Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 11(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316316

RESUMO

Nitrogen-fixing Actinobacteria of the genus Frankia can be subdivided into four phylogenetically distinct clades; members of clusters one to three engage in nitrogen-fixing root nodule symbioses with actinorhizal plants. Mur enzymes are responsible for the biosynthesis of the peptidoglycan layer of bacteria. The four Mur ligases,MurC, MurD, MurE, and MurF, catalyse the addition of a short polypeptide to UDP-N-acetylmuramic acid. Frankia strains of cluster-2 and cluster-3 contain two copies of murC, while the strains of cluster-1 and cluster-4 contain only one. Phylogenetically, the protein encoded by the murC gene shared only by cluster-2 and cluster-3, termed MurC1, groups with MurC proteins of other Actinobacteria. The protein encoded by the murC gene found in all Frankia strains, MurC2, shows a higher similarity to the MurC proteins of plants than of Actinobacteria. MurC2 could have been either acquired via horizontal gene transfer or via gene duplication and convergent evolution, while murC1 was subsequently lost in the cluster-1 and cluster-4 strains. In the nodules induced by the cluster-2 strains, the expression levels of murC2 were significantly higher than those of murC1. Thus, there is clear sequence divergence between both types of Frankia MurC, and Frankia murC1 is in the process of being replaced by murC2, indicating selection in favour of murC2. Nevertheless, protein modelling showed no major structural differences between the MurCs from any phylogenetic group examined.


Assuntos
Proteínas de Bactérias/metabolismo , Frankia/crescimento & desenvolvimento , Família Multigênica , Peptidoglicano/biossíntese , Rhamnaceae/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Bactérias/genética , Frankia/classificação , Fixação de Nitrogênio , Filogenia , Rhamnaceae/genética , Rhamnaceae/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose
2.
New Phytol ; 219(3): 1018-1030, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29790172

RESUMO

Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia.


Assuntos
Frankia/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Vegetais/microbiologia , Rhamnaceae/genética , Rhamnaceae/microbiologia , Subtilisinas/genética , Contagem de Colônia Microbiana , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia , Subtilisinas/metabolismo
3.
Arch Microbiol ; 199(5): 641-647, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28105505

RESUMO

Strain BCU110501T was the first isolate reported to fulfill Koch's postulates by inducing effective nodules on its host plant of origin Discaria trinervis (Rhalmnaceae). Based on 16S rRNA gene sequence similarities, the strain was found to be most closely related to the type strain of Frankia elaeagni DSM 46783T (98.6%) followed by F. alni DSM 45986T (98.2%), F. casuarinae DSM 45818T (97.8%) and F. inefficacies DSM 45817T (97.8%). Digital DNA:DNA hybridizations (dDDH) between strain BCU110501Tand the type strains of other Frankia species were clearly below the cutoff point of 70%. The G+C content of DNA is 72.36%. The cell wall of strain BCU110501T contained meso-diaminopimelic acid and the cell sugars were galactose, glucose, mannose, xylose and ribose. Polar lipids were phosphatidylinositol (PI), diphosphatidylglycerol (DPG), glycophospholipid (GPL1-3), phosphatidylglycerol (PG) and an unknown lipid (L). The major fatty acids of strain BCU110501T consisted of iso-C16:0, C17:1 w8c and C16:0. Major menaquinones were MK9 (H4), MK9 (H6) and MK9 (H2). Based on these analyses, strain BCU110501T (=DSM 46785T=CECT 9042T) should be classified as the type strain of a novel Frankia species, for which the name Frankia discariae sp. nov. is proposed.


Assuntos
Frankia , Rhamnaceae/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , Sequência de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/metabolismo , Ácidos Graxos/análise , Frankia/classificação , Frankia/genética , Frankia/isolamento & purificação , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
4.
Rev Iberoam Micol ; 32(2): 71-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24657543

RESUMO

BACKGROUND: Xeric forests dominated by two tree species, Scutia buxifolia (Rhamnaceae) and Celtis tala (Ulmacea), are temperate, semi-deciduous wooded communities that represent the most abundant woodlands on the eastern plains of Buenos Aires Province, Argentina. The district of Magdalena has one of the most well-preserved native-forest areas, with an environmental heterogeneity that gives rise to the wide variability in the vegetation present. AIMS: The aim of this study was to analyze the species composition, diversity, seasonal variations, and substrate specificity of anamorphic fungi (Ascomycota) on the green leaves and in the leaf litter of native forests dominated by Scutia buxifolia and Celtis tala from Magdalena, Buenos Aires, Argentina. METHODS: In order to obtain the mycobiota of decomposition, seasonal samples of green leaves and leaf litter from both types of trees were collected over a two-year period. In the laboratory, the leaves were placed in a moist chamber and incubated at room temperature. RESULTS: A total of 100 species of anamorphic Ascomycota were identified in both forests. No significant variations were observed in the richness, diversity, or evenness of the fungal communities of the green leaves and leaf litter of both forests between seasons. CONCLUSIONS: The species that characterized the fungal communities in the leaves of each of the trees were found to be different. The type of substrate had a stronger influence in determining the composition of the fungal community in both types of forests.


Assuntos
Ascomicetos/isolamento & purificação , Folhas de Planta/microbiologia , Rhamnaceae/microbiologia , Ulmaceae/microbiologia , Argentina , Ascomicetos/classificação , Biodiversidade , Clima , Florestas , Especificidade de Hospedeiro , Estações do Ano , Solo , Microbiologia do Solo , Especificidade da Espécie
5.
J Biosci ; 38(4): 749-59, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24287655

RESUMO

Indigenous species of actinorhizal plants of Casuarinaceae, Elaeagnaceae and Rhamnaceae are found in specific regions of Australia. Most of these plants belong to Casuarinaceae, the dominant actinorhizal family in Australia. Many of them have significant environmental and economical value. The other two families with their indigenous actinorhizal plants have only a minor presence in Australia. Most Australian actinorhizal plants have their native range only in Australia, whereas two of these plants are also found indigenously elsewhere. The nitrogen-fixing ability of these plants varies between species. This ability needs to be investigated in some of these plants. Casuarinas form a distinctive but declining part of the Australian landscape. Their potential has rarely been applied in forestry in Australia despite their well-known uses, which are being judiciously exploited elsewhere. To remedy this oversight, a programme has been proposed for increasing and improving casuarinas that would aid in greening more regions of Australia, increasing the soil fertility and the area of wild life habitat (including endangered species). Whether these improved clones would be productive with local strains of Frankia or they need an external inoculum of Frankia should be determined and the influence of mycorrhizal fungi on these clones also should be investigated.


Assuntos
Elaeagnaceae/fisiologia , Fagaceae/fisiologia , Frankia/fisiologia , Rhamnaceae/fisiologia , Nódulos Radiculares de Plantas/fisiologia , Austrália , Elaeagnaceae/classificação , Elaeagnaceae/microbiologia , Fagaceae/classificação , Fagaceae/microbiologia , Fixação de Nitrogênio/fisiologia , Filogeografia , Dispersão Vegetal , Rhamnaceae/classificação , Rhamnaceae/microbiologia , Nódulos Radiculares de Plantas/classificação , Nódulos Radiculares de Plantas/microbiologia , Simbiose
6.
Mycorrhiza ; 23(7): 585-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23588949

RESUMO

In order to improve knowledge about the role of arbuscular mycorrhizal fungi (AMF) in the tolerance to heavy metals in ultramafic soils, the present study investigated the influence of two Glomus etunicatum isolates from New Caledonian ultramafic maquis (shrubland), on nickel tolerance of a model plant species Sorghum vulgare, and of two ultramafic endemic plant species, Alphitonia neocaledonica and Cloezia artensis. In a first step, plants were grown in a greenhouse, on sand with defined concentrations of Ni, to appreciate the effects of the two isolates on the alleviation of Ni toxicity in controlled conditions. In a second step, the influence of the AMF on A. neocaledonica and C. artensis plants grown in a New Caledonian ultramafic soil rich in extractable nickel was investigated. Ni reduced mycorrhizal colonization and sporulation of the fungal isolates, but the symbionts increased plant growth and adaptation of endemic plant species to ultramafic conditions. One of the two G. etunicatum isolates showed a stronger positive effect on plant biomass and phosphorus uptake, and a greater reduction in toxicity symptoms and Ni concentration in roots and shoots. The symbionts seemed to act as a barrier to the absorption of Ni by the plant and reduced root-to-shoot Ni translocation. Results indicate the potential of selected native AMF isolates from ultramafic areas for ecological restoration of such degraded ecosystems.


Assuntos
Glomeromycota/metabolismo , Micorrizas/metabolismo , Myrtaceae/metabolismo , Níquel/metabolismo , Rhamnaceae/metabolismo , Microbiologia do Solo , Sorghum/metabolismo , Ecossistema , Myrtaceae/microbiologia , Rhamnaceae/microbiologia , Solo/química , Sorghum/microbiologia
7.
Food Funct ; 3(6): 628-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22648047

RESUMO

The protective effects of juice and fermented vinegar from Hovenia dulcis peduncles on chronically ethanol-induced biochemical changes in male mice were investigated. Administration of ethanol (50%, v/v, 10 mL kg⁻¹) to mice for 6 weeks induced liver damage with a significant increase (P < 0.01) of the liver index, aspartate transaminase (AST), alanine transaminase (ALT), gamma glutamyl transferase (γ-GT) in the serum and the hepatic lipid peroxidation (LPO) level. In contrast, administration of juice or fermented vinegar from Hovenia dulcis peduncles (10 mL kg⁻¹ bw) along with alcohol significantly (P < 0.05) decreased the activities of the enzymes (AST, ALT and γ-GT), liver index, concentrations of triglyceride (TG) and total cholesterol (TCH) in the serum and the hepatic TG and LPO levels. Mice treated with juice or fermented vinegar from Hovenia dulcis peduncles showed better profiles of the antioxidant systems with relatively higher glutathione (GSH) content, total superoxide dismutase (T-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. All these results were accompanied by histological observations in liver. The results demonstrate that both of the juice and fermented vinegar from Hovenia dulcis peduncles have beneficial effects in reducing the adverse effect of alcohol.


Assuntos
Ácido Acético/administração & dosagem , Bebidas/análise , Hepatopatias Alcoólicas/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Rhamnaceae/química , Ácido Acético/análise , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Bebidas/microbiologia , Modelos Animais de Doenças , Etanol/efeitos adversos , Fermentação , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/análise , Rhamnaceae/microbiologia , gama-Glutamiltransferase/metabolismo
8.
Mol Plant Microbe Interact ; 24(11): 1317-24, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21585269

RESUMO

Among infection mechanisms leading to root nodule symbiosis, the intercellular infection pathway is probably the most ancestral but also one of the least characterized. Intercellular infection has been described in Discaria trinervis, an actinorhizal plant belonging to the Rosales order. To decipher the molecular mechanisms underlying intercellular infection with Frankia bacteria, we set up an efficient genetic transformation protocol for D. trinervis based on Agrobacterium rhizogenes. We showed that composite plants with transgenic roots expressing green fluorescent protein can be specifically and efficiently nodulated by Frankia strain BCU110501. Nitrogen fixation rates and feedback inhibition of nodule formation by nitrogen were similar in control and composite plants. In order to challenge the transformation system, the MtEnod11 promoter, a gene from Medicago truncatula widely used as a marker for early infection-related symbiotic events in model legumes, was introduced in D. trinervis. MtEnod11::GUS expression was related to infection zones in root cortex and in the parenchyma of the developing nodule. The ability to study intercellular infection with molecular tools opens new avenues for understanding the evolution of the infection process in nitrogen-fixing root nodule symbioses.


Assuntos
Agrobacterium/fisiologia , Raízes de Plantas/microbiologia , Rhamnaceae/microbiologia , Simbiose , Medicago truncatula/genética , Fixação de Nitrogênio , Plantas Geneticamente Modificadas , Transformação Genética
9.
Physiol Plant ; 133(4): 776-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18397207

RESUMO

The induction of root nodule development in actinorhizal symbiosis would depend on the concentration of factors produced by the bacteria and the plant. A detailed analysis of nodulation description parameters revealed different factors related to the nodulation process. The initial time for nodulation (t(0)), the initial nodulation rate (v(0)) and the total time of nodule development (t(NOD)) were defined and consequently quantified in different experimental conditions: co-inoculation of Discaria trinervis with increasing concentrations of different non-infective bacteria together with the full compatible infective Frankia strain (the indicator strain) used at a limiting concentration or by changing plant factor(s) concentration. All the above nodulation parameters were modified by changing doses of full compatibility infective strain Frankia BCU110501; v(0) appears to be an expression of symbiotic recognition between partners as only fully symbiotic indicator Frankia BCU110501 was able to change it; t(0) seems not to reflect symbiotic recognition because it can also be modified by non-infective Frankia but suggest the existence of a basic level of plant microbe recognition. The initial time for nodulation t(0), reflecting the time required for the early interactions toward nodulation, is an inverse measure of the ability to establish early interactions toward nodulation. The increase in plant factors concentration also reduces t(0) values, suggesting that a plant factor is involved and favors very early interactions. Increases in plant factors concentration also modify the final number of nodules per plant and the nodule cluster profile along the taproot as an expression of the autoregulation phenomenon. Meanwhile, Frankia inoculums' concentration, either infective or not, modified t(NOD) in an opposite way plant factors did. In conclusion, the analysis of nodulation kinetics appears to be an appropriate tool to investigate factors involved in the symbiotic interaction leading to the formation of nitrogen-fixing nodules.


Assuntos
Frankia/fisiologia , Rhamnaceae/microbiologia , Rhamnaceae/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Simbiose , Cinética
10.
J Basic Microbiol ; 47(3): 243-50, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17518417

RESUMO

The influence of saprophytic actinomycetes strains on the Discaria trinervis - Frankia actinorhizal symbiosis was investigated. Three strains out of 122 isolated from the rhizosphere and rhizoplane of D. trinervis with multiple enzymatic activities, were selected for plant growth experiments: Streptomyces (BCRU-MM40), Actinoplanes (BCRU-ME3) and Micromonospora (BCRU-MM18). Inoculated seedlings of Discaria trinervis were grown in glass tubes with vermiculite-sand for 12 weeks. They were inoculated either with a single saprophytic strain or a combination of one or two of them together with the symbiotic N(2) fixing strain Frankia BCU110501. The saprophytic strains were applied in two experimental series, i.e. mycelium + supernatant simultaneously or mycelium and supernatant (growth medium free of cells) separately. Micromonospora strain MM18 showed a direct promotion effect on shoot growth, when plants were inoculated with mycelium and supernatant together. Streptomyces strain MM40 and Actinoplanes strain ME3 promoted the actinorhizal symbiosis with Frankia and consequently the development of plant shoots, when supernatant was involved as inoculum. It is supposed, that the strains MM18, MM40 and ME3 produce bioactive metabolites, which are released into the culture medium. The saprophytic strains studied could be considered as "promoting or helper rhizoactinomycetes" of the actinorhizal plant D. trinervis.


Assuntos
Actinobacteria/fisiologia , Frankia/fisiologia , Rhamnaceae/microbiologia , Rhamnaceae/fisiologia , Actinobacteria/classificação , Fatores Biológicos , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Especificidade da Espécie , Simbiose/fisiologia
11.
Curr Microbiol ; 53(6): 523-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106801

RESUMO

Frankia BCU110601 (Da) and Frankia BCU110345 (Dc) were isolated from root nodules of Discaria articulata and Discaria chacaye, respectively; Frankia BCU110501 (Dt) was previously isolated from Discaria trinervis. The strains were identical at the 16S sequence and after analysis of RFLP of 16S and 23S rDNA intergenic region. Diversity was revealed at the molecular level after fingerprint analysis by BOX-polymerase chain reaction. The strains were infective and effective on the original host plants. A cross-inoculation assay intra Discaria genus, including D. trinervis, D. articulata, and D. chacaye, with each of these isolated Frankia strains caused effective symbioses with a similar dry weight in each plant species regardless of the inoculated strain. Nevertheless, a differential degree of recognition was revealed: Homologous symbiotic pairs in the case of D. chacaye-Frankia BCU110345 (Dc), D. articulata-Frankia BCU110601 (Da), and D. trinervis-Frankia BCU110501 (Dt) had faster nodulation rates than heterologous pairs. The differences in nodulation rate would suggest the existence of a subspecific level of recognition within a certain cross-inoculation group, pointing to subspecific adaptation occurring in this actinorhizal symbiosis.


Assuntos
Frankia/fisiologia , Rhamnaceae/microbiologia , Simbiose , Adaptação Fisiológica , DNA Ribossômico/genética , Frankia/genética , Frankia/isolamento & purificação , Cinética , Fixação de Nitrogênio , Fenótipo , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia
12.
J Basic Microbiol ; 46(4): 263-74, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16847830

RESUMO

The infective capacities of the nitrogen fixing Actinomycete Frankia and arbuscular mycorrhizal fungi from soils near watercourses, along a vegetation gradient, were studied using plant bioassays. Frankia and arbuscular mycorrhizas capable of infecting Discaria trinervis were found at seventeen sites sampled. More specific enumeration of the infective capacities of both microorganisms in relation to environmental factors was performed in seven representative soils of the analysed vegetation zones (rainforest, xeric forest and steppe) using the most probable number method. The highest nodulation capacities ranged from 340 infective units g(-1 )soil, in a steppe marsh devoid of actinorhizas, to 61 in a coastal actinorhizal scrub (in xeric forest). The highest number of infective mycorrhizal units--also found in marsh--was 145. In general, rainforest soils had the lowest values for both microorganisms. Infective units of Frankia and arbuscular mycorrhizal fungi in soil were positively correlated (r = 0.89, P < 0.05). Both soilborne symbionts showed the highest infective capacity in semi-arid conditions nearby watercourse and at the valley bottom location. Tripartite symbiosis was effective in plants inoculated with steppe and xeric forest soils and plants inoculated with Frankia BCU110501 and Glomus mosseae. Interaction between both symbionts and influence of environmental conditions, in general, would contribute to define comparable trends of their infective capacities.


Assuntos
Frankia/patogenicidade , Micorrizas/patogenicidade , Rhamnaceae/microbiologia , Microbiologia do Solo , Argentina , Análise por Conglomerados , Ecossistema , Frankia/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Simbiose/fisiologia
13.
Appl Environ Microbiol ; 70(11): 6444-52, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528504

RESUMO

Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the southern Sierra Nevada of California, and we also collected nodules from a wider host taxonomic and geographic range throughout California. The two sampling scales comprised 36 samples from eight species of Ceanothus representing six of the seven major biogeographic regions in and around California. The primary objective of this study was to use a quantitative model to test the relative importance of geographic separation, host specificity, and environment in influencing the identity of Ceanothus Frankia symbionts as determined by ribosomal DNA sequence data. At both sampling scales, Frankia strains symbiotic with Ceanothus exhibited a high degree of genetic similarity. Frankia strains symbiotic with Chamaebatia (Rosaceae) were within the same clade as several Ceanothus symbionts. Results from a classification and regression tree model used to quantitatively explain Frankia phylogenetic groupings demonstrated that the only significant variable in distinguishing between phylogenetic groups at the more local sampling scale was host species. At the regional scale, Frankia phylogenetic groupings were explained by host species and the biogeographic province of sample collection. We did not find any significant correspondence between Frankia and Ceanothus phylogenies indicative of coevolution, but we concluded that the identity of Frankia strains inhabiting Ceanothus nodules may involve interactions between host species specificity and geographic isolation.


Assuntos
Frankia/classificação , Variação Genética , Rhamnaceae/microbiologia , Simbiose , California , DNA Bacteriano/análise , DNA Espaçador Ribossômico/análise , Frankia/genética , Frankia/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 23S/genética , Rhamnaceae/classificação , Rhamnaceae/crescimento & desenvolvimento , Análise de Sequência de DNA
14.
J Exp Bot ; 54(385): 1253-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12654876

RESUMO

Root nodulation in actinorhizal plants, like Discaria trinervis and Alnus incana, is subject to feedback regulatory mechanisms that control infection by Frankia and nodule development. Nodule pattern in the root system is controlled by an autoregulatory process that is induced soon after inoculation with Frankia. The final number of nodules, as well as nodule biomass in relation to plant biomass, are both modulated by a second mechanism which seems to be related to the N status of the plant. Mature nodules are, in part, involved in the latter process, since nodule excision from the root system releases the inhibition of infection and nodule development. To study the effect of N(2) fixation in this process, nodulated D. trinervis and A. incana plants were incubated under a N(2)-free atmosphere. Discaria trinervis is an intercellularly infected species while A. incana is infected intracellularly, via root hairs. Both symbioses responded with an increment in nodule biomass, but with different strategies. Discaria trinervis increased the biomass of existing nodules without significant development of new nodules, while in A. incana nodule biomass increased due to the development of nodules from new infections, but also from the release of arrested infections. It appears that in D. trinervis nodules there is an additional source for inhibition of new infections and nodule development that is independent of N(2) fixation and nitrogen assimilation. It is proposed here that the intercellular Frankia filaments commonly present in the D. trinervis nodule apex, is the origin for the autoregulatory signals that sustain the blockage of initiated nodule primordia and prevent new roots from infections. When turning to A. incana plants, it seems likely that this signal is related to the early autoregulation of nodulation in A. incana seedlings and is no longer present in mature nodules. Thus, actinorhizal symbioses belonging to relatively distant phylogenetic groups and displaying different infection pathways, show different feedback regulatory processes that control root nodulation by Frankia.


Assuntos
Alnus/crescimento & desenvolvimento , Frankia/crescimento & desenvolvimento , Fixação de Nitrogênio/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Rhamnaceae/crescimento & desenvolvimento , Simbiose/fisiologia , Alnus/efeitos dos fármacos , Alnus/microbiologia , Biomassa , Nitrogênio/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Rhamnaceae/efeitos dos fármacos , Rhamnaceae/microbiologia , Simbiose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA