by more IFN-γ-producing CD8+ T cells and fewer IL-10-producing CD8+ T cells than that of wild-type mice. An infectious mononucleosis-like disease was also aggravated in IL-27-deficient mice, with prominent splenomegaly and severe hepatitis. Infiltration of IFN-γ-producing effector cells and upregulation of the CXCR3 ligand chemokines CXCL9, CXCL10, and CXCL11 were noted in the liver of MHV68-infected mice. Oral neomycin effectively ameliorated hepatitis, with decreased production of these chemokines in the liver, suggesting that the intestinal microbiota plays a role in liver inflammation through upregulation of these chemokines. Collectively, IL-27 is essential for the generation of IL-10-producing effector cells in primary infection by MHV68. Our findings may also provide new insight into the mechanism of hepatitis associated with infectious mononucleosis.


Assuntos
Interleucinas/imunologia , Hepatopatias/tratamento farmacológico , Neomicina/farmacologia , Pneumonia/imunologia , Pneumonia/virologia , Rhadinovirus/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Quimiocinas/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interferon gama/imunologia , Hepatopatias/imunologia , Hepatopatias/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
17.
Mucosal Immunol ; 11(3): 881-893, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29044226

RESUMO

Idiopathic pneumonia syndrome (IPS) is a common, often fatal, complication following hematopoietic stem cell transplantation (HSCT) characterized by severe pneumonitis and interstitial fibrosis. Fully reconstituted syngeneic bone marrow transplant (BMT) mice infected with murine γ-herpesvirus-68 develop interleukin-17 (IL-17)-driven pneumonitis and fibrosis, which mimics clinical manifestations of IPS. We found CD103+ and CD11b+ dendritic cells (DCs) are selectively deficient for the Notch ligand, DLL4, following BMT and CD4+ T cells isolated from lungs and spleens of infected BMT mice display Notch signaling defects. Mice transplanted with CD4-Cre-driven dominant-negative Notch transcriptional regulator Mastermind-Like (CD4-Cre-DNMAML (CCD) mice) bone marrow displayed elevated IL-17 and transforming growth factor-ß (TGF ß) in the lungs, a further expansion of T-helper type 17 (Th17) cells, and developed more fibrosis than wild-type (WT)-BMT mice. Culture of BMT lung leukocytes with recombinant Notch ligand, DLL4, restored Notch signaling and decreased production of IL-17. Adoptive transfer of CD11c+ DCs could restore Th1 and limit Th17 in WT-BMT but not CCD-BMT mice, indicating that a specific DC/CD4+ T-cell Notch interaction modulates IL-17 production following reconstitution in syngeneic BMT mice. Given recent clinical observations showing that patients with pulmonary complications post-transplant harbor occult herpesvirus infections, these data provide mechanistic insight and suggest potential therapies for these devastating conditions.


Assuntos
Células Dendríticas/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Infecções por Herpesviridae/imunologia , Interleucina-17/metabolismo , Pulmão/patologia , Pneumonia/imunologia , Complicações Pós-Operatórias/imunologia , Rhadinovirus/imunologia , Células Th17/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Fibrose , Infecções por Herpesviridae/etiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/virologia , Ativação Linfocitária , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia/etiologia , Pneumonia/virologia , Complicações Pós-Operatórias/virologia , Receptores Notch/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
18.
Nat Immunol ; 18(12): 1310-1320, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29035391

RESUMO

The hygiene hypothesis postulates that the recent increase in allergic diseases such as asthma and hay fever observed in Western countries is linked to reduced exposure to childhood infections. Here we investigated how infection with a gammaherpesvirus affected the subsequent development of allergic asthma. We found that murid herpesvirus 4 (MuHV-4) inhibited the development of house dust mite (HDM)-induced experimental asthma by modulating lung innate immune cells. Specifically, infection with MuHV-4 caused the replacement of resident alveolar macrophages (AMs) by monocytes with regulatory functions. Monocyte-derived AMs blocked the ability of dendritic cells to trigger a HDM-specific response by the TH2 subset of helper T cells. Our results indicate that replacement of embryonic AMs by regulatory monocytes is a major mechanism underlying the long-term training of lung immunity after infection.


Assuntos
Asma/terapia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Pyroglyphidae/imunologia , Rhadinovirus/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Asma/imunologia , Linhagem Celular , Cricetinae , Células Dendríticas/imunologia , Feminino , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th2/transplante
19.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904198

RESUMO

Murid herpesvirus 4 (MuHV-4) is a B cell-tropic gammaherpesvirus that can be studied in vivo Despite viral evasion, type I interferons (IFN-I) limit its spread. After MuHV-4 inoculation into footpads, IFN-I protect lymph node subcapsular sinus macrophages (SSM) against productive infection; after peritoneal inoculation, they protect splenic marginal zone macrophages, and they limit MuHV-4 replication in the lungs. While invasive infections can be used to test specific aspects of host colonization, it is also important to understand natural infection. MuHV-4 taken up spontaneously by alert mice enters them via olfactory neurons. We determined how IFN-I act in this context. Blocking IFN-I signaling did not increase neuronal infection but allowed the virus to spread to the adjacent respiratory epithelium. In lymph nodes, a complete IFN-I signaling block increased MuHV-4 lytic infection in SSM and increased the number of dendritic cells (DC) expressing viral green fluorescent protein (GFP) independently of lytic infection. A CD11c+ cell-directed signaling block increased infection of DC only. However, this was sufficient to increase downstream infection, consistent with DC providing the main viral route to B cells. The capacity of IFN-I to limit DC infection indicated that viral IFN-I evasion was only partly effective. Therefore, DC are a possible target for IFN-I-based interventions to reduce host colonization.IMPORTANCE Human gammaherpesviruses infect B cells and cause B cell cancers. Interventions to block virus binding to B cells have not stopped their infection. Therefore, we must identify other control points that are relevant to natural infection. Human infections are difficult to analyze. However, gammaherpesviruses colonize all mammals. A related gammaherpesvirus of mice reaches B cells not directly but via infected dendritic cells. We show that type I interferons, an important general antiviral defense, limit gammaherpesvirus B cell infection by acting on dendritic cells. Therefore, dendritic cell infection is a potential point of interferon-based therapeutic intervention.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/metabolismo , Mucosa Olfatória/virologia , Rhadinovirus/fisiologia , Transdução de Sinais , Animais , Linfócitos B/virologia , Células Dendríticas/virologia , Proteínas de Fluorescência Verde , Infecções por Herpesviridae/virologia , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Linfonodos/virologia , Macrófagos/virologia , Camundongos , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Rhadinovirus/imunologia
20.
J Biol Chem ; 292(39): 16257-16266, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821622

RESUMO

Gammaherpesviruses (γHVs) have a dynamic strategy for lifelong persistence, involving productive infection, latency, and intermittent reactivation. In latency reservoirs, such as B lymphocytes, γHVs exist as viral episomes and express few viral genes. Although the ability of γHV to reactivate from latency and re-enter the lytic phase is challenging to investigate and control, it is known that the γHV replication and transcription activator (RTA) can promote lytic reactivation. In this study, we provide first evidence that RTA of murine γΗV68 (MHV68) selectively binds and enhances the activity of tyrosine-phosphorylated host STAT3. STAT3 is a transcription factor classically activated by specific tyrosine 705 phosphorylation (pTyr705-STAT3) in response to cytokine stimulation. pTyr705-STAT3 forms a dimer that avidly binds a consensus target site in the promoters of regulated genes, and our results indicate that RTA cooperatively enhances the ability of pTyr705-STAT3 to induce expression of a STAT3-responsive reporter gene. As indicated by coimmunoprecipitation, in latently infected B cells that are stimulated to reactivate MHV68, RTA bound specifically to endogenous pTyr705-STAT3. An in vitro binding assay confirmed that RTA selectively recognizes pTyr705-STAT3 and indicated that the C-terminal transactivation domain of RTA was required for enhancing STAT3-directed gene expression. The cooperation of these transcription factors may influence both viral and host genes. During MHV68 de novo infection, pTyr705-STAT3 promoted the temporal expression of ORF59, a viral replication protein. Our results demonstrate that MHV68 RTA specifically recognizes and recruits activated pTyr705-STAT3 during the lytic phase of infection.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/agonistas , Rhadinovirus/fisiologia , Fator de Transcrição STAT3/agonistas , Transativadores/metabolismo , Substituição de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Linhagem Celular , Dimerização , Genes Reporter , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Camundongos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Rhadinovirus/imunologia , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transativadores/química , Transativadores/genética , Tirosina/metabolismo , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA