Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 804
Filtrar
1.
J Hazard Mater ; 470: 134300, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631248

RESUMO

In this study, the cadmium (Cd)-tolerant Ensifer adhaerens strain NER9 with quorum sensing (QS) systems (responsible for N-acyl homoserine lactone (AHL) production) was characterized for QS system-mediated Cd immobilization and the underlying mechanisms involved. Whole-genome sequence analysis revealed that strain NER9 contains the QS SinI/R and TraI/R systems. Strains NER9 and the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants were constructed and compared for QS SinI/R and TraI/R system-mediated Cd immobilization in the solution and the mechanisms involved. After 24 h of incubation, strain NER9 significantly decreased the Cd concentration in the Cd-contaminated solution compared with the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants. The NER9∆sinI/R mutant had a greater impact on Cd immobilization and a lower impact on the activities of AHLs than did the NER9∆traI/R mutant. The NER9∆sinI/R mutant had significantly greater Cd concentrations and lower cell wall- and exopolysaccharide (EPS)-adsorbed Cd contents than did strain NER9. Furthermore, the NER9∆sinI/R mutant presented a decrease in the number of functional groups interacting with Cd, compared with strain NER9. These results suggested that the SinI/R system in strain NER9 contributed to Cd immobilization by mediating cell wall- and EPS-adsorption in Cd-containing solution.


Assuntos
Cádmio , Percepção de Quorum , Cádmio/química , Rhizobiaceae/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/química , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental
2.
Microbiol Spectr ; 12(4): e0405223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440971

RESUMO

"Candidatus Liberibacter asiaticus" (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars ("Shatangju" mandarin, "Guanxi" pomelo, and "Shatian" pomelo) exhibiting different tolerance to CLas were collected and used for dual RNA-Seq and untargeted metabolome analysis. Comparative transcriptome analysis found that the activation of the CLas noncyclic TCA pathway and pathogenic-related effectors could contribute to the colonization and growth of CLas in fruit pith. The pre-established Type 2 prophage in the CLas genome and the induction of its CRISPR/cas system could enhance the phage resistance of CLas and, in turn, facilitate CLas population growth in fruit pith. CLas infection caused the accumulation of amino acids that were correlated with tolerance to CLas. The accumulation of most sugars and organic acids in CLas-infected fruit pith, which could be due to the phloem blockage caused by CLas infection, was thought to be beneficial for CLas growth in localized phloem tissue. The higher levels of flavonoids and terpenoids in the fruit pith of CLas-tolerant cultivars, particularly those known for their antimicrobial properties, could hinder the growth of CLas. This study advances our understanding of CLas multiplication in fruit pith and offers novel insight into metabolites that could be responsible for tolerance to CLas or essential to CLas population growth.IMPORTANCECitrus Huanglongbing (HLB, also called citrus greening disease) is a highly destructive disease currently threatening citrus production worldwide. HLB is caused by an unculturable bacterial pathogen, "Candidatus Liberibacter asiaticus" (CLas). However, the mechanism of CLas colonization and growth in citrus hosts is poorly understood. In this study, we utilized the fruit pith tissue, which was able to maintain the CLas at a high abundance, as the materials for dual RNA-Seq and untargeted metabolome analysis, aiming to reveal the biological processes and phytochemical substances that are vital for CLas colonization and growth. We provided a genome-wide CLas transcriptome landscape in the fruit pith of three citrus cultivars with different tolerance and identified the important genes/pathways that contribute to CLas colonization and growth in the fruit pith. Metabolome profiling identified the key metabolites, which were mainly affected by CLas infection and influenced the population dynamic of CLas in fruit pith.


Assuntos
Citrus , Liberibacter , Rhizobiaceae , Citrus/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Transcriptoma , Frutas/metabolismo , Metaboloma , Dinâmica Populacional , Compostos Fitoquímicos/metabolismo , Doenças das Plantas/microbiologia
3.
Phytopathology ; 114(1): 84-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486097

RESUMO

Citrus greening disease, or Huanglongbing (HLB), has devastated citrus crops globally in recent years. The causal bacterium, 'Candidatus Liberibacter asiaticus', presents a sampling issue for qPCR diagnostics and results in a high false negative rate. In this work, we compared six metabolomics assays to identify HLB-infected citrus trees from leaf tissue extracted from 30 control and 30 HLB-infected trees. A liquid chromatography-mass spectrometry-based assay was most accurate. A final partial least squares-discriminant analysis (PLS-DA) model was trained and validated on 690 leaf samples with corresponding qPCR measures from three citrus varieties (Rio Red grapefruit, Hamlin sweet orange, and Valencia sweet orange) from orchards in Florida and Texas. Trees were naturally infected with HLB transmitted by the insect vector Diaphorina citri. In a randomized validation set, the assay was 99.9% accurate to classify diseased from nondiseased samples. This model was applied to samples from trees receiving plant defense-inducer compounds or biological treatments to prevent or cure HLB infection. From two trials, HLB-related metabolite abundances and PLS-DA scores were tracked longitudinally and compared with those of control trees. We demonstrate how our assay can assess tree health and the efficacy of HLB treatments and conclude that no trialed treatment was efficacious.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Citrus/microbiologia , Rhizobiaceae/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Árvores
4.
Mol Ecol ; 33(2): e17214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018658

RESUMO

The evolution of insect vector-pathogen relationships has long been of interest in the field of molecular ecology. One system of special relevance, due to its economic impacts, is that between Diaphorina citri and 'Candidatus Liberibacter asiaticus' (CLas), the cause of the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts, boosting opportunities for pathogens to acquire new vector hosts. The molecular mechanism behind this life-history shift remains unclear. Here, we found that CLas promoted ovarian development and increased the expression of the vitellogenin receptor (DcVgR) in ovaries. DcVgR RNAi significantly decreased fecundity and CLas titer in ovaries, extended the preoviposition period, shortened the oviposition period and blocked ovarian development. Given their importance in gene regulation, we explored the role of miRNAs in shaping these phenotypes and their molecular triggers. Our results showed that one miRNA, miR-275, suppressed DcVgR expression by binding to its 3' UTR. Overexpression of miR-275 knocked down DcVgR expression and CLas titer in ovaries, causing reproductive defects that mimicked DcVgR knockdown phenotypes. We focused, further, on roles of the Juvenile Hormone (JH) pathway in shaping the observed fecundity phenotype, given its known impacts on ovarian development. After CLas infection, this pathway was upregulated, thereby increasing DcVgR expression. From these combined results, we conclude that CLas hijacks the JH signalling pathway and miR-275, thereby targeting DcVgR to increase D. citri fecundity. These changes simultaneously increase CLas replication, suggesting a pathogen-vector host mutualism, or a seemingly helpful, but cryptically costly life-history manipulation.


Assuntos
Citrus , Hemípteros , Liberibacter , MicroRNAs , Rhizobiaceae , Animais , Feminino , Rhizobiaceae/genética , Citrus/genética , Doenças das Plantas/genética , Hemípteros/genética , Fertilidade/genética , MicroRNAs/genética , Proliferação de Células
5.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069024

RESUMO

Nodule bacteria (rhizobia) represent a suitable model to address a range of fundamental genetic problems, including the impacts of natural selection on the evolution of symbiotic microorganisms. Rhizobia possess multipartite genomes in which symbiotically specialized (sym) genes differ from core genes in their natural histories. Diversification of sym genes is responsible for rhizobia microevolution, which depends on host-induced natural selection. By contrast, diversification of core genes is responsible for rhizobia speciation, which occurs under the impacts of still unknown selective factors. In this paper, we demonstrate that in goat's rue rhizobia (Neorhizobium galegae) populations collected at North Caucasus, representing two host-specific biovars orientalis and officianalis (N2-fixing symbionts of Galega orientalis and G. officinalis), the evolutionary mechanisms are different for core and sym genes. In both N. galegae biovars, core genes are more polymorphic than sym genes. In bv. orientalis, the evolution of core genes occurs under the impacts of driving selection (dN/dS > 1), while the evolution of sym genes is close to neutral (dN/dS ≈ 1). In bv. officinalis, the evolution of core genes is neutral, while for sym genes, it is dependent on purifying selection (dN/dS < 1). A marked phylogenetic congruence of core and sym genes revealed using ANI analysis may be due to a low intensity of gene transfer within and between N. galegae biovars. Polymorphism in both gene groups and the impacts of driving selection on core gene evolution are more pronounced in bv. orientalis than in bv. officianalis, reflecting the diversities of their respective host plant species. In bv. orientalis, a highly significant (P0 < 0.001) positive correlation is revealed between the p-distance and dN/dS values for core genes, while in bv. officinalis, this correlation is of low significance (0.05 < P0 < 0.10). For sym genes, the correlation between p-distance and dN/dS values is negative in bv. officinalis but is not revealed in bv. orientalis. These data, along with the functional annotation of core genes implemented using Gene Ontology tools, suggest that the evolution of bv. officinalis is based mostly on adaptation for in planta niches while in bv. orientalis, evolution presumably depends on adaptation for soil niches. New insights into the tradeoff between natural selection and genetic diversity are presented, suggesting that gene nucleotide polymorphism may be extended by driving selection only in ecologically versatile organisms capable of supporting a broad spectrum of gene alleles in their gene pools.


Assuntos
Galega , Rhizobiaceae , Rhizobium , Rhizobiaceae/genética , Filogenia , Rhizobium/genética , Polimorfismo Genético , Simbiose/genética , Evolução Molecular
6.
Nat Commun ; 14(1): 7838, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030598

RESUMO

The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Citrus/microbiologia , Rhizobiaceae/genética , Liberibacter , Doenças das Plantas/microbiologia , Hemípteros/genética
7.
BMC Genom Data ; 24(1): 63, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37923990

RESUMO

OBJECTIVES: "Candidatus Liberibacter asiaticus" (CLas) is an un-culturable α-proteobacterium that caused citrus Huanglongbing (HLB), a destructive disease threatening citrus production worldwide. In China, the presence of HLB was first reported in Chaoshan region of Guangdong province, China around a century ago. Thus, whole genome information of CLas strains from Chaoshan area become the most important resource to understand the population diversity and evaluation of CLas in China. DATA DESCRIPTION: CLas strain GDCZ was originally from Chaozhou city (Chaoshan area) and sequenced using PacBio Sequel long-read sequencing and Illumina short-read sequencing. The genome of strain GDCZ comprised of 1,230,507 bp with an average G + C content of 36.4%, along with a circular CLasMV1 phage: CLasMV1_GDCZ (8,869 bp). The CLas strain GDCZ contained a Type 2 prophage (37,452 bp) and encoded a total of 1,057 open reading frames and 53 RNA genes. The whole genome sequence of CLas strain GDCZ from the historical HLB endemic region in China will serve as a useful resource for further analyses of CLas evolution and HLB epidemiology in China and world.


Assuntos
Liberibacter , Rhizobiaceae , Liberibacter/genética , Rhizobiaceae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Prófagos/genética , China/epidemiologia
8.
J Agric Food Chem ; 71(43): 16391-16401, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857602

RESUMO

Huanglongbing (HLB) is a highly destructive disease that inflicts significant economic losses on the citrus industry worldwide but with no cure available. However, microbiomes formulated by citrus plants may serve as disease antagonists, increasing the level of HLB tolerance. This study established an integrated analysis of untargeted metabolomics and microbiomics data for different citrus cultivars, providing critical insights into the interactions between plant metabolism and plant-associated bacteria in the development of HLB. Machine learning models were applied to screen important metabolites and bacteria in multiple citrus materials, and the selected metabolites were then analyzed to identify essential pathways enriched in the plant and to correlate with the selected bacteria. Results demonstrated that the regulation of plant pathways, especially ABC transporters and ubiquinone and other terpene-ubiquinone biosynthesis pathways, could affect the microbial community structure, indicating potential solutions for controlling HLB by modulating bacteria in citrus plants or breeding tolerant citrus cultivars.


Assuntos
Citrus , Rhizobiaceae , Citrus/metabolismo , Multiômica , Ubiquinona/metabolismo , Melhoramento Vegetal , Bactérias/genética , Doenças das Plantas/microbiologia , Rhizobiaceae/genética
9.
J Invertebr Pathol ; 201: 107995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748676

RESUMO

Picorna-like viruses of the order Picornavirales are a poorly defined group of positive-sense, single-stranded RNA viruses that include numerous pathogens known to infect plants, animals, and insects. A new picorna-like viral species was isolated from the wild lime psyllid (WLP), Leuronota fagarae, in the state of Florida, USA, and labelled: Leuronota fagarae picorna-like virus isolate FL (LfPLV-FL). The virus was found to have homology to a picorna-like virus identified in the Asian Citrus Psyllid (ACP), Diaphorina citri, collected in the state of Florida. Computational analysis of RNA extracts from WLP adult heads identified a 10,006-nucleotide sequence encoding a 2,942 amino acid polyprotein with similar functional domain structure to polyproteins of both Dicistroviridae and Iflaviridae. Sequence comparisons of nucleic acid and amino acid translations of the conserved RNA-dependent RNA polymerase, along with the entire N-terminal nonstructural coding region, provided insight into an evolutionary relationship of LfPLV-FL to insect-infecting iflaviruses. Viruses belonging to the family Iflaviridae encode a polyprotein of around 3000 amino acids in length that is processed post-translationally to produce components necessary for replication. The classification of a novel picorna-like virus in L. fagarae, with evolutionary characteristics similar to picorna-like viruses infecting Bactericera cockerelli and D. citri, provides an opportunity to examine virus host specificity, as well as identify critical components of the virus' genome required for successful transmission, infection, and replication. This bioinformatic classification allows for further insight into a novel virus species, and aids in the research of a closely related virus of the invasive psyllid, D. citri, a major pest of Floridian citriculture. The potential use of viral pathogens as expression vectors to manage the spread D. citri is an area that requires additional research; however, it may bring forth an effective control strategy to reduce the transmission of Candidatus Liberibacter asiaticus (CLas), the causative agent of Huanglongbing (HLB).


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Vírus , Animais , Hemípteros/genética , Aminoácidos , Poliproteínas , Doenças das Plantas , Rhizobiaceae/genética
10.
Sci Data ; 10(1): 478, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479750

RESUMO

Asian citrus psyllid (Diaphorina citri, D. citri) is the important vector of "Candidatus Liberibacter asiaticus" (CLas), associated with Huanglongbing, the most devastating citrus disease worldwide. CLas can affect endosymbiont abundance of D. citri. Here, we generated the high-quality gut endosymbiont metagenomes of Diaphorina citri on the condition of CLas infected and uninfected. The dataset comprised 6616.74 M and 6586.04 M raw reads, on overage, from CLas uninfected and infected psyllid strains, respectively. Taxonomic analysis revealed that a total of 1046 species were annotated with 10 Archaea, 733 Bacteria, 234 Eukaryota, and 69 Viruses. 80 unique genera in CLas infected D. citri were identified. DIAMOND software was used for complement function research against various functional databases, including Nr, KEGG, eggNOG, and CAZy, which annotated 84543 protein-coding genes. These datasets provided an avenue for further study of the interaction mechanism between CLas and D. citri.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Hemípteros/genética , Hemípteros/microbiologia , Metagenoma , Rhizobiaceae/genética
11.
Sci Rep ; 13(1): 10895, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407637

RESUMO

Diaphorina citri Kuwayama, also known as the Asian citrus psyllid (ACP), can vector the bacterium Candidatus Liberibacter asiaticus (CLas), agent of Huanglongbing (HLB): an incurable disease affecting citrus trees worldwide. In citrus growing regions where ACP and HLB are absent, such as Australia, the risk of an incursion and consequent economic damage to citrus industries make this psyllid one of the top-priority pests. Due to ACP's small dimensions and the generally poorly studied native psylloid fauna worldwide, morphological identification of this insect to distinguish it from harmless species is challenging, especially in the field, and with immature, partial or damaged specimens. To allow rapid and efficient detection of ACP in the field, we designed and optimised a new Loop-mediated isothermal amplification (LAMP) assay for the detection of D. citri based on the mitochondrial 16S locus. The optimised ACP 16S LAMP assay produced amplification from D. citri samples within 13.3 ± 3.6 min, with an anneal derivative of ~ 78.5 °C. A synthetic gBlock gene fragment was also developed to be used as positive control for the new LAMP assay with a different anneal derivative of ~ 83 °C. An existing commercially available LAMP assay for detection of the bacterium CLas was also tested in this study on ACP DNA. The ACP 16S LAMP assay we developed and tested here provides a valuable new in-field compatible tool that can allow early detections of ACP, enabling a quick biosecurity response, and could potentially be adopted by a wide range of users, from farmers to agronomists and from researchers to industry.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Hemípteros/microbiologia , Citrus/microbiologia , Rhizobiaceae/genética , Doenças das Plantas/microbiologia , Liberibacter
12.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511229

RESUMO

Huanglongbing (HLB), caused by the Candidatus Liberibacter spp., is the most devastating disease in the citrus industry. HLB significantly affects and alters the microbial community structure or potential function of the microbial community of leaves and roots. However, it is unknown how the microbial community structure of the pericarp with different pigments is affected by Candidatus Liberibacter asiaticus (CLas). This study identified the enriched taxa of the microbial community in the citrus pericarp with normal or abnormal pigment and determine the effects of HLB on the pericarp microbial community using 16S rRNA-seq. The alpha and beta diversity and composition of microbial communities were significantly different between normal and abnormal pigment pericarp tissues of ripe fruits infected by CLas. Firmicutes, Actinobacteriota, Bacteroidota, Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota composition in WDYFs (whole dark yellow fruits) samples. The relative abundance of most genera in WDYFs was higher than 1%, such as Burkholderia, and Pelomonas. However, with the exception of the HLB pathogen, the relative abundance of most genera in the abnormal-colored pericarp samples was less than 1%. CLas decreased the relative abundance of pericarp taxonomic. The predicted function of microbial was more plentiful and functional properties in the WDYF sample, such as translation, ribosomal structure and biogenesis, amino acid transport and metabolism, energy production and conversion, and some other clusters of orthologous groups (COG) except for cell motility. The results of this study offer novel insights into understanding the composition of microbial communities of the CLas-affected citrus pericarps and contribute to the development of biological control strategies for citrus against Huanglongbing.


Assuntos
Citrus , Rhizobiaceae , Rhizobiaceae/genética , Liberibacter , Citrus/microbiologia , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia
13.
Sci Rep ; 13(1): 11366, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443168

RESUMO

As significant threats to global citrus production, Diaphorina citri (Kuwayama; Hemiptera: Psyllidae) and Trioza erytreae (Del Guercio; Hemiptera: Triozidae) have caused considerable losses to citrus trees globally. Diaphorina citri vectors "Candidatus Liberibacter asiaticus" and "Ca. L. americanus", whereas T. erytreae transmits "Ca. L. africanus" and "Ca. L. asiaticus", the pathogens responsible for citrus greening disease or Huanglongbing (HLB). Though HLB is a destructive disease of citrus wherever it occurs, information on the occurrence and geographical distribution of its vectors in Africa is limited. In recent surveys to determine if HLB vectors are present in Ghana, we observed eggs, nymphs, and adults of insects suspected to be D. citri and T. erytreae. Using morphological traits and DNA analyses, the identity of the suspected insects was confirmed to be D. citri and T. erytreae. Individuals of D. citri and T. erytreae were examined using qPCR for CLaf, CLam, and CLas, but none of them tested positive for any of the Liberibacter species. Herein we report, for the first time, the presence of D. citri and T. erytreae in Ghana (West Africa). We discuss the implications of this new threat to the citrus industry to formulate appropriate management strategies.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Gana , Rhizobiaceae/genética , Doenças das Plantas , Hemípteros/genética
14.
Curr Microbiol ; 80(9): 301, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493780

RESUMO

A novel Gram-staining-negative, aerobic and rod-shaped bacterium, designated WL0058T, was isolated from coastal sediment sample collected in Nantong city, Jiangsu province of China (120° 51' 13″ E, 32° 6' 26″ N) in October 2020. Strain WL0058T was found to grow at 4-37 °C (optimum, 28 °C) with 1.5-4.0% NaCl (optimum, 4.0%) and displayed alkaliphilic growth with the pH range of pH 6.0-10.0 (optimum, pH 6.0). Phylogenetic trees constructed based on 16S rRNA gene sequence indicated that strain WL0058T is a member of the family Rhizobiaceae, shared the highest similarity with "Hoeflea prorocentri" CCTCC AB 2016294T (97.7%) and constituted a sub-cluster within the family with it, while the similarity with others in the family Rhizobiaceae was lower than 97.0%. The G + C content of genomic DNA was 59.5 mol%. Polar lipids profile of strain WL0058T included phosphatidylcholine (PC), phosphatidylethanolamine (PE), and glycolipid (GL), phosphatidylmonomethylethanolamine (PME) and two unidentified polar lipids (L). The major isoprenoid quinone was determined to be Q-10 and the major fatty acids were C16:0, C18:0, summed features 4 (iso-C17:1 and/or anteiso-C17:1), and summed features 8 (C18:1ω6c and/or C18:1ω7c). As inferred from the morphology, physiology, and biochemical analysis, genotypic characteristics, and the phylogenetic trees, strain WL0058T ought to be recognized as a novel genus in the family Rhizobiaceae, for which the name Flavimaribacter sediminis gen. nov., sp. nov. The type strain of Flavimaribacter sediminis gen. nov., sp. nov. is WL0058T (= MCCC 1K06063T = JCM 34659T = GDMCC 1.2448T).


Assuntos
Fosfolipídeos , Rhizobiaceae , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Ubiquinona/química , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Sedimentos Geológicos/microbiologia , Ácidos Graxos/química , Rhizobiaceae/genética
15.
Plant Dis ; 107(12): 3996-4009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37415358

RESUMO

Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.


Assuntos
Citrus , Rhizobiaceae , Transcriptoma , Rhizobiaceae/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Citrus/microbiologia , Árvores
16.
PLoS One ; 18(6): e0287396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37327235

RESUMO

'Candidatus Liberibacter solanacearum' (Lso) is a bacterial pathogen infecting several crops and causing damaging diseases. Several Lso haplotypes have been identified. Among the seven haplotypes present in North America, LsoA and LsoB are transmitted by the potato psyllid, Bactericera cockerelli (Sulc), in a circulative and persistent manner. The gut, which is the first organ pathogen encounters, could be a barrier for Lso transmission. However, the molecular interactions between Lso and the psyllid vector at the gut interface remain largely unknown. In this study, we investigated the global transcriptional responses of the adult psyllid gut upon infection with two Lso haplotypes (LsoA and LsoB) using Illumina sequencing. The results showed that each haplotype triggers a unique transcriptional response, with most of the distinct genes elicited by the highly virulent LsoB. The differentially expressed genes were mainly associated with digestion and metabolism, stress response, immunity, detoxification as well as cell proliferation and epithelium renewal. Importantly, distinct immune pathways were triggered by LsoA and LsoB in the gut of the potato psyllid. The information in this study will provide an understanding of the molecular basis of the interactions between the potato psyllid gut and Lso, which may lead to the discovery of novel molecular targets for the control of these pathogens.


Assuntos
Hemípteros , Rhizobiaceae , Solanum tuberosum , Animais , Liberibacter , Rhizobiaceae/genética , Haplótipos , Hemípteros/fisiologia , América do Norte , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
17.
PLoS One ; 18(6): e0287699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352328

RESUMO

Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus plants caused by the obligate and phloem-limiting bacterium Candidatus Liberibacter asiaticus (Las). Reliable detection methods are important for successful control of the disease. This study was aimed to develop a rapid and user-friendly on-site detection system for Las using the TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) assay. The Las-specific on-site detection system could be completed within one hour by simple DNA extraction coupled with a portable POCKIT device, which can perform PCR amplification and automatically provide qualitative results derived from fluorescence signals. The sensitivity of the TaqMan probe-iiPCR assay could be as low as single copy of Las, comparable to a real-time PCR method. Further testing of the field citrus samples showed 100% agreement between the TaqMan probe-iiPCR assay and the real-time PCR method, and the on-site detection system also demonstrated a great performance of Las detection. With high specificity and sensitivity, the on-site detection system developed in this study becomes a simple, rapid and powerful tool for detecting Las in fields.


Assuntos
Citrus , Rhizobiaceae , Doenças das Plantas/microbiologia , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Citrus/microbiologia , Rhizobiaceae/genética , Liberibacter/genética
18.
J Exp Bot ; 74(15): 4670-4684, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37166404

RESUMO

Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.


Assuntos
Infecções Bacterianas , Citrus , Hemípteros , Rhizobiaceae , Animais , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Liberibacter/genética , Plantas Geneticamente Modificadas/genética , Citrus/genética , Doenças das Plantas/microbiologia , Hemípteros/fisiologia
19.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240344

RESUMO

Huanglongbing, a globally devastating citrus disease, is associated with Candidatus Liberibacter asiaticus (CLas) and is mainly transmitted by Diaphorina citri. Verification of the distribution and dynamics of CLas in D. citri is critical to understanding CLas transmitted by vectors in nature. Here, the distribution and titers of CLas in different sexes and tissues of D. citri adults were investigated by fluorescence in-situ hybridization (FISH) and quantitative real-time PCR (qRT-PCR). Results showed that CLas had widespread distribution in the brain, salivary glands, digestive system, and reproductive system of both females and males, indicating a systemic infection of CLas in D. citri. Moreover, CLas fluorescence intensity and titers were significantly increased in both the digestive system and the female reproductive system with development and there was a marked decreased in both the salivary glands and the male brain, but there was no significant change in the female brain or the male reproductive system. Furthermore, the distribution and dynamics of CLas in embryos and nymphs were investigated. CLas was observed in all laid eggs and subsequent first-second-instar nymphs, indicating that a high percentage of embryos and nymphs resulting from infected D. citri mothers were infected with CLas.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Feminino , Masculino , Animais , Rhizobiaceae/genética , Insetos Vetores , Doenças das Plantas , Liberibacter , Ninfa
20.
Microbiol Spectr ; 11(3): e0075423, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37071011

RESUMO

"Candidatus Liberibacter asiaticus" is one of the putative causal agents of citrus Huanglongbing (HLB), a highly destructive disease threatening the global citrus industry. Several types of phages had been identified in "Ca. Liberibacter asiaticus" strains and found to affect the biology of "Ca. Liberibacter asiaticus." However, little is known about the influence of phages in "Ca. Liberibacter asiaticus" pathogenicity. In this study, two "Ca. Liberibacter asiaticus" strains, PYN and PGD, harboring different types of phages were collected and used for pathogenicity analysis in periwinkle (Catharanthus roseus). Strain PYN carries a type 1 phage (P-YN-1), and PGD harbors a type 2 phage (P-GD-2). Compared to strain PYN, strain PGD exhibited a faster reproduction rate and higher virulence in periwinkle: leaf symptoms appeared earlier, and there was a stronger inhibition in the growth of new flush. Estimation of phage copy numbers by type-specific PCR indicated that there are multiple copies of phage P-YN-1 in strain PYN, while strain PGD carries only a single copy of phage P-GD-2. Genome-wide gene expression profiling revealed the lytic activity of P-YN-1 phage, as evidenced by the unique expression of genes involved in lytic cycle, which may limit the propagation of strain PYN and lead to a delayed infection in periwinkle. However, the activation of genes involved in lysogenic conversion of phage P-GD-1 indicated it could reside within the "Ca. Liberibacter asiaticus" genome as a prophage form in strain PGD. Comparative transcriptome analysis showed that the significant differences in expression of virulence factor genes, including genes associated with pathogenic effectors, transcriptional factors, the Znu transport system, and the heme biosynthesis pathway, could be another major determinant of virulence variation between two "Ca. Liberibacter asiaticus" strains. This study expanded our knowledge of "Ca. Liberibacter asiaticus" pathogenicity and provided new insights into the differences in pathogenicity between "Ca. Liberibacter asiaticus" strains. IMPORTANCE Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. "Candidatus Liberibacter asiaticus" is one of the most common putative causal agents of HLB. Phages of "Ca. Liberibacter asiaticus" have recently been identified and found to affect "Ca. Liberibacter asiaticus" biology. Here, we found that "Ca. Liberibacter asiaticus" strains harboring different types of phages (type 1 or type 2) showed different levels of pathogenicity and multiplication patterns in the periwinkle plant (Catharanthus roseus). Transcriptome analysis revealed the possible lytic activity of type 1 phage in a "Ca. Liberibacter asiaticus" strain, which could limit the propagation of "Ca. Liberibacter asiaticus" and lead to the delayed infection in periwinkle. The heterogeneity in the transcriptome profiles, particularly the significant differences in expression of virulence factors genes, could be another major determinant of difference in virulence observed between the two "Ca. Liberibacter asiaticus" strains. These findings improved our understanding of "Ca. Liberibacter asiaticus"-phage interaction and provided insight into "Ca. Liberibacter asiaticus" pathogenicity.


Assuntos
Bacteriófagos , Rhizobiaceae , Bacteriófagos/genética , Liberibacter/genética , Rhizobiaceae/genética , Virulência , Transcriptoma , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA